Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention
Abstract
:1. Introduction
2. Effects of Dietary Approaches to Stop Hypertension Diet
3. Effects of Mediterranean Type of Diet on Hypertension
4. Effects of Indo-Mediterranean Style Diet on Hypertension
5. Effects of Japanese Diet on Hypertension
6. Description of the Eating Plan of Various Types of Diets (Servings)
7. Functional Foods and Nutrients with Antihypertensive Activity
8. Effects of Nutrients on Hypertension
9. Effects of Foods on Hypertension
10. Effects of Guava Fruits on Hypertension
11. Effects of Food Groups; Fruits, Vegetables and Pulses
12. Effects of Flavonoids on Hypertension
13. Mechanisms on the Role of Diets Influencing Blood Pressures
14. Discussion
15. Limitations
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Non-Communicable Diseases. WHO. Available online: https://www.emro.who.int/entity/ncds/index.html (accessed on 30 October 2022).
- Hypertension. Available online: https://www.who.int/health-topics/hypertension#tab=tab_1 (accessed on 30 October 2022).
- Wang, J.-S.; Liu, W.-J.; Lee, C.-L. Associations of Adherence to the DASH Diet and the Mediterranean Diet with All-Cause Mortality in Subjects with Various Glucose Regulation States. Front. Nutr. 2022, 9, 828792. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Chow, C.K. Global and national high blood pressure burden and control. Lancet 2021, 398, 932–933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Waki, T.; Miura, K.; Tanaka-Mizuno, S.; Ohya, Y.; Node, K.; Itoh, H.; Rakugi, H.; Sato, J.; Goda, K.; Kitsuregawa, M.; et al. Prevalence of hypertensive diseases and treated hypertensive patients in Japan: A nationwide administrative claims database study. Hypertens. Res. 2022, 45, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Singh, R.; Suh, I.; Singh, V.; Chaithiraphan, S.; Laothavorn, P.; Sy, R.; Babilonia, N.; Rahman, A.; Sheikh, S.; Tomlinson, B.; et al. Hypertension and stroke in Asia: Prevalence, control and strategies in developing countries for prevention. J. Hum. Hypertens. 2000, 14, 749–763. [Google Scholar] [CrossRef] [Green Version]
- Umemoto, S.; Onaka, U.; Kawano, R.; Kawamura, A.; Motoi, S.; Honda, N.; Kanazashi, H.; Mitarai, M. Effects of a Japanese Cuisine-Based Antihypertensive Diet and Fish Oil on Blood Pressure and Its Variability in Participants with Untreated Normal High Blood Pressure or Stage I Hypertension: A Feasibility Randomized Controlled Study. J. Atheroscler. Thromb. 2022, 29, 152–173. [Google Scholar] [CrossRef]
- Kawamura, A.; Kajiya, K.; Kishi, H.; Inagaki, J.; Mitarai, M.; Oda, H.; Umemoto, S.; Kobayashi, S. Effects of the DASH-JUMP dietary intervention in Japanese participants with high-normal blood pressure and stage 1 hypertension: An open-label single-arm trial. Hypertens. Res. 2016, 39, 777–785. [Google Scholar] [CrossRef]
- NIH-Supported DASH Diet Tops Rankings for “Heart-Healthy” and “Healthy Eating”. Available online: https://www.nhlbi.nih.gov/news/2021/nih-supported-dash-diet-tops-rankings-heart-healthy-and-healthy-eating (accessed on 30 October 2022).
- Bazzano, L.A.; Green, T.; Harrison, T.N.; Reynolds, K. Dietary Approaches to Prevent Hypertension. Curr. Hypertens. Rep. 2013, 15, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndanuko, R.N.; Tapsell, L.C.; E Charlton, K.; Neale, E.P.; Batterham, M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. Int. Rev. J. 2016, 7, 76–89. [Google Scholar]
- Guo, R.; Li, N.; Yang, R.; Liao, X.-Y.; Zhang, Y.; Zhu, B.-F.; Zhao, Q.; Chen, L.; Zhang, Y.-G.; Lei, Y. Effects of the Modified DASH Diet on Adults with Elevated Blood Pressure or Hypertension: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 621. [Google Scholar] [CrossRef]
- Steinberg, D.; Bennett, G.G.; Svetkey, L. The DASH Diet, 20 Years Later. JAMA 2017, 317, 1529–1530. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Sircar, A.R.; Rastogi, S.S.; Ghosh, S.; Singh, R. Can diet modulate blood pressure and blood lipids in hypertension? J. Nutr. Med. 1991, 2, 17–24. [Google Scholar]
- Singh, R.B.; Rastogi, S.S.; Mani, U.V.; Seth, J.; Devi, L. How dietary minerals reduce blood lipids in subjects with risk factors of cardiovascular disease. Trace Elem. Med. 1991, 8, 29–33. [Google Scholar]
- Singh, R.B.; Rastogi, S.S.; Niaz, M.A.; Ghosh, sS.; Singh, R.; Gupta, S. Effect of fat-modified and fruit- and vegetable-enriched diets on blood lipids in the Indian diet heart study. Am. J. Cardiol. 1992, 70, 869–874. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar]
- Singh, R.B.; Dubnov, G.; Niaz, M.A.; Ghosh, S.; Singh, R.; Rastogi, S.S.; Manor, O.; Pella, D.; Berry, E.M. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): A randomised single-blind trial. Lancet 2002, 360, 1455–1461. [Google Scholar] [CrossRef]
- Singh, R.B.; Rastogi, S.S.; Verma, R.; Laxmi, B.; Ghosh, S.; Niaz, M.A. Randomised controlled trial of cardioprotective diet in patients with recent acute myocardial infarction: Results of one year follow up. BMJ 1992, 304, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Kumar, A.; Neki, N.S.; Pella, D.; Rastogi, S.S.; Basu, T.K.; Acharya, S.N.; Juneja, L.; Toru, T.; Otsuka, K.; et al. Diet and Lifestyle Guidelines and Desirable Levels of Risk Factors for Prevention of Cardiovascular Disease and Diabetes among Elderly Subjects. A Revised Scientific Statement of the International College of Cardiology and International College of Nutrition-2011. World Heart J. 2011, 3, 305–320. [Google Scholar]
- Singh, R.B.; Fedacko, J.; Fatima, G.; Magomedova, A.; Watanabe, S.; Elkilany, G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients 2022, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Thomopoulos, C.G.; Kouremeti, M.M.; Sotiropoulou, L.I.; Nihoyannopoulos, P.I.; Tousoulis, D.M.; Tsioufis, C.P. Mediterranean diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 3191–3200. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Chrysoula, L.; Leonida, I.; Kotzakioulafi, E.; Theodoridis, X.; Chourdakis, M. Impact of the level of adherence to the Mediterranean Diet on blood pressure: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2021, 40, 5771–5780. [Google Scholar] [CrossRef]
- Cowell, O.R.; Mistry, N.; Deighton, K.; Matu, J.; Griffiths, A.; Minihane, A.M.; Mathers, J.C.; Shannon, O.M.; Siervo, M. Effects of a Mediterranean diet on blood pressure: A systematic review and meta-analysis of randomized controlled trials and observational studies. J. Hypertens. 2020, 39, 729–739. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, M. Prevalence and associated risk factors of hypertension among persons aged 15–49 in India: A cross-sectional study. BMJ Open 2019, 9, e029714. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Fedacko, J.; Pella, D.; Macejova, Z.; Ghosh, S.; De, A.K.; Begom, R.; Tumbi, Z.A.; Memuna, H.; Vajpeyee, S.K.; et al. Prevalence and risk factors for prehypertension and hypertension in five Indian cities. Acta Cardiol. 2011, 66, 29–37. [Google Scholar] [CrossRef]
- Singh, R.B.; Sircar, A.R.; Rastogi, S.S. Dietary modulators of blood pressure in hypertension. Eur. J. Clin. Nutr. 1990, 44, 319–327. [Google Scholar]
- Singh, R.B.; Rastogi, S.S.; Mehta, P.J.; Mody, R.; Garg, V. Effect of diet and weight reduction in hypertension. Nutrition 1990, 6, 297–302. [Google Scholar]
- Singh, R.B.; Rastogi, S.S.; Sircar, A.R.; Mehta, P.J.; Sharma, K.K. Dietary strategies for risk-factor modification to prevent cardiovascular diseases. Nutrition 1991, 7, 210–214. [Google Scholar] [PubMed]
- Singh, R.B.; A Niaz, M.; Bishnoi, I.; Singh, U.; Begum, R.; Rastogi, S.S. Effect of low energy diet and weight loss on major risk factors, central obesity and associated disturbances in patients with essential hypertension. J. Hum. Hypertens. 1995, 9, 355–362. [Google Scholar]
- Beegom, R.; Beegom, R.; Niaz, M.A.; Singh, R.B. Diet, central obesity and prevalence of hypertension in the urban population of South India. Int. J. Cardiol. 1995, 51, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Beegom, R.; Verma, S.P.; Haque, M.; Singh, R.; Mehta, A.S.; De, A.K.; Kundu, S.; Roy, S.; Krishnan, A.; et al. Association of dietary factors and other coronary risk factors with social class in women in five Indian cities. Asia Pac. J. Clin. Nutr. 2000, 9, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Janus, E.D.; Postiglione, A.; Singh, R.B.; Lewis, B.; on behalf of the council on arteriosclerosis of the International Society and federation of Cardiology. The modernization of Asia: Implications for coronary heart disease. Circulation 1996, 94, 2671–2673. [Google Scholar] [CrossRef]
- Singh, R.B.; Rastogi, S.S.; Singh, R.; Ghosh, S.; Niaz, M.A. Effects of guava intake on serum total and high-density lipoprotein cholesterol levels and on systemic blood pressure. Am. J. Cardiol. 1992, 70, 1287–1291. [Google Scholar] [CrossRef]
- Singh, R.B.; Indian Consensus Group. Indian consensus for prevention of hypertension and coronary artery disease. A scientific statement of the Indian Society of Hypertension and International College of Nutrition. J. Nutr. Environ. Med. 1996, 6, 309–318. [Google Scholar] [CrossRef]
- Singh, R.B.; Niaz, A.M.; Ghosh, S.; Agarwal, P.; Ahmad, S.; Begum, R.; Onouchi, Z.; Kummerow, F.A. Randomized, controlled trial of antioxidant vitamins and cardioprotective diet on hyperlipidemia, oxidative stress, and development of experimental atherosclerosis: The diet and antioxidant trial on atherosclerosis (DATA). Cardiovasc. Drugs Ther. 1995, 9, 763–771. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Fedacko, J.; Verma, N.; Maheshwari, A.; Joshi, S.; Bharadwaj, K.; Bowered, O.A.; Chibisov, S.; Kharlitskaya, E. Can Potassium and Magnesium Deficiency Predispose to Variations in Blood Pressures and Aggravate Hypertension? World Heart J. 2021, 13, 115–120. [Google Scholar]
- Singh, R.B.; Wilson, D.W.; Chibisov, S.; Kharlitskaya, E.; Abromova, M. Effects of guava fruit intake on cardiometabolic diseases. In Functional Foods and Nutraceuticals in the Pathophysiology of Noncommunicable and Metabolic Diseases; Singh, R.B., Watana, S., Isaza, A., Eds.; Elsevier: Cambridge, UK, 2022. [Google Scholar]
- Nanri, A.; Mizoue, T.; Shimazu, T.; Ishihara, J.; Takachi, R.; Noda, M.; Iso, H.; Sasazuki, S.; Sawada, N.; Tsugane, S.; et al. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: The Japan public health center-based prospective study. PLoS ONE 2017, 12, e0174848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Htun, N.C.; Suga, H.; Imai, S.; Shimizu, W.; Takimoto, H. Food intake patterns and cardiovascular risk factors in Japanese adults: Analyses from the 2012 National Health and nutrition survey, Japan. Nutr. J. 2017, 16, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umesawa, M.; CIRCS Investigators; Kitamura, A.; Kiyama, M.; Okada, T.; Shimizu, Y.; Imano, H.; Ohira, T.; Nakamura, M.; Maruyama, K.; et al. Association between dietary behavior and risk of hypertension among Japanese male workers. Hypertens. Res. 2013, 36, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, Y.; Saito, I.; Iso, H.; Yamagishi, K.; Yatsuya, H.; Ishihara, J.; Maruyama, K.; Inoue, M.; Sawada, N.; Tsugane, S.; et al. Dietary magnesium intake and risk of incident coronary heart disease in men: A prospective cohort study. Clin. Nutr. 2017, 37, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Rastogi, S.S.; Singh, N.K.; Ghosh, S.; Gupta, S.H.O.B.H.A.; Niaz, M.A. Can guava fruit intake decrease blood pressure and blood lipids? J. Hum. Hypertens. 1993, 7, 33–38. [Google Scholar]
- Xie, H.; Li, J.; Zhu, X.; Li, J.; Yin, J.; Ma, T.; Luo, Y.; He, L.; Bai, Y.; Zhang, G.; et al. Association between healthy lifestyle and the occurrence of cardiometabolic multimorbidity in hypertensive patients: A prospective cohort study of UK Biobank. Cardiovasc. Diabetol. 2022, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cilli, E.; Ranieri, J.; Guerra, F.; Ferri, C.; Di Giacomo, D. Cardiovascular disease, self-care and emotional regulation processes in adult patients: Balancing unmet needs and quality of life. Biopsychosoc. Med. 2022, 16, 1–9. [Google Scholar] [CrossRef]
- Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; et al. Hypertension. Nat. Rev. Dis. Primers 2018, 22, 18014. [Google Scholar] [CrossRef] [Green Version]
- Feyh, A.; Bracero, L.; Lakhani, H.V.; Santhanam, P.; Shapiro, J.I.; Khitan, Z.; Sodhi, K. Role of Dietary Components in Modulating Hypertension. J. Clin. Exp. Cardiol. 2016, 7, 433. [Google Scholar] [CrossRef]
- Yamori, Y.; Taguchi, T.; Mori, H.; Mori, M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 2010, 17, S21. [Google Scholar] [CrossRef]
- Kato, Y.; Domoto, T.; Hiramitsu, M.; Katagiri, T.; Sato, K.; Miyake, Y.; Aoi, S.; Ishihara, K.; Ikeda, H.; Umei, N.; et al. Effect on Blood Pressure of Daily Lemon Ingestion and Walking. J. Nutr. Metab. 2014, 2014, 912684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipovic, M.G.; Aeschbacher, S.; Reiner, M.F.; Stivala, S.; Gobbato, S.; Bonetti, N.; Risch, M.; Risch, L.; Camici, G.; Luescher, T.F.; et al. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J. Hypertens. 2018, 36, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H.; Tsujiguchi, H.; Hara, A.; Kambayashi, Y.; Miyagi, S.; Nguyen, T.T.T.; Suzuki, K.; Tao, Y.; Sakamoto, Y.; Shimizu, Y.; et al. Dietary Calcium Intake and Hypertension: Importance of Serum Concentrations of 25-Hydroxyvitamin D. Nutrients 2019, 11, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, F.M.; Brown, L.E.; Appel, L. Combination of potassium, calcium and magnesium supplements in hypertension. Hypertension 1995, 26, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Gee, L.C.; Ahluwalia, A. Dietary Nitrate Lowers Blood Pressure: Epidemiological, Pre-clinical Experimental and Clinical Trial Evidence. Curr. Hypertens. Rep. 2016, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lidder, S.; Webb, A.J. Vascular Effects of Dietary Nitrate (as Found in Green Leafy Vegetables and Beetroot) via the Nitrate-Nitrite-Nitric Oxide Pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [Green Version]
- McRae, M.P. Therapeutic Benefits of l-Arginine: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2016, 15, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Wong, A.; Viola, D.; Bergen, D.; Caulfield, E.; Mehrabani, J.; Figueroa, A. The effects of pumpkin seed oil supplementation on arterial hemodynamics, stiffness and cardiac autonomic function in postmenopausal women. Complement. Ther. Clin. Pract. 2019, 37, 23–26. [Google Scholar] [CrossRef]
- Khalesi, S.; Irwin, C.; Schubert, M. Flaxseed Consumption May Reduce Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Trials. J. Nutr. 2015, 145, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.; West, S.G. Pistachio Nut Consumption Modifies Systemic Hemodynamics, Increases Heart Rate Variability, and Reduces Ambulatory Blood Pressure in Well-Controlled Type 2 Diabetes: A Randomized Trial. J. Am. Heart Assoc. 2014, 3, e000873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, A.S.; Foroudi, S.; Stamatikos, A.; Patil, B.S.; Deyhim, F. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr. J. 2011, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayalath, V.H.; De Souza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Di Buono, M.; Bernstein, A.M.; Leiter, L.A.; Kris-Etherton, P.; et al. Effect of Dietary Pulses on Blood Pressure: A Systematic Review and Meta-analysis of Controlled Feeding Trials. Am. J. Hypertens. 2013, 27, 56–64. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Kang, X.; He, X.; Dong, M.; Zhang, Q.; Liu, R.H. Cellular Antioxidant activity of common fruits. J. Agric. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. Int. Rev. J. 2017, 8, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Chan, Q.; for the INTERMAP Research Group; Stamler, J.; Brown, I.J.; Daviglus, M.L.; Van Horn, L.; Dyer, A.R.; Griep, L.M.O.; Miura, K.; Ueshima, H.; et al. Relation of raw and cooked vegetable consumption to blood pressure: The INTERMAP Study. J. Hum. Hypertens. 2013, 28, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Elkilany, G.; Singh, R.B.; Hristova, K.; Niaz, M.A.; Buttar, H.S. Flavonoids consumption and the Risk of cardiovascular diseases. IJCN 2022, 22, 34–38. [Google Scholar]
- Vendrame, S.; Klimis-Zacas, D. Potential Factors Influencing the Effects of Anthocyanins on Blood Pressure Regulation in Humans: A Review. Nutrients 2019, 11, 1431. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.; Zahradka, P.; Taylor, C.G. Efficacy of flavonoids in the management of high blood pressure. Nutr. Rev. 2015, 73, 799–822. [Google Scholar] [CrossRef]
- Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, K.S.; Appathurai, A.; Jois, M.; Radcliffe, J.E. Effects of herbs and spices on blood pressure. J. Hypertens. 2019, 37, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S. Effect of Guava in Blood Glucose and Lipid Profile in Healthy Human Subjects: A Randomized Controlled Study. J. Clin. Diagn. Res. 2016, 10, BC04–BC07. [Google Scholar] [CrossRef] [PubMed]
- Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; et al. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2016, 5, e002713. [Google Scholar] [CrossRef] [Green Version]
- Cigno, E.; Magagnoli, C.; Pierce, M.; Iglesias, P. Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear 2017, 376–377, 756–765. [Google Scholar] [CrossRef]
- Touyz, R.M.; Rios, F.J.; Alves-Lopes, R.; Neves, K.B.; Camargo, L.L.; Montezano, A.C. Oxidative Stress: A unifying paradigm in hypertension. Can. J. Cardiol. 2020, 36, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, H.; Li, C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef]
- Skinner, R.C.; Warren, D.C.; Naveed, M.; Agarwal, G.; Benedito, V.A.; Tou, J.C. Apple pomace improves liver and adipose inflammatory and antioxidant status in young female rats consuming a Western diet. J. Funct. Foods 2019, 61, 103471. [Google Scholar] [CrossRef]
- Jeyapal, S.; Kona, S.R.; Mullapudi, S.V.; Putcha, U.K.; Gurumurthy, P.; Ibrahim, A. Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci. Rep. 2018, 8, 10953. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Itoh, H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr. Hypertens. Rep. 2019, 21, 63. [Google Scholar] [CrossRef] [Green Version]
- Gay, H.C.; Rao, S.G.; Vaccarino, V.; Ali, M.K. Effects of different dietary interventions on blood pressure: Systematic review and meta-analysis of randomized controlled trials. Hypertension 2016, 67, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Davis, K.M.; Rogers, C.J.; Proctor, D.N.; West, S.G.; Kris-Etherton, P.M. Herbs and spices at a relatively high culinary dosage improves 24-hour ambulatory blood pressure in adults at risk of cardiometabolic diseases: A randomized, crossover, controlled-feeding study. Am. J. Clin. Nutr. 2021, 114, 1936–1948. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, Z.; Sharafkhah, M.; Poustchi, H.; Sepanlou, S.G.; Khoshnia, M.; Gharavi, A.; Sohrabpour, A.A.; Sotoudeh, M.; Dawsey, S.M.; Boffetta, P.; et al. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and risk of total and cause-specific mortality: Results from the Golestan Cohort Study. Int. J. Epidemiol. 2019, 48, 1824–1838. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Mattei, J.; Fung, T.T.; Li, Y.; Pan, A.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Association of Changes in Diet Quality with Total and Cause-Specific Mortality. N. Engl. J. Med. 2017, 377, 143–153. [Google Scholar] [CrossRef]
- Muntner, P.; Carey, R.M.; Gidding, S.; Jones, D.W.; Taler, S.J.; Wright, J.T., Jr.; Whelton, P.K. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation 2018, 137, 109–118. [Google Scholar] [CrossRef]
- Garofolo, L.; Barros, N., Jr.; Miranda, F., Jr.; D’Almeida, V.; Cardien, L.C.; Ferreira, S.R. Association of increased levels of homocysteine and peripheral arterial disease in a Japanese-Brazilian population. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, S.G.A.; Hirai, A.T.; Harima, H.A.; Kikuchi, M.Y.; Simony, R.F.; de Barros, N., Jr.; Cardoso, M.A.; Ferreira, S.R.G.; Japanese-Brazilian Diabetes Study Group. Fat and fiber consumption are associated with peripheral arterial disease in a cross-sectional study of a Japanese-Brazilian population. Circ. J. 2008, 72, 44–50. [Google Scholar] [CrossRef]
- Damiao, R.; Castro, T.G.; Cardoso, M.A.; Gimeno, S.G.; Ferreira, S.R.; Japanese–Brazilian Diabetes Study Group. Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br. J. Nutr. 2006, 96, 532–538. [Google Scholar]
Data | Intervention Group (n = 97) | After 1 Year | Control Group (n = 100) | After 1 Year |
---|---|---|---|---|
Blood Pressure, mm Hg | ||||
Systolic | 152.2 ± 12.8 | 148.2 ± 10.1 | 154.6 ± 9.8 | 160 ± 12 |
Diastolic | 99.8 ± 7.2 | 90.2 ± 4.8 | 97.0 ± 4.8 | 103 ± 5.6 |
Serum magnesium, mg/dL | 1.52 ± 0.24 | 1.86 ± 9.2 | 1.54 ± 0.23 | 1.6 ± 0.11 |
Serum potassium, mEq/L | 4.1 ± 0.42 | 4.86 ± 0.45 | 4.5 ± 0.43 | 4.00 ± 0.44 |
Resistant hypertension, n (%) | 97 | 5 (5.19) | 100 | 17 (17.9) |
DASH Diet | Indo-Mediterranean | Mediterranean Diet | Japanese Diet | |
---|---|---|---|---|
Whole grains | 6–8 | 5–6 | 5–6 | 4 |
Vegetables | 4–5 | 4–5 | 4–5 | 4–5 |
Fruits | 4–5 | 4–5 | 4–5 | 4–5 |
Meats & poultry | 6 or less | Not advised | Low | Low |
Fish | 1–2 weekly | 2–3, weekly | moderate | High, 3–4 |
Fats and oils | 2–3 | 3–4 | 3–4 | 3–4 |
Low-fat or fat-free dairy products. | 2–3 | 2–3 | 2–3 | Not advised |
Sodium | 2300 mg | >2300, reduce | >2300, Reduce | >2300, Reduce |
Sweets | 5 or less weekly | Not advised or Jaggery, honey | Not advised | Not advised |
Nuts, seeds, dry beans and peas. | 4–5, weekly | 7–8 | 5–6 | Not advised |
Nutrients | High K, no emphasis on flavonoids | High K & flavonoids | High K & flavonoids | High K, flavonoids Omega-3, fish peptides |
Quality of Foods | DASH Diet | Indo-Mediterranean Diet | Mediterranean Diet | Japanese Diet |
---|---|---|---|---|
Low glycemic index | Very low | Low | Low | Very low |
High nutrient density | High | Very high | High | Very high |
Food diversity | High | Very high | High | High |
No trans fat | mild | No | mild | No |
No/low sugar or refined | mild | No | mild | No |
Low salt | Low | Low | Low | Low |
Moderate healthy fat | Vegetable oils | Rape seed oil | Olive oil | Rice bran oil |
High fiber, flavonoids | Moderate | High | Moderate | Moderate |
Good for gut microbiota | Good | Very good | Good | Good |
No peroxidation of foods | Mild | No | Mild | No |
No red/preserved meat | Low | No | Low | No |
Foods, need mastication | Moderate | Heavy | Moderate | Moderate |
Additional qualities | None | Spices, millets, porridge | None | Fish, vegetables, whole rice |
Data | Intervention Group A (n = 61) | Control Group B (n = 59) | ||
---|---|---|---|---|
Baseline | After 12 Weeks | Baseline | After 12 Weeks | |
Fasting blood glucose, mg/dL | 108 ± 10 | −10.7 * | 110 ± 11 | −5.2 |
Total cholesterol, mg/dL | 226 ± 20 | −27.6 * | 223 ± 18 | −5.6 |
Triglycerides, mg/dL | 166 ± 18 | −18.6 * | 162 ± 15 | −5.8 |
High-density lipoprotein cholesterol, mg/dL | 44 ± 8 | +2.4 * | 46 ± 11 | −1.2 |
Blood pressure, mm Hg | ||||
Systolic | 163 ± 6 | −13.6 * | 161 ± 7 | −4.6 |
Diastolic | 106 ± 4 | −11 * | 104 ± 5 | −3.0 |
Body weight, Kg | 67 ± 9 | −2.2 | 69 ± 11 | −1.8 |
Estimated 10 years risk of CAD,% | ||||
Male | 52 ± 19 | −13.4 * | 50 ± 22 | −2.6 |
Female | 30 ± 12 | −10.3 * | 36 ± 15 | −2.1 |
Data | Intervention Group (n = 61) | Control Group (n = 59) | ||
---|---|---|---|---|
Base Line | After 12 Weeks | Baseline | After 12 Weeks | |
Sodium, mEq/L | 144 ± 12 | −6.8 * | 149 ± 14 | −4.5 |
Potassium, mEq/L | 4.2 ± 0.4 | +0.6 * | 4.5 ± 4 | −0.2 |
Calcium, mg/dL | 9 ± o.5 | +0.06 | 9 ± 0.5 | −0.1 |
Serum magnesium, mg/dL | 1.65 ± 0.3 | +0.06 * | 1.6 ± 0.3 | +0.5 |
Serum albumin, mg/dL | 4.4 ± 0.5 | −0.1 | 4.4 ± 0.5 | +0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.B.; Nabavizadeh, F.; Fedacko, J.; Pella, D.; Vanova, N.; Jakabcin, P.; Fatima, G.; Horuichi, R.; Takahashi, T.; Mojto, V.; et al. Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients 2023, 15, 46. https://doi.org/10.3390/nu15010046
Singh RB, Nabavizadeh F, Fedacko J, Pella D, Vanova N, Jakabcin P, Fatima G, Horuichi R, Takahashi T, Mojto V, et al. Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients. 2023; 15(1):46. https://doi.org/10.3390/nu15010046
Chicago/Turabian StyleSingh, Ram B., Fatemeh Nabavizadeh, Jan Fedacko, Dominik Pella, Natalia Vanova, Patrik Jakabcin, Ghizal Fatima, Rie Horuichi, Toru Takahashi, Viliam Mojto, and et al. 2023. "Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention" Nutrients 15, no. 1: 46. https://doi.org/10.3390/nu15010046
APA StyleSingh, R. B., Nabavizadeh, F., Fedacko, J., Pella, D., Vanova, N., Jakabcin, P., Fatima, G., Horuichi, R., Takahashi, T., Mojto, V., Juneja, L., Watanabe, S., & Jakabcinova, A. (2023). Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients, 15(1), 46. https://doi.org/10.3390/nu15010046