Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Endpoints
2.3. Measurements
2.4. Stool Collection and 16s rRNA Amplicon Sequencing
2.5. Statistical Analysis
2.6. Study Approval
3. Results
3.1. Baseline Characteristics and Their Changes in the Study Participants
3.2. Changes in Clinical Profiles
3.3. Changes in Gut Microbiota Profiles
3.4. Differences in Gut Microbiota Associated with Clinical Outcomes and Predicted Functional Pathways
3.5. Changes in Amino Acid Levels
3.6. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.K.; Bullard, K.M.; Saaddine, J.B.; Cowie, C.C.; Imperatore, G.; Gregg, E.W. Achievement of goals in U.S. diabetes care, 1999–2010. N. Engl. J. Med. 2013, 368, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Phung, O.J.; Sobieraj, D.M.; Engel, S.S.; Rajpathak, S.N. Early combination therapy for the treatment of type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes. Metab. 2014, 16, 410–417. [Google Scholar] [CrossRef]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalra, S.; Das, A.K.; Baruah, M.P.; Unnikrishnan, A.G.; Dasgupta, A.; Shah, P.; Sahay, R.; Shukla, R.; Das, S.; Tiwaskar, M.; et al. Glucocrinology of Modern Sulfonylureas: Clinical Evidence and Practice-Based Opinion from an International Expert Group. Diabetes Ther. 2019, 10, 1577–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.; Schneeweiss, S.; Glynn, R.J.; Patorno, E. Trends in First-Line Glucose-Lowering Drug Use in Adults with Type 2 Diabetes in Light of Emerging Evidence for SGLT-2i and GLP-1RA. Diabetes Care 2021, 44, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Paldanius, P.M.; Proot, P.; Chiang, Y.; Stumvoll, M.; Del Prato, S.; Group, V.S. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet 2019, 394, 1519–1529. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef]
- Sharma, M.; Beckley, N.; Nazareth, I.; Petersen, I. Effectiveness of sitagliptin compared to sulfonylureas for type 2 diabetes mellitus inadequately controlled on metformin: A systematic review and meta-analysis. BMJ Open 2017, 7, e017260. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Liao, X.; Song, L.; Zeng, B.; Liu, B.; Qiu, Y.; Qu, H.; Zheng, Y.; Long, M.; Zhou, H.; Wang, Y.; et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine 2019, 44, 665–674. [Google Scholar] [CrossRef]
- Huda, M.N.; Kim, M.; Bennett, B.J. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front. Endocrinol. 2021, 12, 632335. [Google Scholar] [CrossRef]
- Whang, A.; Nagpal, R.; Yadav, H. Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 2019, 39, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Han, K.A.; Yu, J.; Chamnan, P.; Kim, E.S.; Yoon, K.H.; Kwon, S.; Moon, M.K.; Lee, K.W.; Kim, D.J.; et al. Efficacy and safety of initial combination therapy with gemigliptin and metformin compared with monotherapy with either drug in patients with type 2 diabetes: A double-blind randomized controlled trial (INICOM study). Diabetes Obes. Metab. 2017, 19, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D.; Agarwal, A.; Maisnam, I.; Singla, R.; Khandelwal, D.; Sharma, M. Efficacy and Safety of the Novel Dipeptidyl Peptidase-4 Inhibitor Gemigliptin in the Management of Type 2 Diabetes: A Meta-Analysis. Endocrinol. Metab. 2021, 36, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B. Dipeptidyl peptidase-4 inhibitors: Clinical data and clinical implications. Diabetes Care 2007, 30, 1344–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Ahn, S.; Kim, Y.J.; Ji, M.J.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lim, S. Comparison between Dual-Energy X-ray Absorptiometry and Bioelectrical Impedance Analyses for Accuracy in Measuring Whole Body Muscle Mass and Appendicular Skeletal Muscle Mass. Nutrients 2018, 10, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.S.; Lee, D.H.; Lee, J.; Kim, Y.J.; Jung, K.Y.; Kim, K.M.; Kwak, S.H.; Choi, S.H.; Park, K.S.; Jang, H.C.; et al. Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J. Diabetes Complicat. 2016, 30, 343–349. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Li, M.; Yu, M.; Ping, F.; Zheng, J.; Wang, T.; Wang, X. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE 2017, 12, e0184735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Feng, B.; Li, P.; Tang, Z.; Wang, L. Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. J. Diabetes Res. 2016, 2016, 2093171. [Google Scholar] [CrossRef] [Green Version]
- Woloszynek, S.; Mell, J.C.; Zhao, Z.; Simpson, G.; O’Connor, M.P.; Rosen, G.L. Exploring thematic structure and predicted functionality of 16S rRNA amplicon data. PLoS ONE 2019, 14, e0219235. [Google Scholar] [CrossRef]
- Vangipurapu, J.; Stancakova, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids Are Associated with Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5,181 Finnish Men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 2012, 46, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; You, Y.; Huang, L.; Long, S.; Zhang, J.; Guo, C.; Zhang, N.; Wu, X.; Xiao, Y.; Tan, H. Alterations in Gut Microbiota of Gestational Diabetes Patients During the First Trimester of Pregnancy. Front. Cell Infect. Microbiol. 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Nitert, M.D.; Group, S.T. Increased Systolic and Diastolic Blood Pressure Is Associated with Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016, 68, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergstrom, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Backhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Aranaz, P.; Ramos-Lopez, O.; Cuevas-Sierra, A.; Martinez, J.A.; Milagro, F.I.; Riezu-Boj, J.I. A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. Int. J. Obes. 2021, 45, 2261–2268. [Google Scholar] [CrossRef]
- Cheng, D.; Xie, M.Z. A review of a potential and promising probiotic candidate-Akkermansia muciniphila. J. Appl. Microbiol. 2021, 130, 1813–1822. [Google Scholar] [CrossRef]
- Zhou, Q.; Pang, G.; Zhang, Z.; Yuan, H.; Chen, C.; Zhang, N.; Yang, Z.; Sun, L. Association Between Gut Akkermansia and Metabolic Syndrome is Dose-Dependent and Affected by Microbial Interactions: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2021, 14, 2177–2188. [Google Scholar] [CrossRef]
- Peters, B.A.; Shapiro, J.A.; Church, T.R.; Miller, G.; Trinh-Shevrin, C.; Yuen, E.; Friedlander, C.; Hayes, R.B.; Ahn, J. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 2018, 8, 9749. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [Green Version]
- Org, E.; Blum, Y.; Kasela, S.; Mehrabian, M.; Kuusisto, J.; Kangas, A.J.; Soininen, P.; Wang, Z.; Ala-Korpela, M.; Hazen, S.L.; et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017, 18, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley, G.; Hao, Y.; Pondo, T.; Miller, L.; Petit, S.; Thomas, A.; Lindegren, M.L.; Farley, M.M.; Dumyati, G.; Como-Sabetti, K.; et al. The Impact of Obesity and Diabetes on the Risk of Disease and Death due to Invasive Group A Streptococcus Infections in Adults. Clin. Infect. Dis. 2016, 62, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, A.; Molinaro, A.; Stahlman, M.; Khan, M.T.; Schmidt, C.; Manneras-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.E.; et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018, 175, 947–961.e917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Tremaroli, V.; Schmidt, C.; Lundqvist, A.; Olsson, L.M.; Kramer, M.; Gummesson, A.; Perkins, R.; Bergstrom, G.; Backhed, F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020, 32, 379–390.e373. [Google Scholar] [CrossRef]
- Vila, A.V.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Manneras-Holm, L.; Stahlman, M.; Olsson, L.M.; Serino, M.; Planas-Felix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Z. Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2020, 13, 5003–5014. [Google Scholar] [CrossRef]
- Gu, X.; Al Dubayee, M.; Alshahrani, A.; Masood, A.; Benabdelkamel, H.; Zahra, M.; Li, L.; Rahman, A.M.A.; Aljada, A. Distinctive Metabolomics Patterns Associated with Insulin Resistance and Type 2 Diabetes Mellitus. Front. Mol. Biosci. 2020, 7, 609806. [Google Scholar] [CrossRef]
- Suzuki, S.; Kodera, Y.; Saito, T.; Fujimoto, K.; Momozono, A.; Hayashi, A.; Kamata, Y.; Shichiri, M. Methionine sulfoxides in serum proteins as potential clinical biomarkers of oxidative stress. Sci. Rep. 2016, 6, 38299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garsin, D.A. Ethanolamine utilization in bacterial pathogens: Roles and regulation. Nat. Rev. Microbiol. 2010, 8, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preiss, D.; Rankin, N.; Welsh, P.; Holman, R.R.; Kangas, A.J.; Soininen, P.; Wurtz, P.; Ala-Korpela, M.; Sattar, N. Effect of metformin therapy on circulating amino acids in a randomized trial: The CAMERA study. Diabet. Med. 2016, 33, 1569–1574. [Google Scholar] [CrossRef]
- Riahi, Y.; Israeli, T.; Cerasi, E.; Leibowitz, G. Effects of proinsulin misfolding on beta-cell dynamics, differentiation and function in diabetes. Diabetes Obes. Metab. 2018, 20 (Suppl. S2), 95–103. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M.; Gonzalez, C.; Mykkanen, L.; Stern, M. Total immunoreactive proinsulin, immunoreactive insulin and specific insulin in relation to conversion to NIDDM: The Mexico City Diabetes Study. Diabetologia 1997, 40, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Festa, A.; D’Agostino, R., Jr.; Tracy, R.P.; Haffner, S.M.; Atherosclerosis, S.I.R. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes 2002, 51, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Cavallari, J.F.; Schertzer, J.D. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. J. Obes. Metab. Syndr. 2017, 26, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Deacon, C.F.; Lebovitz, H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes. Metab. 2016, 18, 333–347. [Google Scholar] [CrossRef]
Gemigliptin + Metformin (n = 34) | Glimepiride + Metformin (n = 34) | Total | p | |
---|---|---|---|---|
Age (years) | 50.9 ± 12.0 | 53.6 ± 9.5 | 52.2 ± 10.8 | 0.291 |
Male sex | 25 (74%) | 23 (68%) | 48 (71%) | 0.594 |
Body weight (kg) | 77.7 ± 11.8 | 77.4 ± 11.3 | 77.5 ± 11.5 | 0.892 |
BMI (kg/m2) | 28.1 ± 3.0 | 27.8 ± 3.1 | 28.0 ± 3.0 | 0.598 |
Waist circumference, cm | 94.4 ± 8.6 | 93.3 ± 9.1 | 93.9 ± 8.8 | 0.621 |
SBP, mm Hg | 137.3 ± 16.1 | 130.1 ± 11.7 | 133.7 ± 14.5 | 0.041 |
DBP, mm Hg | 84.1 ± 12.5 | 80.1 ± 8.5 | 82.1 ± 10.8 | 0.126 |
Heart rate, beats per min | 78.9 ± 12.2 | 79.8 ± 12.4 | 79.4 ± 12.2 | 0.768 |
HbA1c, % | 8.8 ± 1.2 | 8.5 ± 1.0 | 8.7 ± 1.1 | 0.279 |
HbA1c, mmol/mol | 72.9 ± 12.7 | 69.8 ± 10.8 | 71.3 ± 11.8 | 0.279 |
Fasting glucose, mg/dL | 190.8 ± 44.7 | 182.1 ± 38.6 | 186.4 ± 41.7 | 0.390 |
Total cholesterol, mg/dL | 212.6 ± 51.0 | 190.6 ± 37.8 | 201.4 ± 45.8 | 0.050 |
Triglyceride, mg/dL | 220.8 ± 129.9 | 166.0 ± 116.5 | 193.0 ± 125.4 | 0.074 |
HDL-cholesterol, mg/dL | 47.4 ± 8.7 | 47.4 ± 12.2 | 47.4 ± 10.6 | 0.996 |
LDL-cholesterol, mg/dL | 126.8 ± 32.4 | 110.6 ± 27.3 | 118.6 ± 30.8 | 0.030 |
AST, IU/L | 35.4 ± 14.6 | 38.9 ± 18.0 | 37.1 ± 16.3 | 0.394 |
ALT, IU/L | 44.4 ± 18.7 | 47.5 ± 22.7 | 46.0 ± 20.7 | 0.543 |
eGFR, mL/min/1.73 m2 | 99.8 ± 15.7 | 96.8 ± 12.3 | 98.3 ± 14.1 | 0.389 |
Comorbidities | ||||
Hypertension | 13 (38%) | 14 (41%) | 27 (40%) | 0.804 |
Dyslipidemia | 25 (74%) | 23 (68%) | 48 (71%) | 0.594 |
Medication use | ||||
ACE inhibitor or ARB | 6 (18%) | 10 (29%) | 16 (24%) | 0.253 |
Lipid-lowering agents | 8 (24%) | 12 (35%) | 20 (29%) | 0.287 |
Variables | Gemigliptin + Metformin (n = 34) | Glimepiride + Metformin (n = 34) | p for Delta | ||||
---|---|---|---|---|---|---|---|
Baseline | 24 weeks | p | Baseline | 24 weeks | p | ||
Body weight, kg | 77.7 ± 11.8 | 78.3 ± 12.7 | 0.258 | 77.4 ± 11.3 | 78.9 ± 12.1 | 0.031 | 0.229 |
BMI, kg/m2 | 28.1 ± 3.0 | 28.3 ± 3.2 | 0.290 | 27.8 ± 3.1 | 28.5 ± 3.3 | 0.016 | 0.101 |
Waist circumference, cm | 94.4 ± 8.6 | 94.5 ± 8.3 | 0.888 | 93.3 ± 9.1 | 95.5 ± 9.4 | 0.030 | 0.078 |
SBP, mm Hg | 137.3 ± 16.1 | 134.5 ± 14.0 | 0.306 | 130.1 ± 11.7 | 131.3 ± 14.5 | 0.640 | 0.283 |
DBP, mm Hg | 84.1 ± 12.5 | 82.2 ± 9.5 | 0.338 | 80.1 ± 8.5 | 77.9 ± 10.3 | 0.194 | 0.901 |
AST, IU/L | 35.4 ± 14.6 | 34.2 ± 17.6 | 0.725 | 38.9 ± 18.0 | 39.9 ± 27.1 | 0.798 | 0.671 |
ALT, IU/L | 44.4 ± 18.7 | 43.9 ± 34.9 | 0.917 | 47.5 ± 22.7 | 49.3 ± 36.0 | 0.726 | 0.750 |
eGFR, mL/min per 1.73 m2 | 99.8 ± 15.7 | 100.6 ± 17.0 | 0.615 | 96.8 ± 12.3 | 97.8 ± 12.9 | 0.286 | 0.886 |
Glucose homeostasis | |||||||
HbA1c, % | 8.8 ± 1.2 | 6.7 ± 1.0 | <0.001 | 8.5 ± 1.0 | 6.8 ± 1.0 | <0.001 | 0.082 |
HbA1c, mmol/mol | 72.9 ± 12.7 | 49.2 ± 10.7 | <0.001 | 69.8 ± 10.8 | 50.9 ± 10.7 | <0.001 | 0.082 |
Fasting glucose, mg/dL | 190.8 ± 44.7 | 140.9 ± 31.5 | <0.001 | 182.1 ± 38.6 | 127.1 ± 25.9 | <0.001 | 0.603 |
C-peptide, mg/L | 2.7 ± 0.9 | 2.6 ± 0.7 | 0.260 | 2.8 ± 0.9 | 2.8 ± 1.0 | 0.691 | 0.756 |
Insulin, μIU/mL | 13.6 ± 8.2 | 13.1 ± 8.9 | 0.378 | 14.3 ± 7.2 | 16.3 ± 10.8 | 0.279 | 0.174 |
Proinsulin, pmol/L | 8.5 ± 5.1 | 5.7 ± 2.9 | <0.001 | 7.6 ± 3.7 | 8.9 ± 12.1 | 0.413 | 0.018 |
Proinsulin/Insulin | 0.65 ± 0.23 | 0.46 ± 0.15 | <0.001 | 0.63 ± 0.38 | 0.56 ± 0.37 | 0.797 | 0.015 |
HOMA-IR | 6.4 ± 4.5 | 4.7 ± 3.7 | <0.001 | 6.4 ± 3.7 | 5.3 ± 4.0 | 0.019 | 0.296 |
Oral glucose tolerance test | |||||||
Glucose at 0 min, mg/dL | 185.5 ± 50.6 | 140.9 ± 28.7 | <0.001 | 179.8 ± 44.5 | 127.5 ± 20.0 | <0.001 | 0.474 |
Glucose at 30 min, mg/dL | 273.4 ± 61.8 | 218.8 ± 33.5 | <0.001 | 271.3 ± 52.4 | 219.4 ± 36.3 | <0.001 | 0.835 |
Glucose at 60 min, mg/dL | 348.0 ± 67.4 | 268.8 ± 40.8 | <0.001 | 336.2 ± 62.7 | 278.7 ± 37.2 | <0.001 | 0.168 |
Glucose at 120 min, mg/dL | 336.8 ± 76.0 | 244.7 ± 47.8 | <0.001 | 328.9 ± 78.6 | 254.7 ± 51.1 | <0.001 | 0.274 |
AUCglucose, mg × h/dL | 612.5 ± 121.4 | 463.8 ± 6 | <0.001 | 597.2 ± 115.8 | 477.9 ± 63.7 | <0.001 | 0.346 |
Inflammation | |||||||
PAI-1, mg/L | 256.4 ± 49.0 | 223.7 ± 49.5 | 0.001 | 254.1 ± 34.2 | 236.5 ± 40.7 | 0.011 | 0.177 |
hsCRP, mg/L * | 2.1 ± 4.1 | 1.0 ± 1.4 | 0.020 | 1.8 ± 2.3 | 1.9 ± 2.7 | 0.189 | 0.615 |
Body composition | |||||||
Muscle mass, kg | 49.0 ± 9.4 | 50.0 ± 9.4 | <0.001 | 49.7 ± 8.0 | 50.8 ± 8.3 | 0.006 | 0.899 |
Fat mass, kg | 26.8 ± 8.3 | 25.4 ± 6.5 | 0.198 | 25.7 ± 7.1 | 25.8 ± 7.7 | 0.883 | 0.210 |
Fat percent, % | 33.3± 6.7 | 32.2 ± 6.5 | 0.017 | 32.8 ± 6.2 | 32.2 ± 6.5 | 0.069 | 0.319 |
Abdominal VFA, cm2 | 121.7 ± 37.0 | 117.5 ± 36.6 | 0.068 | 117.5 ± 35.9 | 116.1 ± 38.4 | 0.435 | 0.332 |
Gemigliptin + Metformin (n = 34) | Glimepiride + Metformin (n = 34) | |
---|---|---|
Any adverse event | 3 (9%) | 11 (32%) |
Adverse event leading to study drug discontinuation | 0 | 2 (6%) * |
Any serious adverse event | 0 | 0 |
Adverse event of special interest | ||
Hypoglycemia | 0 | 7 (21%) |
Hypoglycemia with symptom | 0 | 6 (18%) |
Hypoglycemia without symptom | 0 | 1 (3%) |
Tremor | 0 | 1 (3%) |
Dizziness | 0 | 1 (3%) |
Abdominal pain | 1 (3%) | 0 |
Abdominal distension | 0 | 1 (3%) |
Heartburn | 0 | 1 (3%) |
Constipation | 1 (3%) | 0 |
Asteatosis | 1 (3%) | 0 |
Varicose vein | 0 | 1 (3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Sohn, M.; Florez, J.C.; Nauck, M.A.; Ahn, J. Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients 2023, 15, 248. https://doi.org/10.3390/nu15010248
Lim S, Sohn M, Florez JC, Nauck MA, Ahn J. Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients. 2023; 15(1):248. https://doi.org/10.3390/nu15010248
Chicago/Turabian StyleLim, Soo, Minji Sohn, Jose C. Florez, Michael A. Nauck, and Jiyoung Ahn. 2023. "Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study" Nutrients 15, no. 1: 248. https://doi.org/10.3390/nu15010248
APA StyleLim, S., Sohn, M., Florez, J. C., Nauck, M. A., & Ahn, J. (2023). Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients, 15(1), 248. https://doi.org/10.3390/nu15010248