Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment
Abstract
:1. Introduction
2. Ceramides
2.1. General
2.2. Ceramide Nomenclature
2.3. Metabolic Pathway of Ceramide Synthesis
2.4. Ceramides and Sphingolipids as Activators of Inflammation
3. Evidence Regarding Ceramides in Patients with AIRDs
3.1. Ceramides in Rheumatoid Arthritis (RA)
Ceramides as Therapeutic Targets in RA
3.2. Ceramides in Ankylosing Spondylitis (SpA)
Ceramides as Therapeutic Targets in SpA
3.3. Ceramides in Systemic Lupus Erythematosus (SLE)
Ceramides as Diagnostic Targets of CV Risk and Therapeutic Targets in SLE
3.4. Ceramides in Patients with Fibromyalgia Syndrome (FMS)
Ceramides as Therapeutic Targets in FMS
3.5. Ceramides in Patients with Psoriatic Arthritis (PsA)
Ceramides as Therapeutic Targets in PsA
3.6. Ceramides in Primary Sjögren’s Syndrome (pSS)
Ceramides as Therapeutic Targets in pSS
3.7. Ceramides in Systemic Sclerosis (SSc)
Ceramides as Therapeutic Targets in SSc
3.8. Ceramides in Myositis
Ceramides as Therapeutic Targets in Myositis
3.9. Ceramides in Systemic Vasculitis (SV)
Ceramides as Therapeutic Targets in SV
4. Dietary Interventions as Anti-ceramide Treatments
Dietary Interventions as Anti-ceramide Treatments, Delivered in Randomized Controlled Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calle, E.; Gómez-Puerta, J.A. The Spectrum of Rheumatic Diseases. In Handbook of Systemic Autoimmune Diseases; Elsevier: Amsterdam, The Netherlands, 2018; Volume 15, pp. 1–13. [Google Scholar]
- Moutsopoulos, H.M. Autoimmune rheumatic diseases: One or many diseases? J. Transl. Autoimmun. 2021, 4, 100129. [Google Scholar] [CrossRef]
- WHO Scientific Group on Rheumatic Diseases. WHO Technical Report Series 816: Rheumatic Diseases; WHO: Geneva, Switzerland, 1992. [Google Scholar]
- Tonga, E.; Acar, M.; Daskapan, A. AB1168-HPR Physical Inacivity in Adults with Rheumatic Diseases. Ann. Rheum. Dis. 2014, 73, 1223–1224. [Google Scholar] [CrossRef]
- Xiang, L.; Low, A.H.L.; Leung, Y.Y.; Fong, W.; Gan, W.H.; Graves, N.; Thumboo, J. Work disability in rheumatic diseases: Baseline results from an inception cohort. Int. J. Rheum. Dis. 2020, 23, 1040–1049. [Google Scholar] [CrossRef]
- Salaffi, F.; Di Carlo, M.; Carotti, M.; Farah, S.; Ciapetti, A.; Gutierrez, M. The impact of different rheumatic diseases on health-related quality of life: A comparison with a selected sample of healthy individuals using SF-36 questionnaire, EQ-5D and SF-6D utility values. Acta Biomed. 2018, 89, 541–557. [Google Scholar] [CrossRef]
- Kim, H.; Cho, S.K.; Kim, J.W.; Jung, S.Y.; Jang, E.J.; Bae, S.C.; Yoo, D.H.; Sung, Y.K. An increased disease burden of autoimmune inflammatory rheumatic diseases in Korea. Semin. Arthritis Rheum. 2020, 50, 526–533. [Google Scholar] [CrossRef]
- Clarke, A.M.; Symmons, D.P.M. The burden of rheumatic disease. Medicine 2006, 34, 333–335. [Google Scholar] [CrossRef]
- Fautrel, B.; Guillemin, F. Cost of illness studies in rheumatic diseases. Curr. Opin. Rheumatol. 2002, 14, 121–126. [Google Scholar] [CrossRef]
- Canhao, H.; Masuko, K.; Nakamura, H. Editorial: Nutrition and Metabolism in Rheumatic Diseases. Front. Med. 2019, 6, 101. [Google Scholar] [CrossRef]
- Sakkas, L.I.; Simopoulou, T.; Daoussis, D.; Liossis, S.N.; Potamianos, S. Intestinal Involvement in Systemic Sclerosis: A Clinical Review. Dig. Dis. Sci. 2018, 63, 834–844. [Google Scholar] [CrossRef]
- Hulander, E.; Lindqvist, H.M.; Wadell, A.T.; Gjertsson, I.; Winkvist, A.; Bärebring, L. Improvements in Body Composition after a Proposed Anti-Inflammatory Diet Are Modified by Employment Status in Weight-Stable Patients with Rheumatoid Arthritis, a Randomized Controlled Crossover Trial. Nutrients 2022, 14, 1058. [Google Scholar] [CrossRef]
- Nelson, J.; Sjöblom, H.; Gjertsson, I.; Ulven, S.M.; Lindqvist, H.M.; Bärebring, L. Do Interventions with Diet or Dietary Supplements Reduce the Disease Activity Score in Rheumatoid Arthritis? A Systematic Review of Randomized Controlled Trials. Nutrients 2020, 12, 2991. [Google Scholar] [CrossRef]
- Carubbi, F.; Alunno, A.; Mai, F.; Mercuri, A.; Centorame, D.; Cipollone, J.; Mariani, F.M.; Rossi, M.; Bartoloni, E.; Grassi, D.; et al. Adherence to the Mediterranean diet and the impact on clinical features in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2021, 39, S190–S196. [Google Scholar] [CrossRef]
- Alunno, A.; Carubbi, F.; Bartoloni, E.; Grassi, D.; Ferri, C.; Gerli, R. Diet in rheumatoid arthritis versus systemic lupus erythematosus: Any differences? Nutrients 2021, 13, 772. [Google Scholar] [CrossRef]
- Gkiouras, K.; Grammatikopoulou, M.G.; Myrogiannis, I.; Papamitsou, T.; Rigopoulou, E.I.; Sakkas, L.I.; Bogdanos, D.P. Efficacy of n-3 fatty acid supplementation on rheumatoid arthritis’ disease activity indicators: A systematic review and meta-analysis of randomized placebo-controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Hulander, E.; Bärebring, L.; Turesson Wadell, A.; Gjertsson, I.; Calder, P.C.; Winkvist, A.; Lindqvist, H.M. Proposed Anti-Inflammatory Diet Reduces Inflammation in Compliant, Weight-Stable Patients with Rheumatoid Arthritis in a Randomized Controlled Crossover Trial. J. Nutr. 2021, 151, 3856–3864. [Google Scholar] [CrossRef]
- De Resende Guimarães, M.F.B.; Rodrigues, C.E.M.; Gomes, K.W.P.; MacHado, C.J.; Brenol, C.V.; Krampe, S.F.; De Andrade, N.P.B.; Kakehasi, A.M. High prevalence of obesity in rheumatoid arthritis patients: Association with disease activity, hypertension, dyslipidemia and diabetes, a multi-center study. Adv. Rheumatol. 2019, 59, 44. [Google Scholar] [CrossRef]
- Nikiphorou, E.; Fragoulis, G.E. Inflammation, obesity and rheumatic disease: Common mechanistic links. A narrative review. Ther. Adv. Musculoskelet. Dis. 2018, 10, 157–167. [Google Scholar] [CrossRef]
- Efthymiou, E.; Grammatikopoulou, M.G.; Gkiouras, K.; Efthymiou, G.; Zafiriou, E.; Goulis, D.G.; Sakkas, L.I.; Bogdanos, D.P. Time to Deal with Rheumatoid Cachexia: Prevalence, Diagnostic Criteria, Treatment Effects and Evidence for Management. Mediterr. J. Rheumatol. 2022, 33, 271–290. [Google Scholar] [CrossRef]
- Meza-Meza, M.R.; Vizmanos-Lamotte, B.; Muñoz-Valle, J.F.; Parra-Rojas, I.; Garaulet, M.; Campos-López, B.; Montoya-Buelna, M.; Cerpa-Cruz, S.; Martínez-López, E.; Oregon-Romero, E.; et al. Relationship of Excess Weight with Clinical Activity and Dietary Intake Deficiencies in Systemic Lupus Erythematosus Patients. Nutrients 2019, 11, 2683. [Google Scholar] [CrossRef] [Green Version]
- Pocovi-Gerardino, G.; Correa-Rodríguez, M.; Callejas-Rubio, J.L.; Ríos-Fernández, R.; Ortego-Centeno, N.; Rueda-Medina, B. Dietary intake and nutritional status in patients with systemic lupus erythematosus. Endocrinol. Diabetesy Nutr. 2018, 65, 533–539. [Google Scholar] [CrossRef]
- Hassanalilou, T.; Khalili, L.; Ghavamzadeh, S.; Shokri, A.; Payahoo, L.; Bishak, Y.K. Role of vitamin D deficiency in systemic lupus erythematosus incidence and aggravation. Autoimmun. Highlights 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B.; Tajian-Tilaki, K.; Babaei, M. Vitamin D Deficiency and Rheumatoid Arthritis: Epidemiological, Immunological, Clinical and Therapeutic Aspects. Mediterr. J. Rheumatol. 2019, 30, 94–102. [Google Scholar]
- Ali, O.M.E. Prevalence of Vitamin D Deficiency and Its Relationship with Clinical Outcomes in Patients with Fibromyalgia: A Systematic Review of the Literature. SN Compr. Clin. Med. 2022, 4, 38. [Google Scholar] [CrossRef]
- Silvestre, M.P.; Rodrigues, A.M.; Canhão, H.; Marques, C.; Teixeira, D.; Calhau, C.; Branco, J. Cross-Talk between Diet-Associated Dysbiosis and Hand Osteoarthritis. Nutrients 2020, 12, 3469. [Google Scholar] [CrossRef]
- Vieira, J.R.P.; Rezende, A.T.d.O.; Fernandes, M.R.; da Silva, N.A. Intestinal microbiota and active systemic lupus erythematosus: A systematic review. Adv. Rheumatol. 2021, 61, 42. [Google Scholar] [CrossRef]
- Tsigalou, C.; Stavropoulou, E.; Bezirtzoglou, E. Current Insights in Microbiome Shifts in Sjogren’s Syndrome and Possible Therapeutic Interventions. Front. Immunol. 2018, 9, 1106. [Google Scholar] [CrossRef]
- Todberg, T.; Kaiser, H.; Zachariae, C.; Egeberg, A.; Halling, A.S.; Skov, L. Characterization of the oral and gut microbiota in patients with psoriatic diseases: A systematic review. Acta Derm. Venereol. 2021, 101, adv00512. [Google Scholar] [CrossRef]
- Bärebring, L.; Winkvist, A.; Gjertsson, I.; Lindqvist, H.M. Poor dietary quality is associated with increased inflammation in Swedish patients with rheumatoid arthritis. Nutrients 2018, 10, 1535. [Google Scholar] [CrossRef] [Green Version]
- Turesson Wadell, A.; Bärebring, L.; Hulander, E.; Gjertsson, I.; Lindqvist, H.M.; Winkvist, A. Inadequate Dietary Nutrient Intake in Patients With Rheumatoid Arthritis in Southwestern Sweden: A Cross-Sectional Study. Front. Nutr. 2022, 9, 915064. [Google Scholar] [CrossRef]
- Standley, K.N.; Gjertsson, I.; Winkvist, A.; Lindqvist, H.M. Dietary Habits of Women with Rheumatoid Arthritis Differ from that of Women without the Disease: Results from a Population-Based Study. J. Rheum. Dis. Treat. 2019, 5, 072. [Google Scholar] [CrossRef] [Green Version]
- Tański, W.; Wójciga, J.; Jankowska-Polańska, B. Association between malnutrition and quality of life in elderly patients with rheumatoid arthritis. Nutrients 2021, 13, 1259. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Pineda-Torra, I.; Ciurtin, C.; Jury, E.C. Lipid metabolism in autoimmune rheumatic disease: Implications for modern and conventional therapies. J. Clin. Investig. 2022, 132, e148552. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Q.; Zhou, B.; Zhang, L.; Zhu, H. Lipid Metabolism Profiles in Rheumatic Diseases. Front. Pharmacol. 2021, 12, 443. [Google Scholar] [CrossRef] [PubMed]
- Nisar, A.; Rasheed, U.; Aziz, W.; Farooqi, A.Z. Prevalence of dyslipidemias in autoimmune rheumatic diseases-PubMed. J. Coll. Physicians Surg. Pakistan 2012, 22, 235–239. [Google Scholar]
- Alhusain, A.; Bruce, I.N. Cardiovascular risk and inflammatory rheumatic diseases. Clin. Med. J. R. Coll. Physicians London 2013, 13, 395–397. [Google Scholar] [CrossRef]
- Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.Á.; et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef]
- Mizushima, N.; Kohsaka, H.; Miyasaka, N. Ceramide, a mediator of interleukin 1, tumour necrosis factor α, as well as Fas receptor signalling, induces apoptosis of rheumatoid arthritis synovial cells. Ann. Rheum. Dis. 1998, 57, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Gu, J.; Xu, F.; Wang, Y.; Wang, H.; Zhang, B. The protective role of glucocerebrosidase/ceramide in rheumatoid arthritis. Connect. Tissue Res. 2022, 63, 625–633. [Google Scholar] [CrossRef]
- Merrill, A.H.J. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J. Biol. Chem. 2002, 277, 25843–25846. [Google Scholar] [CrossRef] [Green Version]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown. In Sphingolipids as Signalings and Regulatory Molecules; Chalfant, C., Del Poeta, M., Eds.; Springer: New York, NY, USA, 2010; Volume 688, pp. 1–23. [Google Scholar]
- T’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012, 84, 403–411. [Google Scholar] [CrossRef]
- Norris, G.H.; Blesso, C.N. Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017, 9, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 191. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, G.A.; Beverly, L.J.; Siskind, L.J. Sphingolipids and mitochondrial apoptosis. J. Bioenerg. Biomembr. 2016, 48, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Hannun, Y.A.; Luberto, C. Lipid Metabolism: Ceramide Transfer Protein Adds a New Dimension. Curr. Biol. 2004, 14, R163–R165. [Google Scholar] [CrossRef] [PubMed]
- Olivera, A.; Rivera, J. Sphingolipids and the Balancing of Immune Cell Function: Lessons from the Mast Cell. J. Immunol. 2005, 174, 1153–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasset, L.; Zhang, Y.; Dunn, T.M.; Di Lorenzo, A. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. Trends Endocrinol. Metab. 2016, 27, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Hsu, F.F.; Farmer, M.S.; Peterson, L.R.; Schaffer, J.E.; Ory, D.S.; Jiang, X. Development and validation of LC-MS/MS method for determination of very long acyl chain (C22:0 and C24:0) ceramides in human plasma. Anal. Bioanal. Chem. 2013, 405, 7357–7365. [Google Scholar] [CrossRef] [Green Version]
- Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 2008, 20, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Kihara, A.; Mitsutake, S.; Mizutani, Y.; Igarashi, Y. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog. Lipid Res. 2007, 46, 126–144. [Google Scholar] [CrossRef]
- Summers, S.A.; Chaurasia, B.; Holland, W.L. Metabolic Messengers: Ceramides. Nat. Metab. 2019, 1, 1051. [Google Scholar] [CrossRef] [PubMed]
- Sokolowska, E.; Blachnio-Zabielska, A. The Role of Ceramides in Insulin Resistance. Front. Endocrinol. 2019, 0, 577. [Google Scholar] [CrossRef]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2014, 1841, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Borodzicz, S.; Rudnicka, L.; Mirowska-Guzel, D.; Cudnoch-Jedrzejewska, A. The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis. 2016, 15, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geilen, C.C.; Barz, S.; Bektas, M. Sphingolipid signaling in epidermal homeostasis: Current knowledge and new therapeutic approaches in dermatology. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.H.; Yoon, S.J.; Kim, M.; Cho, S.; Lim, J.; Park, Y.; Kim, H.S.; Kwon, S.W.; Kim, W.U. Lipidome profile predictive of disease evolution and activity in rheumatoid arthritis. Exp. Mol. Med. 2022, 54, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Wymann, M.P.; Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 2008, 9, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013, 93, 1019–1137. [Google Scholar] [CrossRef]
- Mathias, S.; Dressler, K.A.; Kolesnick, R.N. Characterization of a ceramide-activated protein kinase: Stimulation by tumor necrosis factor α. Proc. Natl. Acad. Sci. USA 1991, 88, 10009–10013. [Google Scholar] [CrossRef] [Green Version]
- Schütze, S.; Potthoff, K.; Machleidt, T.; Berkovic, D.; Wiegmann, K.; Krönke, M. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “Acidic” sphingomyelin breakdown. Cell 1992, 71, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Ghosh, S. NF-κB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv. Exp. Med. Biol. 2005, 560, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Y.; Li, B.-Z.; Xu, W.-B.; Zhang, Y.-M.; Li, B.-W.; Cheng, Y.-X.; Xiao, Y.; Lin, C.-Y.; Dong, W.-R.; Shu, M.-A. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses. Dev. Comp. Immunol. 2023, 139, 104585. [Google Scholar] [CrossRef]
- Nixon, G.F. Sphingolipids in inflammation: Pathological implications and potential therapeutic targets. Br. J. Pharmacol. 2009, 158, 982–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Muñoz, A.; Presa, N.; Gomez-Larrauri, A.; Rivera, I.G.; Trueba, M.; Ordoñez, M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog. Lipid Res. 2016, 61, 51–62. [Google Scholar] [CrossRef]
- Nakamura, H.; Moriyama, Y.; Watanabe, K.; Tomizawa, S.; Yamazaki, R.; Takahashi, H.; Murayama, T. Lactosylceramide-Induced Phosphorylation Signaling to Group IVA Phospholipase A2 via Reactive Oxygen Species in Tumor Necrosis Factor-α-Treated Cells. J. Cell. Biochem. 2017, 118, 4370–4382. [Google Scholar] [CrossRef]
- Pettus, B.J.; Bielawska, A.; Subramanian, P.; Wijesinghe, D.S.; Maceyka, M.; Leslie, C.C.; Evans, J.H.; Freiberg, J.; Roddy, P.; Hannun, Y.A.; et al. Ceramide 1-Phosphate Is a Direct Activator of Cytosolic Phospholipase A2. J. Biol. Chem. 2004, 279, 11320–11326. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Huang, Y.M.; Zhao, M.H.; Chen, M. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation. Arthritis Res. Ther. 2014, 16, R142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera, A.; Spiegel, S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993, 365, 557–560. [Google Scholar] [CrossRef]
- Wu, K.L.; Liang, Q.H.; Ding, N.; Li, B.W.; Hao, J. Sphingosine-1-phosphate in anti-neutrophil cytoplasmic antibody-associated vasculitis: Coagulation-related clinical indicators and complications. Biosci. Rep. 2020, 40, BSR20200157. [Google Scholar] [CrossRef]
- Proia, R.L.; Hla, T. Emerging biology of sphingosine-1-phosphate: Its role in pathogenesis and therapy. J. Clin. Investig. 2015, 125, 1379–1387. [Google Scholar] [CrossRef] [Green Version]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Migita, K.; Honda, S.; Yamasaki, S.; Hirai, Y.; Fukuda, T.; Aoyagi, T.; Kita, M.; Ida, H.; Tsukada, T.; Kawakami, A.; et al. Regulation of rheumatoid synovial cell growth by ceramide. Biochem. Biophys. Res. Commun. 2000, 269, 70–75. [Google Scholar] [CrossRef]
- Ichinose, Y.; Eguchi, K.; Migita, K.; Kawabe, Y.; Tsukada, T.; Koji, T.; Abe, K.; Aoyagi, T.; Nakamura, H.; Nagataki, S. Apoptosis induction in synovial fibroblasts by ceramide: In vitro and in vivo effects. J. Lab. Clin. Med. 1998, 131, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Downton, P.; Sanna, F.; Maidstone, R.; Poolman, T.M.; Hayter, E.A.; Dickson, S.H.; Ciccone, N.A.; Early, J.O.; Adamson, A.; Spiller, D.G.; et al. Chronic inflammatory arthritis drives systemic changes incircadian energy metabolism. PNAS 2022, 119, e2112781119. [Google Scholar] [CrossRef]
- Hanaoka, B.Y.; Ormseth, M.J.; Michael Stein, C.; Banerjee, D.; Nikolova-Karakashian, M.; Crofford, L.J. Secretory sphingomyelinase (S-SMase) activity is elevated in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 1395–1399. [Google Scholar] [CrossRef]
- Huang, C.C.; Tseng, T.T.; Liu, S.C.; Lin, Y.Y.; Law, Y.Y.; Hu, S.L.; Wang, S.W.; Tsai, C.H.; Tang, C.H. S1p increases vegf production in osteoblasts and facilitates endothelial progenitor cell angiogenesis by inhibiting mir-16-5p expression via the c-src/fak signaling pathway in rheumatoid arthritis. Cells 2021, 10, 2168. [Google Scholar] [CrossRef]
- Kosinska, M.K.; Liebisch, G.; Lochnit, G.; Wilhelm, J.; Klein, H.; Kaesser, U.; Lasczkowski, G.; Rickert, M.; Schmitz, G.; Steinmeyer, J. Sphingolipids in human synovial fluid-A lipidomic study. PLoS ONE 2014, 9, e91769. [Google Scholar] [CrossRef] [Green Version]
- Medcalf, M.R.; Bhadbhade, P.; Mikuls, T.R.; O’dell, J.R.; Gundry, R.L.; Funk, R.S. Plasma metabolome normalization in rheumatoid arthritis following initiation of methotrexate and the identification of metabolic biomarkers of efficacy. Metabolites 2021, 11, 824. [Google Scholar] [CrossRef]
- Miltenberger-Miltenyi, G.; Cruz-Machado, A.R.; Saville, J.; Conceição, V.A.; Calado, Â.; Lopes, I.; Fuller, M.; Fonseca, J.E. Increased monohexosylceramide levels in the serum of established rheumatoid arthritis patients. Rheumatology 2020, 59, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Poolman, T.M.; Gibbs, J.; Walker, A.L.; Dickson, S.; Farrell, L.; Hensman, J.; Kendall, A.C.; Maidstone, R.; Warwood, S.; Loudon, A.; et al. Rheumatoid arthritis reprograms circadian output pathways. Arthritis Res. Ther. 2019, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Smesam, H.N.; Qazmooz, H.A.; Khayoon, S.Q.; Almulla, A.F.; Al-Hakeim, H.K.; Maes, M. Pathway Phenotypes Underpinning Depression, Anxiety, and Chronic Fatigue Symptoms Due to Acute Rheumatoid Arthritis: A Precision Nomothetic Psychiatry Analysis. J. Pers. Med. 2022, 12, 476. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, N.; Becker, K.A.; Walter, S.; Becker, J.U.; Kramer, M.; Hessler, G.; Weber, S.; Göthert, J.R.; Fassbender, K.; Gulbins, E.; et al. Regulation of Arthritis Severity by the Acid Sphingomyelinase. Cell Physiol. Biochem. 2017, 43, 1460–1471. [Google Scholar] [CrossRef] [Green Version]
- Coras, R.; Murillo-Saich, J.D.; Singh, A.G.; Kavanaugh, A.; Guma, M. Lipidomic Profiling in Synovial Tissue. Front. Med. 2022, 9, 932. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Kohno, M.; Nagahara, H.; Murakami, K.; Sagawa, T.; Kasahara, A.; Kaneshita, S.; Kida, T.; Fujioka, K.; Wada, M.; et al. Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS ONE 2019, 14, e0218090. [Google Scholar] [CrossRef]
- Sun, M.; Deng, R.; Wang, Y.; Wu, H.; Zhang, Z.; Bu, Y.; Zhang, H. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sci. 2020, 256, 117988. [Google Scholar] [CrossRef]
- Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res. 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- El Jamal, A.; Briolay, A.; Mebarek, S.; Le Goff, B.; Blanchard, F.; Magne, D.; Brizuela, L.; Bougault, C. Cytokine-Induced and Stretch-Induced Sphingosine 1-Phosphate Production by Enthesis Cells Could Favor Abnormal Ossification in Spondyloarthritis. J. Bone Miner. Res. 2019, 34, 2264–2276. [Google Scholar] [CrossRef]
- Vaillant, A.A.J.; Goyal, A.; Varacallo, M. Systemic Lupus erythematosus. In European Handbook of Dermatological Treatments, 3rd ed.; Kuhn, A., Landmann, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 547–560. ISBN 9783662451397. [Google Scholar]
- Ceccarelli, F.; Perricone, C.; Cipriano, E.; Massaro, L.; Natalucci, F.; Capalbo, G.; Leccese, I.; Bogdanos, D.; Spinelli, F.R.; Alessandri, C.; et al. Joint involvement in systemic lupus erythematosus: From pathogenesis to clinical assessment. Semin. Arthritis Rheum. 2017, 47, 53–64. [Google Scholar] [CrossRef]
- Kondrateva, L.; Popkova, T.; Nasonov, E.; Lila, A. AB0421 Effect of body weight on complement levels in systemic lupus erythematosus. Ann. Rheum. Dis. 2020, 79, 1510. [Google Scholar] [CrossRef]
- Woo, J.M.P.; Parks, C.G.; Jacobsen, S.; Costenbader, K.H.; Bernatsky, S. The role of environmental exposures and gene–environment interactions in the etiology of systemic lupus erythematous. J. Intern. Med. 2022, 291, 755–778. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hu, C.; Zhao, Y.; He, L.; Zhou, J.; Li, H.; Du, Y.; Wang, Y.; Wen, C.; Han, X.; et al. Shotgun Lipidomics Revealed Altered Profiles of Serum Lipids in Systemic Lupus Erythematosus Closely Associated with Disease Activity. Biomolecules 2018, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borba, E.F.; Bonfá, E.; Vinagre, C.G.C.; Ramires, J.A.F.; Maranhão, R.C. Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum. 2000, 43, 1033–1040. [Google Scholar] [CrossRef]
- Liu, Y.; Kaplan, M.J. Cardiovascular disease in systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 441–448. [Google Scholar] [CrossRef]
- Checa, A.; Idborg, H.; Zandian, A.; Sar, D.G.; Surowiec, I.; Trygg, J.; Svenungsson, E.; Jakobsson, P.J.; Nilsson, P.; Gunnarsson, I.; et al. Dysregulations in circulating sphingolipids associate with disease activity indices in female patients with systemic lupus erythematosus: A cross-sectional study. Lupus 2017, 26, 1023–1033. [Google Scholar] [CrossRef]
- Hammad, S.M.; Hardin, J.R.; Wilson, D.A.; Twal, W.O.; Nietert, P.J.; Oates, J.C. Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity. PLoS ONE 2019, 14, e0224496. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Luu, L.D.W.; Jia, N.; Zhu, J.; Fu, J.; Xiao, F.; Liu, C.; Li, S.; Shu, G.; Hou, J.; et al. Multi-Platform Omics Analysis Reveals Molecular Signatures for Pathogenesis and Activity of Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 1648. [Google Scholar] [CrossRef]
- Idborg, H.; Zandian, A.; Sandberg, A.S.; Nilsson, B.; Elvin, K.; Truedsson, L.; Sohrabian, A.; Rönnelid, J.; Mo, J.; Grosso, G.; et al. Two subgroups in systemic lupus erythematosus with features of antiphospholipid or Sjögren’s syndrome differ in molecular signatures and treatment perspectives. Arthritis Res. Ther. 2019, 21, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Idborg, H.; Checa, A.; Sar, D.; Jakobsson, P.-J.; Wheelock, C.; Gunnarsson, I. A3.28 Screening of sphingolipids in SLE–before and after treatment. Ann. Rheum. Dis. 2014, 73, A53. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Deng, X.; Zhong, L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int. J. Clin. Exp. Pathol. 2019, 12, 857. [Google Scholar] [PubMed]
- McDonald, G.; Deepak, S.; Miguel, L.; Hall, C.J.; Isenberg, D.A.; Magee, A.I.; Butters, T.; Jury, E.C. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J. Clin. Investig. 2014, 124, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Patyna, S.; Büttner, S.; Eckes, T.; Obermüller, N.; Bartel, C.; Braner, A.; Trautmann, S.; Thomas, D.; Geiger, H.; Pfeilschifter, J.; et al. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat. 2019, 144, 106348. [Google Scholar] [CrossRef] [PubMed]
- Mallela, S.K.; Merscher, S.; Fornoni, A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int. J. Mol. Sci. 2022, 23, 4244. [Google Scholar] [CrossRef] [PubMed]
- Nowling, T.K.; Mather, A.R.; Thiyagarajan, T.; Hernández-Corbacho, M.J.; Powers, T.W.; Jones, E.E.; Snider, A.J.; Oates, J.C.; Drake, R.R.; Siskind, L.J. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J. Am. Soc. Nephrol. 2015, 26, 1402–1413. [Google Scholar] [CrossRef] [Green Version]
- Drexler, Y.; Molina, J.; Mitrofanova, A.; Fornoni, A.; Merscher, S. Sphingosine-1-phosphate metabolism and signaling in kidney diseases. J. Am. Soc. Nephrol. 2021, 32, 9–31. [Google Scholar] [CrossRef]
- Sherer, Y.; Shoenfeld, Y. Mechanisms of disease: Atherosclerosis in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 2006, 2, 99–106. [Google Scholar] [CrossRef]
- Harden, O.C.; Hammad, S.M. Sphingolipids and Diagnosis, Prognosis, and Organ Damage in Systemic Lupus Erythematosus. Front. Immunol. 2020, 11, 2532. [Google Scholar] [CrossRef]
- Hammad, S.M.; Crellin, H.G.; Wu, B.X.; Melton, J.; Anelli, V.; Obeid, L.M. Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat. 2008, 85, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Boof, M.L.; van Lier, J.J.; English, S.; Fischer, H.; Ufer, M.; Dingemanse, J. Absorption, distribution, metabolism, and excretion of cenerimod, a selective S1P1 receptor modulator in healthy subjects. Xenobiotica 2020, 50, 947–956. [Google Scholar] [CrossRef]
- Juif, P.E.; Dingemanse, J.; Winkle, P.; Ufer, M. Pharmacokinetics and Pharmacodynamics of Cenerimod, A Selective S1P1 R Modulator, Are Not Affected by Ethnicity in Healthy Asian and White Subjects. Clin. Transl. Sci. 2021, 14, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Hermann, V.; Batalov, A.; Smakotina, S.; Juif, P.E.; Cornelisse, P. First use of cenerimod, a selective S1P1 receptor modulator, for the treatment of SLE: A double-blind, randomised, placebo-controlled, proof-of-concept study. Lupus Sci. Med. 2019, 6, e000354. [Google Scholar] [CrossRef] [PubMed]
- Mike, E.V.; Makinde, H.M.; Der, E.; Stock, A.; Gulinello, M.; Gadhvi, G.T.; Winter, D.R.; Cuda, C.M.; Putterman, C. Neuropsychiatric Systemic Lupus Erythematosus Is Dependent on Sphingosine-1-Phosphate Signaling. Front. Immunol. 2018, 9, 2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, H.; Hirata, D.; Kamimura, T.; Sato, H.; Iwamoto, M.; Yoshio, T.; Masuyama, J.; Fujimura, A.; Kobayashi, E.; Kano, S.; et al. Effects of FTY720 in MRL-lpr/lpr mice: Therapeutic potential in systemic lupus erythematosus. J. Rheumatol. 2002, 29, 707–716. [Google Scholar] [PubMed]
- Meadows, K.R.T.; Steinberg, M.W.; Clemons, B.; Stokes, M.E.; Opiteck, G.J.; Peach, R.; Scott, F.L. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus. PLoS ONE 2018, 13, e0193236. [Google Scholar] [CrossRef]
- Siracusa, R.; Di Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, mechanisms, diagnosis and treatment options update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef]
- Caboni, P.; Liori, B.; Kumar, A.; Santoru, M.L.; Asthana, S.; Pieroni, E.; Fais, A.; Era, B.; Cacace, E.; Ruggiero, V.; et al. Metabolomics analysis and modeling suggest a lysophosphocholines-PAF receptor interaction in fibromyalgia. PLoS ONE 2014, 9, e107626. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.H.; Han, D.S.; Ku, W.C.; Chao, Y.M.; Chen, C.C.; Lin, Y.L. Metabolomic and proteomic characterization of sng and pain phenotypes in fibromyalgia. Eur. J. Pain 2022, 26, 445. [Google Scholar] [CrossRef]
- Hung, C.H.; Lee, C.H.; Tsai, M.H.; Chen, C.H.; Lin, H.F.; Hsu, C.Y.; Lai, C.L.; Chen, C.C. Activation of acid-sensing ion channel 3 by lysophosphatidylcholine 16:0 mediates psychological stress-induced fibromyalgia-like pain. Ann. Rheum. Dis. 2020, 79, 1644–1656. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Remaley, A.T.; Mehta, N.N. Oxidized Lipids and Lipoprotein Dysfunction in Psoriasis. J. Psoriasis Psoriatic Arthritis 2020, 5, 146. [Google Scholar] [CrossRef]
- Coras, R.; Kavanaugh, A.; Boyd, T.; Huynh, Q.; Pedersen, B.; Armando, A.M.; Dahlberg-Wright, S.; Marsal, S.; Jain, M.; Paravar, T.; et al. Pro- and anti-inflammatory eicosanoids in psoriatic arthritis. Metabolomics 2019, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Checa, A.; Xu, N.; Sar, D.G.; Haeggström, J.Z.; Ståhle, M.; Wheelock, C.E. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment. Sci. Rep. 2015, 5, 12017. [Google Scholar] [CrossRef] [PubMed]
- Harasim-Symbor, E.; Myśliwiec, H.; Milewska, A.J.; Chabowski, A.; Flisiak, I.; Kozłowska, D. Serum sphingolipid level in psoriatic patients with obesity. Postep. Dermatol. I Alergol. 2019, 36, 714–721. [Google Scholar] [CrossRef]
- Motta, S.; Monti, M.; Sesana, S.; Mellesi, L.; Ghidoni, R.; Caputo, R. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch. Dermatol. 1994, 130, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Kim, J.Y.; Song, E.H.; Shin, M.K.; Cho, Y.H.; Kim, N.I. Altered levels of sphingosine and sphinganine in psoriatic epidermis. Ann. Dermatol. 2013, 25, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lew, B.L.; Cho, Y.; Kim, J.; Sim, W.Y.; Kim, N.I. Ceramides and Cell Signaling Molecules in Psoriatic Epidermis: Reduced Levels of Ceramides, PKC-α, and JNK. J. Korean Med. Sci. 2006, 21, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myśliwiec, H.; Baran, A.; Harasim-Symbor, E.; Choromańska, B.; Myśliwiec, P.; Milewska, A.J.; Chabowski, A.; Flisiak, I. Increase in circulating sphingosine-1-phosphate and decrease in ceramide levels in psoriatic patients. Arch. Dermatol. Res. 2017, 309, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kozlowska, D.; Harasim-Symbor, E.; Mysliwiec, H.; Milewska, A.J.; Chabowski, A.; Flisiak, I. Lipid profile disturbances may predispose psoriatic patients to liver dysfunction. Postep. Dermatol. I Alergol. 2021, 38, 310–318. [Google Scholar] [CrossRef]
- Vaclavkova, A.; Chimenti, S.; Arenberger, P.; Holló, P.; Sator, P.G.; Burcklen, M.; Stefani, M.; D’Ambrosio, D. Oral ponesimod in patients with chronic plaque psoriasis: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2014, 384, 2036–2045. [Google Scholar] [CrossRef]
- D’ambrosio, D.; Freedman, M.S.; Prinz, J. Ponesimod, a selective S1P1 receptor modulator: A potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis. 2016, 7, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.; Menter, A. Ponesimod--a future oral therapy for psoriasis? Lancet 2014, 384, 2006–2008. [Google Scholar] [CrossRef]
- García-Carrasco, M.; Fuentes-Alexandro, S.; Escárcega, R.O.; Salgado, G.; Riebeling, C.; Cervera, R. Pathophysiology of Sjögren’s Syndrome. Arch. Med. Res. 2006, 37, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, C.P.; Moutsopoulos, H.M. Sjögren’s Syndrome. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Melissaropoulos, K.; Bogdanos, D.; Dimitroulas, T.; Sakkas, L.I.; Kitas, G.D.; Daoussis, D. Primary Sjögren’s Syndrome and Cardiovascular Disease. Curr. Vasc. Pharmacol. 2020, 18, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Fineide, F.; Chen, X.; Bjellaas, T.; Vitelli, V.; Utheim, T.P.; Jensen, J.L.; Galtung, H.K. Characterization of Lipids in Saliva, Tears and Minor Salivary Glands of Sjögren’s Syndrome Patients Using an HPLC/MS-Based Approach. Int. J. Mol. Sci. 2021, 22, 8997. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Iwasaki, T.; Kitano, M.; Kuno, H.; Hashimoto, N.; Kawahito, Y.; Azuma, M.; Hla, T.; Sano, H. Role of Sphingosine 1-Phosphate in the Pathogenesis of Sjögren’s Syndrome. J. Immunol. 2008, 180, 1921–1928. [Google Scholar] [CrossRef] [Green Version]
- Hla, T. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 2004, 15, 513–520. [Google Scholar] [CrossRef]
- Li, J.; Wu, L.; Chen, Y.; Yan, Z.; Fu, J.; Luo, Z.; Du, J.; Guo, L.; Xu, J.; Liu, Y. Anticeramide Improves Sjögren’s Syndrome by Blocking BMP6-Induced Th1. J. Dent. Res. 2022, 102, 002203452211197. [Google Scholar] [CrossRef]
- Yin, H.; Kalra, L.; Lai, Z.; Guimaro, M.C.; Aber, L.; Warner, B.M.; Michael, D.; Zhang, N.; Cabrera-Perez, J.; Karim, A.; et al. Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjögren’s syndrome in mice. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pattanaik, D.; Brown, M.; Postlethwaite, B.C.; Postlethwaite, A.E. Pathogenesis of systemic sclerosis. Front. Immunol. 2015, 6, 272. [Google Scholar] [CrossRef] [Green Version]
- Cutolo, M.; Soldano, S.; Smith, V. Pathophysiology of systemic sclerosis: Current understanding and new insights. Expert Rev. Clin. Immunol. 2019, 15, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BS, S.; AM, T. Sphingolipid regulation of tissue fibrosis. Open Rheumatol. J. 2012, 6, 123–129. [Google Scholar] [CrossRef]
- Gogulska, Z.; Smolenska, Z.; Turyn, J.; Mika, A.; Zdrojewski, Z. Lipid Alterations in Systemic Sclerosis. Front. Mol. Biosci. 2021, 8, 1210. [Google Scholar] [CrossRef] [PubMed]
- Geroldinger-Simić, M.; Bögl, T.; Himmelsbach, M.; Sepp, N.; Buchberger, W. Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics 2021, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Bögl, T.; Mlynek, F.; Himmelsbach, M.; Sepp, N.; Buchberger, W.; Geroldinger-Simić, M. Plasma Metabolomic Profiling Reveals Four Possibly Disrupted Mechanisms in Systemic Sclerosis. Biomedicines 2022, 10, 607. [Google Scholar] [CrossRef]
- Samuel, G.H.; Lenna, S.; Bujor, A.M.; Lafyatis, R.; Trojanowska, M. Acid Sphingomyelinase Deficiency Contributes to Resistance of Scleroderma fibroblasts to Fas-mediated Apoptosis. J. Dermatol. Sci. 2012, 67, 172. [Google Scholar] [CrossRef] [Green Version]
- Gulbins, E.; Grassmé, H. Ceramide and cell death receptor clustering. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2002, 1585, 139–145. [Google Scholar] [CrossRef]
- Grassmé, H.; Jekle, A.; Riehle, A.; Schwarz, H.; Berger, J.; Sandhoff, K.; Kolesnick, R.; Gulbins, E. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 2001, 276, 20589–20596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.G.; Juan, M.H.S.; Trautmann, S.; Berninger, L.; Schwiebs, A.; Ottenlinger, F.M.; Thomas, D.; Zaucke, F.; Pfeilschifter, J.M.; Radeke, H.H. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. Front. Immunol. 2017, 8, 1242. [Google Scholar] [CrossRef] [Green Version]
- Bu, S.; Asano, Y.; Bujor, A.; Highland, K.; Hant, F.; Trojanowska, M. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum. 2010, 62, 2117–2126. [Google Scholar] [CrossRef]
- Carstens, P.O.; Schmidt, J. Diagnosis, pathogenesis and treatment of myositis: Recent advances. Clin. Exp. Immunol. 2014, 175, 358. [Google Scholar] [CrossRef] [PubMed]
- Chinoy, H.; Lilleker, J.B. Pitfalls in the diagnosis of myositis. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101486. [Google Scholar] [CrossRef] [PubMed]
- Dvergsten, J.A.; Reed, A.M.; Landerman, L.; Pisetsky, D.S.; Ilkayeva, O.; Huffman, K.M. Metabolomics analysis identifies a lipidomic profile in treatment-naïve juvenile dermatomyositis patients vs healthy control subjects. Rheumatology 2022, 61, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Loell, I.; Raouf, J.; Chen, Y.-W.; Shi, R.; Nennesmo, I.; Alexanderson, H.; Dastmalchi, M.; Nagaraju, K.; Korotkova, M.; Lundberg, I.E. Effects on muscle tissue remodeling and lipid metabolism in muscle tissue from adult patients with polymyositis or dermatomyositis treated with immunosuppressive agents. Arthritis Res. Ther. 2016, 18, 136. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Muramatsu, A.; Yoshino, S.; Matsui, S.; Shimura, M.; Tsujii, Y.; Iwatsuki, K.; Kobayashi-Hattori, K.; Oishi, Y. mTOR inhibition by rapamycin increases ceramide synthesis by promoting transforming growth factor-β1/Smad signaling in the skin. FEBS Open Bio 2016, 6, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Bruce, C.R.; Risis, S.; Babb, J.R.; Yang, C.; Kowalski, G.M.; Selathurai, A.; Lee-Young, R.S.; Weir, J.M.; Yoshioka, K.; Takuwa, Y.; et al. Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 2012, 61, 3148–3155. [Google Scholar] [CrossRef] [Green Version]
- Guillevin, L.; Pagnoux, C.; Guilpain, P. Classification des vascularites systémiques. Press. Med. 2007, 36, 845–853. [Google Scholar] [CrossRef]
- Almaani, S.; Fussner, L.A.; Brodsky, S.; Meara, A.S.; Jayne, D. ANCA-Associated Vasculitis: An Update. J. Clin. Med. 2021, 10, 1446. [Google Scholar] [CrossRef]
- Salmela, A.; Ekstrand, A.; Joutsi-Korhonen, L.; Räisänen-Sokolowski, A.; Lassila, R. Activation of endothelium, coagulation and fibrinolysis is enhanced and associates with renal anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol. Dial. Transplant. 2015, 30, i53–i59. [Google Scholar] [CrossRef] [Green Version]
- Fender, A.C.; Rauch, B.H.; Geisler, T.; Schrör, K. Protease-Activated receptor PAR-4: An inducible switch between thrombosis and vascular inflammation? Thromb. Haemost. 2017, 117, 2013–2025. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Schreiber, A.; Heeringa, P.; Falk, R.J.; Jennette, J.C. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 2007, 170, 52–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.J.; Chen, M.; Zhao, M.H. Rho GTPases are involved in S1P-enhanced glomerular endothelial cells activation with anti-myeloperoxidase antibody positive IgG. J. Cell Mol. Med. 2018, 22, 4550–4554. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-J.; Wang, C.; Zhang, L.-X.; Yu, F.; Chen, M.; Zhao, M.-H. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol. Dial. Transplant. 2017, 32, 1313–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konno, Y.; Takahashi, I.; Narita, A.; Takeda, O.; Koizumi, H.; Tamura, M.; Kikuchi, W.; Komatsu, A.; Tamura, H.; Tsuchida, S.; et al. Elevation of Serum Acid Sphingomyelinase Activity in Acute Kawasaki Disease. Tohoku J. Exp. Med. 2015, 237, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wen, M.; He, Q.; Dang, X.; Feng, S.; Liu, T.; Ding, X.; Li, X.; He, X. Lipid metabolism contribute to the pathogenesis of IgA Vasculitis. Diagn. Pathol. 2022, 17, 28. [Google Scholar] [CrossRef]
- Hedrich, C.M.; Schnabel, A.; Hospach, T. Kawasaki disease. Front. Pediatr. 2018, 6, 198. [Google Scholar] [CrossRef] [Green Version]
- Heineke, M.H.; Ballering, A.V.; Jamin, A.; Ben Mkaddem, S.; Monteiro, R.C.; Van Egmond, M. New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein purpura). Autoimmun. Rev. 2017, 16, 1246–1253. [Google Scholar] [CrossRef]
- Song, Y.; Huang, X.; Yu, G.; Qiao, J.; Cheng, J.; Wu, J.; Chen, J. Pathogenesis of IgA Vasculitis: An Up-To-Date Review. Front. Immunol. 2021, 12, 771619. [Google Scholar] [CrossRef]
- Wang, L.Y.; Sun, X.J.; Wang, C.; Chen, S.F.; Li, Z.Y.; Chen, M.; Little, M.A.; Zhao, M.H. Sphingosine-1-phosphate receptor modulator FTY720 attenuates experimental myeloperoxidase-ANCA vasculitis in a T cell-dependent manner. Clin. Sci. 2020, 134, 1475–1489. [Google Scholar] [CrossRef]
- Mah, M.; Febbraio, M.; Turpin-Nolan, S. Circulating Ceramides- Are Origins Important for Sphingolipid Biomarkers and Treatments? Front. Endocrinol. 2021, 0, 834. [Google Scholar] [CrossRef]
- Zalewska, A.; Maciejczyk, M.; Szulimowska, J.; Imierska, M.; Błachnio-Zabielska, A. High-fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice. Biomolecules 2019, 9, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reginato, A.; Veras, A.; Baqueiro, M.; Panzarin, C.; Siqueira, B.; Milanski, M.; Lisboa, P.; Torsoni, A. The role of fatty acids in ceramide pathways and their influence on hypothalamic regulation of energy balance: A systematic review. Int. J. Mol. Sci. 2021, 22, 5357. [Google Scholar] [CrossRef] [PubMed]
- Alexandropoulou, I.; Lantzanaki-Syrpou, M.; Grammatikopoulou, M.G.; Goulis, D.G. Ceramides as Dietary Biomarkers. In Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications; Patel, V.B., Preedy, V.R., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–15. [Google Scholar]
- Lindqvist, H.M.; Bärebring, L.; Gjertsson, I.; Jylhä, A.; Laaksonen, R.; Winkvist, A.; Hilvo, M. A randomized controlled dietary intervention improved the serum lipid signature towards a less atherogenic profile in patients with rheumatoid arthritis. Metabolites 2021, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Airhart, S.; Cade, W.T.; Jiang, H.; Coggan, A.R.; Racette, S.B.; Korenblat, K.; Spearie, C.A.; Waller, S.; O’Connor, R.; Bashir, A.; et al. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. J. Clin. Endocrinol. Metab. 2016, 101, 504–512. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dong, Y.; Bhagatwala, J.; Raed, A.; Huang, Y.; Zhu, H. Vitamin D3 Supplementation Increases Long-Chain Ceramide Levels in Overweight/Obese African Americans: A Post-Hoc Analysis of a Randomized Controlled Trial. Nutrients 2020, 12, 981. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.; Siri-Tarino, P.; Bergeron, N.; Suh, J.H.; Krauss, R.M. A Randomized Study of the Effect of Replacing Sugar-Sweetened Soda by Reduced Fat Milk on Cardiometabolic Health in Male Adolescent Soda Drinkers. Nutrients 2020, 12, 405. [Google Scholar] [CrossRef] [Green Version]
- Djekic, D.; Shi, L.; Calais, F.; Carlsson, F.; Landberg, R.; Hyötyläinen, T.; Frøbert, O. Effects of a Lacto-Ovo-Vegetarian Diet on the Plasma Lipidome and Its Association with Atherosclerotic Burden in Patients with Coronary Artery Disease—A Randomized, Open-Label, Cross-over Study. Nutrients 2020, 12, 3586. [Google Scholar] [CrossRef]
- Le Barz, M.; Vors, C.; Combe, E.; Joumard-Cubizolles, L.; Lecomte, M.; Joffre, F.; Trauchessec, M.; Pesenti, S.; Loizon, E.; Breyton, A.E.; et al. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI insight 2021, 6, e146161. [Google Scholar] [CrossRef]
- Mathews, A.T.; Famodu, O.A.; Olfert, M.D.; Murray, P.J.; Cuff, C.F.; Downes, M.T.; Haughey, N.J.; Colby, S.E.; Chantler, P.D.; Olfert, I.M.; et al. Efficacy of nutritional interventions to lower circulating ceramides in young adults: FRUVEDomic pilot study. Physiol. Rep. 2017, 5, 13329. [Google Scholar] [CrossRef]
- Rosqvist, F.; Kullberg, J.; Ståhlman, M.; Cedernaes, J.; Heurling, K.; Johansson, H.-E.; Iggman, D.; Wilking, H.; Larsson, A.; Eriksson, O.; et al. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J. Clin. Endocrinol. Metab. 2019, 104, 6207–6219. [Google Scholar] [CrossRef] [Green Version]
- Tuccinardi, D.; Di Mauro, A.; Lattanzi, G.; Rossini, G.; Monte, L.; Beato, I.; Spiezia, C.; Bravo, M.; Watanabe, M.; Soare, A.; et al. An extra virgin olive oil-enriched chocolate spread positively modulates insulin-resistance markers compared with a palm oil-enriched one in healthy young adults: A double-blind, cross-over, randomised controlled trial. Diabetes. Metab. Res. Rev. 2022, 38, e3492. [Google Scholar] [CrossRef]
- Tuccinardi, D.; Farr, O.M.; Upadhyay, J.; Oussaada, S.M.; Klapa, M.I.; Candela, M.; Rampelli, S.; Lehoux, S.; Lázaro, I.; Sala-Vila, A.; et al. Mechanisms underlying the cardiometabolic protective effect of walnut consumption in obese people: A cross-over, randomized, double-blind, controlled inpatient physiology study. Diabetes. Obes. Metab. 2019, 21, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial. Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Xu, H.; Tian, Z.; Wang, X.; Xu, L.; Li, K.; Gao, X.; Fan, D.; Ma, X.; Ling, W.; et al. Dose-dependent reductions in plasma ceramides after anthocyanin supplementation are associated with improvements in plasma lipids and cholesterol efflux capacity in dyslipidemia: A randomized controlled trial. Clin. Nutr. 2021, 40, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Sawrey-Kubicek, L.; Beals, E.; Hughes, R.L.; Rhodes, C.H.; Sacchi, R.; Zivkovic, A.M. The HDL lipidome is widely remodeled by fast food versus Mediterranean diet in 4 days. Metabolomics 2019, 15, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.; Xanthakis, V.; Ma, J.; Quatromoni, P.A.; Moore, L.; Ramachandran, V.; Jacques, P. A Mediterranean Style Diet Is Favorably Associated with Concentrations of Circulating Ceramides and Ceramide Ratios in the Framingham Offspring Cohort (P18-048-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Burg, N.; Salmon, J.E.; Hla, T. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat. Rev. Rheumatol. 2022, 18, 335–351. [Google Scholar] [CrossRef] [PubMed]
First Author | Origin | Participants | Biofluids | Results |
---|---|---|---|---|
Hanaoka [80] | USA | Cases: n = 33 patients with RA Controls: n = 17 non-RA controls | Blood serum | S-Smas activity in patients with RA was 1.4 times higher than in controls. |
Huang [81] | Taiwan | Cases: patients with RA Controls: patients with OA | SF | Greater levels of S1P expression in patients with RA compared to controls. |
Koh [59] | UK | Cases: n = 42 patients with active RA, n = 19 patients with RA on remission Controls: n = 18 preclinical RA and n = 49 patients with OA | SF, blood serum | An increase in serum Cer 42:1 and SM was observed in RA. The number of lipids differentially expressed in the serum and SF of patients with active RA vs. OA differed (15 and 135 lipids, respectively). |
Kosinska [82] | Germany | Cases: n = 9 deceased, n = 18 patients with RA Controls: n = 30 patients with OA | SF | Six species of ceramides were identified, with d18:0/24:0 being the predominant one (other species: d18:1/16:0, d18:1/22:0, d18:1/23:0 and d18:1/24:1). Their concentration was increased (thrice) compared to the levels observed in the control arm (OA). About 70% of these contained mainly SFA. In addition, SM species were increased (three-fold) in RA compared to the OA. |
Medcalf [83] | USA | Cases: n = 20 patients with RA initiating MTX therapy (15 mg/week) before and after 16 weeks of treatment Controls: n = 20 healthy controls | Plasma | RA induces alterations to the plasma metabolome. MTX therapy can partially correct these alterations involving TG, FA and ceramides. |
Miltenberger-Miltenyi [84] | Portugal | Cases: n = 19 patients with estRA, n = 18 untreated patients with earlRA Controls: n = 13 untreated patients with early arthritis, not fulfilling the criteria for RA (non-RA), n = 12 patients with SpA and n = 20 healthy controls | Serum samples | Patients with estRA exhibited greater concentrations of So, MHC and ceramides compared to controls, when controlling for age and gender. MHC levels remained increased even after additionally controlling for medication. On the contrary, patients with SpA exhibited significantly lower levels of ceramides, in both analyses. |
Poolman [85] | UK | Cases: n = 10 adults with a clinical diagnosis of RA (seropositive for RF and/or ACPA) Controls: n = 10 healthy, age- and gender-matched controls | Serum samples | No effect was observed in ceramides by serum lipids, and there was no effect of age, sex or BMI. More rhythmic lipids were apparent in the RA arm, particularly ceramides. Peak times for the newly rhythmic ceramides occurred at 23:00, indicating that they were products of a newly rhythmic enzymatic pathway. |
Smesam [86] | Iraq | Cases: n = 118 patients with RA Controls: n = 50 age- and sex-matched healthy controls | Blood serum | LactCer levels were significantly elevated in patients with RA compared to controls. |
First Author | Origin | Participants | Biofluid | Results |
---|---|---|---|---|
Checa [100] | Sweden | Cases: n = 107 female patients with SLE Controls: n = 23 healthy participants | Plasma | Higher levels of sphingolipids (Ceramides and HexCer) and lower levels of sphingoid bases were observed in SLE compared to controls. The ratio of C16:0Cer/S1P was the best discriminator between patients and controls, associated with disease activity but not with accumulated damage (SDI). Levels of C16:0- and C24:1-HexCers were able to discriminate patients with current vs. inactive/no renal involvement. Dysregulated sphingolipids were normalized post-immunosuppressive treatment. |
Hamad [101] | USA | Cases: n = 73 patients with SLE Controls: n = 34 healthy controls (negative for autoimmune disease by the CSQ) | Plasma | In SLE greater levels of ceramides, sphingoid bases and their phosphates were observed compared to controls. A-A with SLE had higher levels of ceramides, HexCers, sphingosine and DH-S1P compared to healthy A-A. Caucasians with SLE exhibited greater levels of sphingoid bases, but lower ratios of C16:0Cer/S1P and C24:1Cer/S1P compared to same-race healthy controls. Caucasians with SLE + atherosclerosis had lower levels of sphingoid bases compared to atherosclerosis-free Caucasians with SLE. In contrast, A-A with SLE + atherosclerosis had greater levels of sphingoid bases and SMs compared to their same-race atherosclerosis-free peers. Compared to Caucasians with SLE + atherosclerosis, A-A patients had higher levels of selected sphingolipids. Plasma levels of sphingosine, C16:0Cer/S1P ratio and C24:1Cer/S1P ratio correlated with the SLEDAI among A-A. |
Huang [102] | China | Cases: n = 40 patients with SLE of different clinical activity (including low and high activity) Controls: n = 10 healthy individuals | Blood | An imbalanced lipid metabolism, in particular sphingolipids, accompanied by dysregulated levels of apolipoproteins was observed, contributing to the disease activity of SLE. |
Idborg [103] | Sweden | Cases: n = 378 well-characterized patients with SLE grouped by autoantibody profiling (APS-like SLE (aPL+) and SS-like SLE (SSA/SSB+)) Controls: n = 316 individually matched population controls | Plasma | In the SSA/SSB+ subgroup, the CERS5, RF and IgG were all increased. |
Idborg [104] | Sweden | Cases: n = 10 patients with SLE (before–after study) | Plasma | Rituximab treatment downregulated sphingolipid levels. Differences between before and after treatment levels were observed for dihydroceramide C16:0 and glucosylceramide C16:0, as well as for 7 additional sphingolipids. |
Li [105] | China | Cases: n = 17 patients with SLE Controls: n = 17 healthy participants | Serum | Specific ceramides, including Cer (NDS) (d18:0/16:0), Cer (NS) (d18:1/18:0) and Cer (NS) (d18:2/24:2) were higher in SLE. The ROC showed that the AUCs of these differential features were > 0.75, with Cer (NDS) (d18:0/16:0) reaching 0.958, and FA 20:4 reaching 0.875. |
Lu [97] | China | Cases: n = 30 female patients with SLE Controls: n = 30 healthy individuals | Serum | The composition of specific lipid species including dPE (16:0/18:2, 16:0/22:6, 18:0/18:2, 18:0/22:6, 18:0/20:4), 18:2 LPC and Cer (N22:0 and N24:1) were altered in patients with SLE. All altered lipid species could predict IL-10 concentrations. The SLEDAI correlated to the 18:0/18:2 dPE, explaining 22.6% in the SLEDAI variability. |
McDonald [106] | UK | Cases: n = 58 patients with SLE Controls: n = 36 healthy donors | Plasma | Compared with healthy controls, CD4+ T cells from patients with SLE displayed an altered lipid profile, in particular, of GSL with LactCer, Gb3 and GM1 levels being increased. Higher GSL in SLE were associated with greater LXRβ expression. Inhibition of GSL biosynthesis in vitro using N-butyldeoxynojirimycin, normalized GSL metabolism, corrected CD4+ T cell functional defects and signaling, and reduced the production of anti-dsDNA antibody by autologous B cells in patients with SLE. |
Patyna [107] | Germany | Cases: n = 17 patients with SLE, free of renal injuries (eGFR ≥ 80 mL/min/1.73 m2 and alb/cr ≤ 30 mg/g) and n = 29 patients with LN (eGFR < 80 mL/min/1.73 m2 and alb/cr > 30 mg/g) Controls: n = 36 healthy individuals | Plasma and serum | Concentrations of specific ceramides (C16Cer, C18Cer, C24:1Cer, C20Cer) were higher in patients with biopsy-proven LN compared to SLE without renal injuries and controls. C24:1dhCer levels were elevated (plasma and serum) in LN compared to patients with SLE. Sphingosine levels were elevated (plasma and serum) in LN patients compared to controls. Sphinganine levels were elevated in LN compared to controls and to patients with SLE. Greater plasma S1P and SA1P levels were observed in patients with SLE and LN compared to controls. ROC analyses of the most altered species (C16Cer, C18Cer, C20Cer, C24:1Cer) between LN and SLE had a high diagnostic differentiation. GC treatment did not affect serum C24:1Cer levels. |
First Author | Origin | Participants | Biofluid | Results |
---|---|---|---|---|
Caboni [121] | Italy | Cases: n = 22 patients with persistent FMS Controls: n = 21 healthy controls | Plasma samples | Phosphocholine and ceramide lipids dominated the metabolite profile of patients with FMS. |
Hsu [122] | Taiwan | Cases: n = 30 patients with FMS Controls: n = 25 healthy controls | Urine and serum samples | Potential FMS-relevant biosignatures included serum SM(d18:1/18:0). Higher levels of SM(d18:1/18:0) were observed in FMS compared to controls. Moreover, concentrations of C18:1 Cer/C22:1 Cer were also higher in SG, but not PG patients, compared to healthy controls. |
First Author | Origin | Participants | Biofluids | Results |
---|---|---|---|---|
Myśliwiec [131,132] | Poland | Cases: n = 85 patients with exacerbated PsO (14 of which also had PsA) Controls: n = 32 sex- and age-matched healthy controls | Serum ceramides and S1P | Total serum concentration of ceramides was decreased and S1P levels were increased in patients with PsO compared to controls. Among those with PsO, no correlations were established with disease activity and inflammation markers. Only those with PsA exhibited greater total ceramide concentrations. Serum sphingolipid disturbances were also observed in PsO. Lowered total ceramides and increased S1P serum levels may reflect the altered epidermal metabolism and composition. In PsA greater total ceramide concentrations was observed than in PsO involving the skin only. |
First Author | Origin | Participants | Biofluids | Results |
---|---|---|---|---|
Fineide [139] | Norway | Cases: n = 10 female patients with pSS Controls: n = 10 age- and gender-matched healthy participants | Saliva and tear samples | Differences were observed in the lipidomic profiles of saliva and tears in patients with pSS compared to controls. Differences in 29/86 individual lipid species were also noted in stimulated saliva, and these were comparable to the glandular biopsies. In pSS, an increase in SM and dPC and a decrease in DAG and ceramides was noted, compared to controls. |
Sekiguchi [140] | Japan | Cases: n = 5 patients with pSS Controls: n = 6 healthy volunteers | Peripheral blood and LSP biopsy | In advanced stages of pSS, the expression of S1PR1 was enhanced in inflammatory mononuclear cells. S1P enhanced the proliferation and IFN-γ production by CD4+ T cells. Compared to healthy controls, in patients with pSS the enhancing effect of S1P on IFN-γ production by CD4+ T cells was stronger in the latter. Additionally, S1P enhanced the expression of Fas and Fas-mediated caspase-3 induction in epithelial cells of the salivary gland. |
First Author | Origin | Participants | Biofluid | Results |
---|---|---|---|---|
Geroldinger-Simić [148,149] | Austria | Cases: n = 52 patients with SSc Controls: n = 48 controls without SSc | Plasma | Significant differences were observed in the level of phospholipids (plasmalogens and SMs) in patients with SSc compared to controls. PC plasmalogens species and SM were greater in SSc plasma compared to healthy plasma. Moreover, a significant association was noted in the metabolism of phospholipids (PC and PE plasmalogens species and SM) with different clinical manifestations of SSc. |
First Author | Origin | Participants | Biofluid | Results |
---|---|---|---|---|
Dvergsten [157] | USA | Cases: n = 10 patients with probable (n = 4) or definite (n = 6) JDM Controls: n = 9 healthy controls | Blood samples | Of the 8 PCA–derived metabolite factors (one AC, two AA, three sphingosine and two ceramides), two were associated with JDM (one AC and one ceramide). All identified factors decreased with JDM treatment. |
Lollel [158] | Sweden | Cases: n = 6 adult patients with DM/PM (before-after study) | Skeletal muscle biopsies | After treatment with immunosuppressants, the expression of genes involved in lipid metabolism was altered, suggesting a potential lipotoxic effect on muscles of the immunosuppressive treatment. |
First Author | Origin | Participants | Biofluid | Results |
---|---|---|---|---|
Hao [70] | China | Cases: n = 29 patients with AAV (active/in remission) | Plasma samples | The circulating S1P was higher in patients with active AAV compared with patients in remission. |
Konno [168] | Japan | Cases: n = 15 patients with acute KD (before/after IVIG-treatment study) Controls: n = 9 healthy participants and n = 4 children with adenovirus infection | Serum | Serum ASM activity before IVIG was elevated in patients with KD compared to controls, indicating the involvement of ASM in the pathophysiology of KD. Serum ASM activity before IVIG was correlated to the circulating CRP levels. |
Liu [169] | China | Cases: n = 58 patients with IgAV Controls: n = 28 healthy controls | Serum | A total of 31 lipid ions were altered in IgAVs, belonging to six classes, namely, TG, PE, PC, phosphatidylserine, ceramides and LPC. |
Sun [167] | China | Cases: n = 32 patients with active AAV Controls: n = 20 patients with AAV in remission | Plasma samples | S1P concentrations were greater in patients with active AAV compared to patients in remission. Plasma levels of S1P were correlated with the serum creatinine concentrations and inversely related to the eGFR. S1PR1–5 was expressed on glomeruli endothelial cells and S1PR1 4 and 5 were expressed on neutrophils. |
Wu [72] | China | Cases: n = 40 patients with AAV Controls: n = 10 healthy controls | Plasma samples | In AAV, levels of S1P were related to the D-dimer, PLT and BVAS levels. Therefore, plasma S1P can be a biomarker predicting coagulation-related complications in AAV. |
First Author | Origin | Design | Participants | Intervention(s) | Duration | Results |
---|---|---|---|---|---|---|
Airhart [179] | USA | DB, RCT | N = 16 patients with T2DM, an ejection fraction greater than 45% and no other systemic disease | (a) MCFA-rich diet containing 38% fat of the EI (b) LCFA-rich diet, containing 38% fat of the EI | 14 days | The MCFA and not the LCFA diet reduced various plasma sphingolipids, ceramides and acylcarnitines implicated in diabetic cardiomyopathy. Changes in sphingolipids correlated with improved insulin. |
Chen [180] | USA | RCT | N = 64 African-Americans with overweight/obesity | (a) 600 IU/day of vitamin D3 ONS (b) 2000 IU/day of vitamin D3 ONS (c) 4000 IU/day of vitamin D3 ONS (d) placebo ONS | 16 weeks | Serum concentrations of N-stearoyl-sphingosine (d18:1/18:0) (C18Cer) and stearoyl sphingomyelin (d18:1/18:0) (C18SM) were significantly increased with vitamin D3 ONS, in a dose–response fashion. This was accompanied by correlations between serum 25(OH)D levels and these two metabolites. |
Chiu [181] | USA | Cross-over RCT | N = 30 adolescent boys with overweight and obesity, all habitual consumers of sugar-sweetened beverages | (a) 24 oz/day of sugar-sweetened soda (n = 30) (b) an energy equivalent of reduced fat (2%) milk (n = 30) | 3 weeks each arm, separated by a >2-week wash-out | Milk intake lowered plasma glucosyl Cer (d18:1/C16:0) and LactCer (d18:1/C16:0 and d18:1/C18:0). While no effects of replacing soda with milk on lipid and lipoprotein levels were observed in these normolipidemic weight-stable adolescent boys, decreases in SBP, UA and glycosphingolipids suggest an overall favorable effect on cardiometabolic risk can be achieved following a short-term dietary intervention. |
Djekic [182] | Sweden | Cross-over RCT | N = 31 patients with CAD on standard medical therapy | (a) VD (n = 31) (b) isocaloric meat diet (n = 31) | 4 weeks each arm separated by a 4-week wash-out | The VD intervention increased the levels of 11 TGs and lowered 21 glycerophospholipids, cholesteryl ester (18:0) and Cer (d18:1/16:0) compared with the meat diet. The VD also increased the circulating TGs with long-chain PUFA and lowered TGs with SFA, phosphatidylcholines and SMs. |
Le Barz [183] | France | RCT | N = 58 postmenopausal women | (a) daily consumption of cream cheese with PL-enriched milk (3 g milk PL) (b) daily consumption of cream cheese with PL-enriched milk (5 g milk PL) (c) daily consumption of cream cheese without PL-enriched milk | 4 weeks | Milk PL reduced serum atherogenic C24:1 Cer, C16:1 SM and C18:1 SM species. Changes in serum C16+18 SM species were positively correlated with the reduction in TC, LDL-C and ApoB. Milk PL decreased chylomicron content in total SM and C24:1 ceramides, parallel to a marked increase in total ceramides in feces. |
Lindqvist [178] | Sweden | Cross-over RCT | N = 46 patients with RA | (a) MD (n = 46) (b) WD (n = 46) | 10 weeks each, with a 4-month wash-out | No differences were noted in CERT2 after the MD compared with the WD, although several CERT2 components were improved. |
Mathews [184] | USA | Parallel RCT | N = 36 young adults | (a) FRUVED (n = 12) (b) FRUVED + LRC (n = 12) (c) FRUVED + LF (n = 12) | 8 weeks | The FRUVED intervention reduced circulating ceramides, including the C24:0 Cer. As inflammatory status improved with FRUVED, this was correlated with ceramide concentrations. |
Rosqvist [185] | Sweden | DB, parallel RCT | N = 61 men and women with overweight or obesity | (a) muffins high in palm oil (SFA) added to the habitual diet (b) muffins high in sunflower oil (PUFA) added to the habitual diet | 4 weeks of either arm, followed by 4 weeks of caloric restriction | SFA markedly increased liver fat and serum ceramide, whereas dietary PUFA prevented liver fat accumulation and reduced ceramides and hyperlipidemia in individuals with overweight. |
Tuccinardi [186] | Italy | DB cross-over RCT | N = 20 healthy, normal-weight young subjects | (a) added chocolate spread [EI: 73% fat (EVOO), 20% CHO and 7% Pro], providing 570 kcal/d to an isocaloric diet (n = 20) (b) added chocolate spread [EI: 73% fat (palm oil), 20% CHO and 7% Pro], providing 570 kcal/d to an isocaloric diet (n = 20) | 2 weeks | EVOO-enriched chocolate spread improved circulating sphingolipids and glucose profile, by reducing plasma cCer C16:0, Cer C16:0/Cer C22:0-Cer C24:0 ratio and SM C18:0. |
Tuccinardi [187] | Italy | BD, cross-over RCT | N = 10 individuals with obesity | (a) a smoothie containing 48 g walnuts (n = 10) (b) a macronutrient-matched placebo smoothie without nuts (n = 10) | Twice each smoothie within 5 days, with a 1-month wash-out period between | The lipidomic analysis after the walnut smoothie showed a reduction in harmful ceramides, HexCers and SMs. |
Wang [188] | Spain | RCT | N = 980 participants (n = 230 incident cases of CVD and n = 787 randomly selected participants with high CV risk, initially free from CVD diagnosis) | (a) MD supplemented with EVOO (n = 291) (b) MD supplemented with nuts (n = 262) (c) control diet (n = 234) | 4.5 years | The Ceramide score was associated with a 2.18-fold greater risk of CVD. Participants with a higher ceramide score, assigned to an active intervention showed similar CVD risk to those with a lower score, whereas those with a higher ceramide score assigned to the control arm exhibited a greater CVD risk. Changes in ceramide concentrations were indifferent between MD and control arms during the first year. |
Zhao [189] | China | RCT | N = 169 subjects with dyslipidemia | (a) placebo (n = 46) (b) 40 mg/day anthocyanins (n = 45) (c) 80 mg/day anthocyanins (n = 42) (d) 320 mg/day anthocyanins (n = 43) | 12 weeks | Intake of dietary anthocyanins dose-dependently reduced plasma concentrations of all 6 ceramide species. Specifically, 320 mg/day of anthocyanins effectively lowered plasma N-palmitoyl sphingosine (Cer 16:0) and N-tetracosanoylsphingosine (Cer 24:0) compared with the placebo. The declines in plasma Cer 16:0 and Cer 24:0 were correlated with decreases in plasma non-HDL cholesterol. |
Zhu [190] | USA | Cross-over RCT | N = 10 healthy individuals | (a) MD (n = 10) (b) fast-food diet (n = 10) | 4 days each diet, with a 4-day wash-out between | The composition of PC, TG and CE were significantly altered to reflect the FA composition of the diet, whereas the composition of SM and ceramides were mainly unaffected. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandropoulou, I.; Grammatikopoulou, M.G.; Gkouskou, K.K.; Pritsa, A.A.; Vassilakou, T.; Rigopoulou, E.; Lindqvist, H.M.; Bogdanos, D.P. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023, 15, 229. https://doi.org/10.3390/nu15010229
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM, Bogdanos DP. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients. 2023; 15(1):229. https://doi.org/10.3390/nu15010229
Chicago/Turabian StyleAlexandropoulou, Ioanna, Maria G. Grammatikopoulou, Kalliopi K. Gkouskou, Agathi A. Pritsa, Tonia Vassilakou, Eirini Rigopoulou, Helen M. Lindqvist, and Dimitrios P. Bogdanos. 2023. "Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment" Nutrients 15, no. 1: 229. https://doi.org/10.3390/nu15010229
APA StyleAlexandropoulou, I., Grammatikopoulou, M. G., Gkouskou, K. K., Pritsa, A. A., Vassilakou, T., Rigopoulou, E., Lindqvist, H. M., & Bogdanos, D. P. (2023). Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients, 15(1), 229. https://doi.org/10.3390/nu15010229