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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver
disease and represents an increasing public health issue given the limited treatment options and its
association with several other metabolic and inflammatory disorders. The epidemic, still growing
prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that
occurred in the last few decades, nor from their association with genetic and epigenetic risk factors.
It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors,
may contribute to the spreading of this pathology due to their ability to enter the food chain and
be ingested through contaminated food and water. Given the strict interplay between nutrients
and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced
metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences
in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental
during gestation, when endocrine-disrupting chemicals may interfere with the programming of
liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review
summarizes cause–effect evidence between environmental pollutants and increased incidence of
NAFLD and emphasizes the need for further studies in this field.

Keywords: nutrition; contaminated food; environmental pollution; endocrine disrupting chemicals;
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver
disease with a 30% prevalence in the general population [1] and represents an increasing
public health issue being an independent risk factor for several comorbidities, such as
type 2 diabetes (T2D), hypertension, dyslipidemia, atherosclerosis, and cardiovascular
diseases (CVDs) among others [2–4]. In NAFLD patients, enhanced lipid uptake and
de novo lipogenesis (DNL), insufficient fatty acid oxidation (FAO), and reduced lipid
secretion lead to excessive accumulation of triglycerides (TG) within hepatocytes [5]. The
increased lipid content together with the impaired FAO promotes the generation of reactive
oxidative species (ROS) and lipotoxic lipid intermediates within the hepatocytes, fostering
oxidative stress and endoplasmic reticulum (ER) stress [6–8]. Chronic oxidative stress, in
turn, triggers a pro-inflammatory response, mainly mediated by JNK (c-Jun N-terminal
kinase) and NF-κB (nuclear factor-κB) signaling pathways, that results in the increased
production of pro-inflammatory cytokines (i.e., IL-6, interleukin 6; TNFα, tumor necrosis
factor α) by hepatocytes and non-parenchymal cells [7,9–11]. The sustained activation
of the pro-inflammatory response bolsters a chronic inflammatory state that triggers the
recruitment of other immune cells and activates apoptosis and other cell death mechanisms,
boosting the progression of NAFLD toward non-alcoholic steatohepatitis (NASH), fibrosis,
and hepatocellular carcinoma (HCC) [9–11].

Despite the growing public health impact of NAFLD, treatment options remain limited,
likely a consequence of the poor understanding of the biological drivers responsible for
NAFLD pathogenesis and progression [5,12,13].
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2. Nutrition, Sex Differences, and NAFLD

In addition to genetic and epigenetic factors [14,15], obesity, dietary habits, lifestyle,
and gut microbiota dysbiosis have a major role in NAFLD incidence, development, and
progression [5,16–20]. In particular, overnutrition and poor dietary habits trigger insulin
resistance (IR) and increase adiposity, favoring lipid deposition in the liver [5,21]. Beyond
positive energy intake, consumption of specific nutrients such as saturated and trans fatty
acids or fructose can be particularly detrimental to liver health, facilitating NAFLD [16,17,22].
Overnutrition and unbalanced diets may induce gut dysbiosis and increase gut permeability,
alter the gut–liver axis, and expose the liver to microbiota-derived harmful substances, such as
lipopolysaccharide (LPS), ROS, pro-inflammatory cytokines, thereby increasing susceptibility
to NAFLD [20].

Compared to men, women show a lower susceptibility to NAFLD, at least until
menopause, after which NAFLD prevalence becomes similar for the two sexes [23,24],
pointing to the protective effect of estrogens. Accordingly, the incidence of NAFLD is
greater in women with reproductive dysfunctions characterized by altered estrogen levels
(i.e., polycystic ovary syndrome, PCOS) with respect to fertile women [23,24]. Notably,
circulating levels of 17β-estradiol are lower in pre-menopausal, post-menopausal, and
PCOS women with NAFLD compared to their control counterparts, while estrogen-based
hormone replacement therapy (HRT) reduces the risk of developing NAFLD in post-
menopausal women [23,24]. In the liver of fertile female mice, estrogens act mainly through
ERα (estrogen receptor alpha), which activity changes according to circulating estrogens,
thus modulating the hepatic metabolism to the energy requirements characterizing each
reproductive stage [25,26]. In the absence of such an oscillatory activation (e.g., after
ovariectomy, OVX), liver metabolic homeostasis is altered, leading to hepatic lipid deposi-
tion and inflammation [25,27], a condition resembling the increased incidence of NAFLD
observed in post-menopausal women [23,24].

By virtue of its role in the female liver, hepatic estrogen signaling strongly contributes
to sex differences in the regulation of hepatic metabolism [28] and in the sex-specific
susceptibility to NAFLD [23,24,29]. Hepatic ERα signaling confers to females but not to
males the ability to adapt a metabolic response to the excess of dietary lipids, thus limiting
liver lipid deposition in a diet-induced mouse model of NAFLD [29]. Notably, such a female-
specific and ERα-dependent feature is associated with the ability to preserve the hepatic
homeostasis of amino acids (AA), especially of branched-chain amino acids (BCAA) [29], in
agreement with studies reporting an impaired BCAA metabolism [30,31] and sex-dimorphic
changes in BCAA levels in patients with NAFLD/NASH [32]. Accordingly, BCAA shows
the potential to alleviate hepatic steatosis and liver injury in a NASH mouse model [33].
Notably, a dietary formula enriched in essential AA and, especially, in BCAA has been
shown to rescue the hepatic transcriptomic profile and limit liver lipid deposition in a
mouse model of menopause, an effect that strongly relies on hepatic ERα [27].

This ERα-dependent, female-specific ability to modulate hepatic metabolism according
to dietary AA may depend on the strict interplay between metabolism and reproduction
gained during evolution by the female liver [18]. In addition to estrogens, indeed, dietary
AA activates ERα in the liver of females to promote the progression of the reproductive
cycle [17]. By virtue of this mechanism and of the sex-dimorphic expression of hepatic
ERα, the regulation of hepatic AA metabolism is significantly different in the liver of the
two sexes, and it is strongly affected by the nutritional status [28,29]. Under short-term
fasting, liver ERα promotes in females, but not in males, the catabolism of the hepatic AA
to preserve lipid synthesis, ensuring the progression of the reproductive cycle [28].

In this view, hepatic ERα may act as a sensor of hormonal and nutritional status and
differently accounts for the regulation of hepatic metabolism in the two sexes, thus con-
tributing to sex differences in NAFLD susceptibility [34,35]. Furthermore, ERα might have
a role in counteracting NAFLD progression to NASH, as suggested by studies reporting a
low expression of ERα in the liver of NASH compared to NAFLD patients [36].
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3. Nutrition, Environmental Pollutants, and NAFLD

Increasing evidence indicates that dietary intake of several environmental pollu-
tants, including persistent organic pollutants (POPs), endocrine disrupting chemicals
(EDCs), heavy metals, and micro- and nanoplastics promotes NAFLD development and
progression (Figure 1). In addition to ingestion, exposure to pollutants through inhalation
(i.e., particulate matter) can be another risk factor for developing NAFLD, especially in
the context of high urbanization due to the combination with other risk factors, including
obesogenic food environment, circadian disruption by light at night, and reduced physical
activity [16,18,37,38].

Figure 1. In addition to obesity, lifestyle, genetic and epigenetic factors, and gut microbiota dysbiosis,
dietary intake of several environmental pollutants, including persistent organic pollutants (POPs),
endocrine disrupting chemicals (EDCs), heavy metals, micro- and nanoplastics promotes NAFLD
development and progression. In addition to ingestion, exposure to air particulate matter through
inhalation can be another risk factor for developing NAFLD, especially in the context of high
urbanization due to the combination with other risk factors, including obesogenic food environment.
Figure created with BioRender (https://biorender.com/, accessed on 11 April 2023).

3.1. Persistent Endocrine Disrupting Chemicals

POPs are long-lived carbon-based organic chemicals that have become a concern for
human health, given their large use in agricultural and industrial sectors and their potential
to enter the food chain [39]. To this class belong pesticides, including organochlorine pesti-
cides (OCPs) such as DDT (dichlorodiphenyltrichloroethane) and its metabolites; industrial
chemicals, including long-chain perfluorinated chemicals such as PFOA (perfluorooctanoic
acid) and PFOS (perfluorooctanesulfonic acid), PCBs (polychlorinated biphenyls), and
PBDEs (polybrominated diphenyl ethers); by-products of industrial processes, including
PCDDs (polychlorinated dibenzo-p-dioxins), PCDFs (polychlorinated dibenzofurans), and
PAHs (polyaromatic hydrocarbons) [39]. Given their widespread distribution in the en-
vironment, their employment in food production (i.e., pesticides), and in food contact
materials (i.e., phthalates) from which they can be released, POPs can enter the food chain.
It has been estimated that over 90% of human exposure to POPs released into the environ-
ment occurs through the consumption of contaminated food [39]. Given their lipophilic
nature, POPs can be accumulated especially in the adipose tissue [40–43], and can be
sequestrated in the liver [44], thus leading to metabolic dysfunctions.

https://biorender.com/
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Several POPs, including industrial chemicals such as PCBs, plasticizers including
phthalates and bisphenol A (BPA), and agricultural pesticides act as EDCs by interfering
with hormone signaling and endocrine functions [45,46]. EDCs can disrupt endocrine
function in a variety of ways, by interfering with the synthesis, transport, metabolism,
and/or receptor binding of hormones, resulting in reproductive, developmental, and
metabolic dysfunctions [47,48]. Accumulating evidence suggests that exposure to EDCs
may increase NAFLD risk [45,46,49]. The steatosis-inducing effect of EDCs is mostly
mediated by the binding with different nuclear receptors (NRs), especially ERα and PPARs
(peroxisome proliferator-activated receptors) (Figure 2a). EDC-induced disruption of
NR signaling promotes lipid accumulation within hepatocytes through several metabolic
alterations, including the increase in lipid uptake, enhanced DNL, inhibition of FAO, and
reduction of lipid secretion in the form of VLDL (very-low-density lipoproteins) particles
and bile acids [46] (Figure 2b). Several EDCs can contribute to the progression of NAFLD
and hepatic inflammation by inducing the production of cytokines and the polarization of
Kupffer cells towards a pro-inflammatory phenotype, by increasing hepatocyte proliferation
and immune cell infiltration, by promoting the transformation of hepatic stellate cells
(HSCs) into myofibroblast-like cells thus favoring apoptosis, liver damage, and fibrosis
development [46,50] (Figure 2b).

Figure 2. Major effects of persistent EDCs on the main pathways involved in NAFLD development.
(a) The steatosis-inducing effect of EDCs is mediated by the binding with different nuclear recep-
tors. (b) EDC-induced disruption of nuclear receptor signaling promotes lipid accumulation within
hepatocytes through the increase in lipid uptake and DNL, the inhibition of FAO, and the reduction
of lipid secretion in the form of VLDL. EDCs induce oxidative stress and hepatic inflammation
by inducing the polarization of Kupffer cells towards a pro-inflammatory phenotype, increasing
immune cell infiltration, and by transforming HSCs into myofibroblast-like cells, thus favoring liver
damage and fibrosis. EDCs-induced gut dysbiosis contributes to NAFLD progression by sustaining
a pro-inflammatory status. The pathways/factors that increased or decreased are shown in red or
blue, respectively. Abbreviations: AhR: hydrocarbon receptor; BPA: Bisphenol A; CAR: constitutive
activated receptor; DNL: de novo lipogenesis; ERs: estrogen receptors; FAs: fatty acids; FAO: fatty
acid oxidation; FXR: farnesoid X receptor; HSCs: hepatic stellate cells; IR: insulin resistance; Kupffer
M1: Kupffer cells with an M1 phenotype; LXR: liver X receptor; OCPs: organochlorine pesticides;
PAHs:, polyaromatic hydrocarbons; PCBs: polychlorinated biphenyls; PFAAs: perfluoroalkyl acids;
PPARs: peroxisome proliferator-activated receptors; PXR: pregnane X receptor; RXR: retinoid X
receptor; TG: triglycerides; VLDL: very-low density lipoproteins. Figure created with BioRender
(https://biorender.com/, accessed on 11 May 2023).

https://biorender.com/
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BPA is an anti-androgen and estrogen-like synthetic chemical, mostly employed in
epoxy resins, polymer materials, and plastics; it can be released from food containers and
water bottles [51]. Although its use has been banned by several countries, the study of the
effects of exposure to BPA is still relevant and representative of other chemical compounds
with potential estrogenic activity. In addition to cancer, hormonal disruption, immunosup-
pression, and infertility, BPA is linked to obesity and several metabolic disorders, including
NAFLD [46,51–53]. A positive association has been found between high urinary levels
of BPA and increased incidence of NAFLD [54,55]. In vitro and animal-based studies
have demonstrated that BPA stimulates TG accumulation in liver cells by upregulating
the expression of the genes involved in DNL and IR, and by disrupting lipid homeosta-
sis [46,56–59]. Through the generation of oxidative stress [60] and of a pro-inflammatory
status that involves the polarization of Kupffer cells toward an M1 phenotype [50], and
through the cross-talk among these two signaling pathways [61], BPA further promotes
the progression of NAFLD and liver injury [46,59]. When coupled with a high-fat diet
(HFD), BPA exposure worsens hepatic steatosis by stimulating ROS-induced overexpres-
sion of Cd36 (fatty acid translocase) in the mouse liver, thus facilitating lipid uptake [62].
In rodents, BPA may lead to hepatic steatosis and hepatotoxicity also by inducing gut
microbiota dysbiosis and activating the gut-liver axis [63,64]. In OVX mice fed with HFD,
BPA exposure aggravates hepatic steatosis by upregulating genes involved in DNL, fatty
acid β-oxidation, and mitochondrial uncoupling, lowering lipid export with decreased
expression of Mttp (microsomal triglyceride transport protein), and inducing ER stress,
resulting in hepatic lipotoxicity, collagen deposition, and fibrosis [65].

Perfluoroalkyl acids (PFAAs, i.e., PFOA; perfluorononanoic acid, PFNA) are persistent,
active chemicals in the environment, that can be ingested also through contaminated food
and water [66], and, due to their exceptional stability to degradation, are slowly eliminated
by the human body [67]. Environmental exposure to high levels of PFAAs increases the risk
of developing hepatic steatosis and NAFLD in adults and children [68,69] and promotes
liver injury [70]. PFAAs administration induces hepatic steatosis in rodents [71–73] and
increases lipogenic gene expression signatures in cultured hepatocytes [74]. In male mice,
PFOS induces fatty liver in a dose and time-dependent manner, by upregulating Cd36
and Lpl (lipoprotein lipase), inhibiting mitochondrial β-oxidation, and causing a shift of
the hepatic proteome [71,72]. In HFD-fed mice, PFOS facilitates liver inflammation and
steatosis through the activation of NLRP3 (NLR family pyrin domain containing 3) in-
flammasome that mediates hepatocyte pyroptosis [73]. PFOA exacerbates HFD-induced
hepatotoxicity and lipid accumulation in the liver through the activation of peroxisome
proliferator-activated receptor α (PPARα) [75]. Other studies have demonstrated that
the co-administration of PFOS and PFNA with HFD reduces hepatic lipid deposition, a
paradoxical effect likely due to the reduced expression of hepatic PFAAs uptake trans-
porters and organic anion transporter proteins in the presence of HFD [76]. In rodents,
PFAAs-induced liver steatosis and toxicity have been mainly attributed to PPARα, which
activation leads to increased expression of genes involved in FAO, lipogenesis (Srebf1,
sterol regulatory element-binding transcription factor 1; Fasn, fatty acid synthase), and
lipid uptake (Cd36) [77]. However, studies performed in PPARα KO mice have demon-
strated that other nuclear receptors and transcription factors, including ERα, peroxisome
proliferator-activated receptor γ (PPARγ), constitutive activated receptor (CAR), liver X
receptor (LXRα), pregnane X receptor (PXR), farnesoid X receptor (FXR), and hepatocyte
nuclear factor 4α (HNF4α), may account for PFAAs effects in the liver (Figure 2a), resulting
in a metabolic shift from carbohydrate metabolism to fatty acid oxidation and in hepatic
TG accumulation [78,79]. Likely a consequence of sex differences in their pharmacokinetics
and tissue distribution [80,81], PFAAs differently account for steatosis and toxicity in the
liver of the two sexes [82–84], with females showing a positive association with NAFLD
and increased hepatic inflammation and injury compared to males [83,84].

Several studies have reported a correlation between exposure to pesticides such as
DDT and its metabolites and metabolic disorders, including NAFLD [85–88], likely because
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the liver is the main target for these toxicants. Retrospective analysis of the U.S. National
Health and Nutrition Examination Survey 2003–2004 has indicated that exposure to sev-
eral OCPs, especially to oxychlordane, is strongly associated with hepatic steatosis and
altered levels of hepatic enzymes [89]. Although the underlying mechanisms have not
yet been fully clarified, multi-omic analysis has suggested that OCPs favor NAFLD by
altering the hepatic expression of genes involved in liver steatosis, PPAR signaling and
fatty acid metabolism, inflammation, and necrosis [90]. Notably, some altered signaling
pathways are common among different OCPs or a mixture of OCPs, while others are typical
for a specific chemical [90]. For example, DDT leads to an over-expression of genes and
transcription factors known to be linked to IR, cell death, and necrosis; in addition, DDT
increases the hepatic levels of arginine, proline, and putrescine, and lowers the levels of
urea and ornithine, impacting on liver regeneration process and boosting NAFLD progres-
sion [90]. In addition to these direct effects on the liver, OCPs can trigger NAFLD also
by causing gut microbiota dysbiosis [91] and inhibiting thermogenesis in brown adipose
tissue (BAT) [92]. In treated mice, insecticides such as fipronil (a phenylpyrazole com-
monly used in agricultural and veterinary fields) and thiamethoxam (a major compound
of neonicotinoids) alter lipid metabolism by increasing Pparγ and Fasn expression and
promote the generation of oxidative stress and inflammation by decreasing Pparα and Gnmt
(glycine n-methyltransferase), ultimately contributing to NAFLD and liver injury [93,94].
Fungicides such as myclobutanil and mancozeb contribute to hepatic lipid deposition,
cellular damage, and NAFLD development and progression [95–97]. In mouse liver, the
effects of Myclobutanil can be differently mediated by the signaling of FXR depending on
nutritional conditions [95]. In HepG2 cells, myclobutanil, mancozeb, and other fungicides
such as tributyltin (TBT) induce steatosis also via retinoid X receptor alpha (RXRα), and
hepatotoxicity by decreasing the expression of anti-apoptotic markers [96–98].

Dioxins consist of a group of organochlorines that include PCDDs, PCDFs, PCBs,
and other related compounds that persist in the environment and accumulate in the food
chain [99,100]. Dioxins can be produced from natural sources (i.e., volcanoes, forest fires),
but are mostly derived from human industrial activities, especially as by-products of
organochloride and chlorine-containing substances such as polyvinyl chloride (PVC). Diox-
ins are neither readily metabolized nor excreted, with a mean half-life of several years
in humans, and bioaccumulate in fat tissues due to their lipophilic nature [101]. Several
epidemiological studies have reported an increased risk of developing cancers, nervous sys-
tem degeneration, immune damage, thyroid disease, metabolic disorders, and reproductive
and sexual development disorders in the general population as well as in subgroups such
as Vietnam War veterans heavily exposed to dioxins [100,102]. With respect to liver health,
TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin), the most toxic dioxin, has been shown to
alter blood and hepatic lipid levels, disrupt bile synthesis, impair the microbiome, and
strongly contribute to NAFLD development and progression through the activation of aryl
hydrocarbon receptor (AhR) [103–107]. Several other dioxins, including PCBs, have become
a major concern for liver health, given their strong association with IR and NAFLD/NASH,
especially under diet-inducing obesogenic conditions [86,108–111]. Mice show significant
differences in hepatic transcriptomic response to TCDD, with greater changes in the liver of
males than females, likely due to sex differences in hepatic detoxification and to a complex
interaction between the AhR and sex hormone receptors [112]. Notably, TCDD-induced
activation of AhR leads to the disruption of hepatic sexual dimorphism in mice [113] and to
a sex-specific induction of genes such as Car and proteins such as FMO3 (flavin-containing
dimethylaniline monooxygenase 3) only in the livers of male mice [112,114]. Conversely,
prolonged exposure to low doses of dioxin impairs metabolic adaptability to HFD only
in female mice, which show hyperglycemia and impaired glucose-induced plasma in-
sulin [115]. Furthermore, hepatic metabolic alterations could be indirect and secondary to
sex-dependent glucocorticoid signaling disturbances and clock-related gene expression
modifications caused by dioxins in adipose tissue [116].
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PAHs are chemical compounds comprised of carbon and hydrogen molecules in
a cyclic arrangement, that can be generated from the incomplete combustion of coal,
wood, oil, and gas, and through volcanic activity. Humans are exposed to PAHs mainly
through inhalation, but also through the ingestion of food contaminated by environmental
pollutants or during preparation techniques involving high temperatures (e.g., grilled,
smoked, toasted, roasted, and fried foods) [117]. Owing to their lipophilicity, PAHs have a
low clearance in the liver, where they are metabolized to epoxides, dihydrodiols, quinones,
or phenols, thus producing ROS that cause hepatotoxicity [118]. Animal-based studies
have reported that exposure to PAHs such as benzo[a]pyrene (BaP) promotes lipid uptake
from blood and lipid biosynthesis in the liver, contributing to NAFLD, oxidative stress,
hepatic inflammation, and injury [119,120]. By activating the AhR pathway, BaP causes
an overexpression of the estrogen-metabolizing enzyme cytochrome P450 1A1 (CYP1A1),
which affects the estrogen signaling pathway, leading to the suppression of FAO and
TG export and to the increase in peripheral fat mobilization, resulting in hepatic lipid
deposition [120]. Such a mechanism of action of BaP suggests that exposure to this chemical
has the potential to affect especially women, who may thus lose the protective effect of
estrogen signaling on hepatic steatosis [23,24].

3.2. Heavy Metals

“Heavy metals” refer to metals and metalloids with relatively high densities (more
than 5 g/cm3), that can accumulate along the food chain, and may lead to high toxicity in
living organisms [121–123]. The group of potentially toxic elements comprises cadmium
(Cd), lead (Pb), nickel (Ni), chromium (Cr), mercury (Hg), and metalloids, such as arsenic
(As), from both natural sources and industrial activities [123]. It is well known that exposure
to xenobiotic metals can cause gastrointestinal, respiratory, cardiovascular, reproductive,
renal, hemopoietic, and neurological disorders [123]. The oxidative stress caused by
these metals, by rising levels of oxidative damage in a cell, destroys lipids, proteins, and
DNA molecules, and supports carcinogenesis. Exposure to environmental heavy metals,
especially through ingestion and inhalation, plays a role in the development of NAFLD
even in lean men [124–133].

Industrial emissions, smoking, and consumption of contaminated food and water
represent the main sources of Cd, another toxic heavy metal widely disseminated in the
environment [121,134]. In the body, Cd accumulates mainly in the liver, where it causes
hepatotoxicity [126,134]. Several population-based studies indicate that environmental
Cd is a tangible risk factor for NAFLD [125,127,128]. Elevated urinary Cd levels have
been found to correlate with markers of NAFLD/NASH, hepatic necroinflammation, and
cytokine levels [129,135]. In rodent models, Cd exposure leads to fatty liver and non-
specific chronic inflammation, apoptosis, and liver cell regeneration, facilitating NASH
development [136–138]. In other mouse models of NAFLD, chronic exposure to low
doses of Cd alters HFD-associated adverse health effects, by limiting or exacerbating lipid
deposition and liver injury dependent on Cd concentration [139]. Once taken up from the
bloodstream, Cd interacts with the liver through heavy metal binding proteins and leads
to impaired regulation of lipid metabolism, marked hepatic mitochondrial dysfunctions
along with significant suppression of sirtuin 1 (SIRT1), inhibition of mitochondrial FAO
and autophagy [140] (Figure 3).
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Figure 3. Major effects of heavy metals on the main pathways involved in NAFLD development.
Dietary intake of heavy metals leads to impaired regulation of lipid metabolism, by promoting
lipid synthesis and deposition and by inhibiting lipid catabolism. Heavy metals enhance DNL
also through the increased transactivation of ChREBP, favoring TG synthesis and lipid deposition.
Heavy metals impair mitochondrial functions and inhibit SIRT1, FAO, and autophagy, resulting in
increased production of ROS and lipotoxicity, which in turn activate NLRP3 inflammasome and
boost inflammation, further favoring NAFLD progression. Heavy metals contribute to NAFLD
pathogenesis also by affecting gut permeability, thus increasing the flux of SCFA and inflammatory
molecules toward the liver. The pathways/factors that increased or decreased are shown in red
or blue, respectively. Abbreviations: ChREBP: carbohydrate responsive element binding protein;
DNL: de novo lipogenesis; FAs: fatty acids; FAO: fatty acid oxidation; NLRP3: NLR family pyrin
domain containing 3; ROS: reactive oxygen species; SCFA: short chain fatty acids; SIRT1: sirtuin 1;
TG: triglyceride. Figure created with BioRender (https://biorender.com/, accessed on 11 May 2023).

The main sources of Pb include natural soil enrichment, paint, industrial legacy, batter-
ies, contemporary mining emissions, contaminated food and water, and differ depending
on different regional zones [141]. The accumulation through the food chain is the main way
of Pb exposure, followed by direct inhalation and skin contact [122]. In a cohort of 41,723
individuals, exposure to Pb resulted to be an independent risk factor for MAFLD (metabolic
dysfunction-associated fatty liver disease) [130], a renewed name for NAFLD [142]. In a
population-based study of 4582 subjects, blood Pb levels positively correlated with the
suspected NAFLD [143]. Chronic Pb exposure during early childhood is associated with
hepatic steatosis and hepatocellular injury in young adulthood [144]. Although the mecha-
nism(s) are not fully uncovered, Pb exposure seems to promote NAFLD development and
progression by enhancing the production of ROS and oxidative stress, resulting in changes
in lipid peroxidation and reduced antioxidant activity in hepatic cells [131]. An interesting
study by Daniel et al. showed that Pb exposure may favor NAFLD by lowering the levels
of sorcin, a protein that confiscates ChREBP (carbohydrate-responsive element binding
protein) within the cytoplasm, thus enhancing the nuclear shuttling and transactivation of
ChREBP, that results in increased hepatic DNL [145] (Figure 3). Hepatic Pb-induced liver
toxicity may be boosted by the activation of a pro-inflammatory response due to variations

https://biorender.com/
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in the intercellular signaling between Kupffer cells and hepatic cells [146], or to variations
in gut microbiota [147].

Positive correlations have been found between soil heavy metal mixture containing
As and the risk of developing NAFLD [86,124,132] as well as between urinary As levels
and fatty liver/NAFLD [133]. Exposure to As impairs the normal metabolic features,
increases the risk of NAFLD, and induces liver damage and inflammation in mice fed with
HFD [148]. As induces the mitochondrial production of ROS, which upregulates the level
of mitophagy and oxidizes mitochondrial DNA [149]. In rodents, As promotes NASH
due to increased lipid accumulation, autophagy and NLRP3 inflammasome activation,
dysregulated expression of lipid-related genes, and alternative cell death processes such
as ferroptosis, a type of programmed cell death dependent on iron and characterized by
the accumulation of lipid peroxides [150] (Figure 3). As-induced activation of NLRP3
inflammasome promotes the maturation and secretion of pro-inflammatory cytokines such
as IL-1β and IL-18 (interleukin 1β and 18), that, in turn, boost hepatic IR and favor NAFLD
development [149]. In rat liver, As induces ferroptosis-mediated NASH by affecting the
interaction between Mitofusin 2 (a physical tether between the endoplasmic reticulum and
mitochondria) and inositol-requiring enzyme 1 alpha (IRE1α) [151].

The combined exposure to several heavy metals can further increase the risk of de-
veloping NAFLD and the associated comorbidities [86,131,132,152], further pointing to
cumulative effects derived by multiple exposures.

3.3. Microplastics and Nanoplastics

In the so-called era of Plasticene, plastics and their derived micro- and nano-particles
represent a concern for human health [153]. Microplastics (MPs) are defined as “synthetic
solid particles or polymeric matrices, with regular or irregular shape and with size ranging
from 1 µm to 5 mm, of either primary or secondary manufacturing origin, which are
insoluble in water” [154], while nanoplastics (NPs) are particles smaller than 1 µm [155].
MPs and NPs can be of primary manufacturing origin when deliberately created for
consumer and industrial uses, such as occurs for exfoliants in cleansers, cosmetics, drug
delivery particles in medicines, and industrial air blasting [155,156]. Otherwise, MPs
and NPs can be of secondary origin when derived from the degradation of macroplastics
through enzyme-based biodegradation or non-biodegradation processes, such as thermal
degradation, physical degradation, photodegradation, thermo-oxidative degradation, and
hydrolysis [155,156].

MPs and NPs can occur in both aquatic and terrestrial environments, and eventually
enter the human body through the ingestion of contaminated food and water, the inhalation
of airborne plastic particles that originate from synthetic textiles and urban dust, and, in a
minimal amount, through weakened skin barrier and skin wounds [155,157–159]. Among
these three routes, the ingestion of plastic-containing food and drinks represents the main
route for MPs and NPs to enter the human body, affecting mainly the digestive and secretory
systems [155,160]. MPs fragments have been detected in several types of food, including
honey, beer, salt, sugar, fish, shrimps, and bivalves, and have been found in 81% of tap and
93% of bottled water, respectively [155]. It has been estimated that the average human is
consuming around 39,000 to 52,000 MPs particles per year; people who drink only bottled
water can ingest an extra 90,000 particles, further pointing to the food chain as a major
source of microplastic consumption by humans [155]. Notably, MPs have been found in
stool samples and cirrhotic liver tissues, confirming the exposure of the human digestive
tract to MPs [161,162]. Although analytical tools to detect the presence of NPs in food
are not yet available, it is conceivable that NPs can occur in the food chain due to the
degradation of MPs [155].

Although their widespread distribution, particles in the seafood and the aquatic
environment represent the greatest risk of absolute exposure to MPs and NPs and a concern
for human health, especially due to the long-term weathering of polymers and the leaching
of polymer chemical additives [153,155]. Several chemical additives, including inert or
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reinforcing fillers, plasticizers, antioxidants, UV stabilizers, lubricants, heavy metals, dyes,
and flame-retardants, are added during production to modify plastic qualities such as color
and transparency, to enhance the performance of plastic products, and to improve thermal,
electrical, and mechanical resistance [153]. Other chemicals can be absorbed by plastic
particles from the surrounding environment. In almost all cases, added and adsorbed
additives are not chemically bound to the plastic polymer, and, thus, can leach into the air,
water, food, and, potentially, the human body [153].

After intestinal absorption or epidermal infiltration, small MPs and NPs enter the
bloodstream and reach the liver, where they can be easily internalized through endocy-
tosis or, in an energy-independent way, through passive diffusion in a dose–response
manner [157]. Small MPs (25 nm~90 µm) and NPs can accumulate in the livers of marine
fish and mammals, leading to hepatic morphological changes, inflammation (necrosis,
infiltration), and accumulation of lipid droplets, thereby affecting the normal function of
the liver and resulting in hepatotoxicity [155,157].

Increasing evidence suggests that ingested or inhaled MPs and NPs damage liver
health [155,157] and facilitate NAFLD development and progression [163–165] (Figure 4).
Oral exposure to polystyrene MPs induces metabolic disturbances, such as diabetes and
NAFLD, especially in mice fed with HFD, mainly due to inflammation of the intestinal
mucosa that impairs nutrient absorption [164]. In mice fed with HFD, polystyrene NPs
potentiate liver damage and trigger the development of hepatic fibrosis, by interfering with
liver lipid metabolism, lowering superoxide dismutase (SOD) activity, inducing oxidative
stress, inflammation, and collagen fiber deposition [165]. Excessive production of ROS
activates the PI3K/Akt (phosphoinositide-3-kinase/protein kinase B) signaling pathways,
blocking insulin signal transduction, and leading to IR, which may account for the in-
creased plasma glucose levels and liver lipid droplets in mice following long-term and
low-dose oral administration of polystyrene NPs [166]. In human hepatic cells, the uptake,
intracellular localization, and cytotoxic effects of polystyrene NPs depend on particle con-
centration and surface functionalization and induce profound metabolic changes, especially
in mitochondrial-related processes, accounting for mitochondrial damage [167–169]. In
human liver organoids, 1 µm polystyrene MPs microbeads have been found to disrupt
lipid metabolism by increasing the expression of HNF4A, alter ATP production, promote
ROS generation, oxidative stress by inducing CYP2E1 (cytochrome P450 family 2 subfamily
E member 1), inflammation, lipotoxicity, and hepatotoxicity, thus providing evidence for
the implication of these particles in human NAFLD [170].

From a mechanistic point of view, MPs/NPs promote liver lipid deposition by altering
the hepatic expression of genes involved in lipid metabolism, such as PPARα and PPARγ
and their target genes, leading to enhanced DNL (i.e., higher mRNA levels of Fasn, Srebp1)
and lipid transport (i.e., higher mRNA levels of Cd36) and to a reduction of lipid catabolism
(i.e., lower mRNA levels of Cpt1α, carnitine palmitoyltransferase 1A) and PPARα-mediated
lipolysis [157,165,171]. MPs/NPs-associated chemical additives may prompt the excessive
production of ROS, leading to lipid peroxidation and oxidative damage [157,163,170,172].
Compared to MPs, NPs easily aggregate in living organisms, favoring a stronger oxidative
stress response and liver damage [157]. Exposure to MPs/NPs increases the expression
and activities of inflammatory factors such as IL-1β, TNFα, and NF-κB, the infiltration in
the liver, and polarization of macrophages toward an M1 phenotype, further aggravating
liver injury [157]. Excessive oxidative stress and inflammation prompt ER stress and
programmed cell death through apoptosis, pyroptosis, and ferroptosis [157,173–175].

Transcriptomic and metabolomic analysis has revealed that several biological processes
related to energy metabolism, including glycolysis/gluconeogenesis, glucose transport,
pentose phosphate pathway (PPP), fatty acid synthesis, and oxidation, are inhibited in the
livers of mice and fish exposed to MPs [157,163,169]. Inhibition of the PPP pathway reduces
the levels of the bio-reductant NADPH [176], further boosting oxidative-dependent cell
damage. In fish, MPs more than NPs affect the energy metabolism, causing changes in
feeding activity, depletion of the energy reserves, disturbances in the ability to mobilize
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energy reserves, defects in the mitochondrial membrane respiratory chain, and low levels
of ATP/ADP/AMP in the liver [157,169,170].

Figure 4. Major effects of MPs and NPs on the main pathways involved in NAFLD development.
Dietary intake of MPs and NPs promotes NAFLD by increasing the hepatic expression of PPARγ
and their target genes leading to enhanced DNL and TG synthesis, and by reducing FAO and lipid
catabolism, mainly through the inhibition of PPARα. Chemical additives associated with MPs/NPs
lead to mitochondrial damage, oxidative stress, and inflammation. Oxidative stress and inflammation
boost IR, further favoring DNL and lipid deposition. Excessive oxidative stress and inflammation
prompt programmed cell death through apoptosis, pyroptosis, and ferroptosis. MPs/NPs-induced
gut dysbiosis also contribute to NAFLD pathogenesis by increasing inflammation and the production
of SCFA that, once reached the liver, feeds the pool of FAs. The pathways/factors increased or
decreased are shown in red or blue, respectively. Abbreviations: DNL: de novo lipogenesis; FAs: fatty
acids; FAO: fatty acid oxidation; IR: insulin resistance; MPs: microplastics; NPs: nanoplastics; PPARα:
peroxisome proliferator-activated receptor α; PPARγ: peroxisome proliferator-activated receptor γ;
ROS: reactive oxygen species; SCFA: short chain fatty acids; TG: triglyceride. Figure created with
BioRender (https://biorender.com/, accessed on 11 May 2023).

Exposure to MPs and NPs may also enhance the expression and activity of cytochrome
P450 oxidases (CYP450s, i.e., CYP1A1, CYP11A1, CYP19A1, CYP2E1) mainly involved in
phase I reactions of oxidation, reduction, and hydrolysis, and may increase the activities of
alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase
(ALT), that are released into the blood during liver injury [157].

MPs and NPs damage intestinal function favoring gut dysbiosis and gut permeability
and impair the balance of gut microbes leading to changes in the production of short-chain
fatty acids, fatty acyl chains, choline, cholesterol, and AA, which in turn contribute to
NAFLD pathogenesis favoring liver steatosis, inflammation, and fibrosis [163,164,177–179].

Although few studies investigated the sex differences associated with MPs/NPs
exposure, evidence suggests that liver metabolic and toxic effects may be worse for fe-
males [180,181], given the major impact of these plastic particles and their associated
chemical additives (i.e., EDCs) on female reproductive parameters and functions [181–184].

https://biorender.com/
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3.4. Air Particulate Matter

Particulate matter (PM) refers to solid particles and liquid droplets that are discharged
into the air as a result of diesel use, road and agricultural dust, coal and biomass combustion,
and emissions from industrial activities [185]. PM is composed of microscopic carbonaceous
particles and the adsorbed chemicals, such PAHs, aryl hydrocarbons, volatile organic
hydrocarbons, heavy metals (especially Fe, iron; Cu, copper; Ni), organic compounds,
minerals, inorganic ions, and biological materials [185]. PM is classified depending on
particle diameter: PM10 (<10 µm), PM2.5 (<2.5 µm), PM1 (<1 µm), and PM0.1 (<0.1 µm),
also termed ultrafine particles (UFPs). The toxicity of specific subclasses of inhaled PM
depends on particle size (with the smaller ones being the more toxic) and shape and on
the composition of organic/inorganic fractions of PM as well as chemicals adsorbed to
particle surface [186,187]. Being more abundant than UFPs, PM2.5 is considered to be the
most harmful to human health [185].

In the respiratory compartment, <PM2.5 particles dissolve in the aqueous lining and
reach the alveoli, where they induce the activation of macrophages towards an activated
phenotype, triggering local and systemic inflammation [185]. Once crossed the alveolar
barrier, <PM2.5 might enter the systemic circulation and, in a secondary phase, reach
the liver, where it could be internalized via endocytosis-mediated mechanisms and fa-
vor metabolic dysfunctions and hepatic inflammation [188–191]. Three-week exposure
to PM2.5 leads to the development of low-grade liver inflammation and enhances pro-
inflammatory cytokines in plasma, while long-term exposure to “real world” PM2.5 leads to
several molecular and metabolic derangements, including the rise in plasma TG, low/very
low-density lipoproteins ratio (LDL/VLDL), IR, altered glucose metabolism, and a more
sustained inflammatory response [191,192]. In rodent models, PM2.5 exposure synergizes
with unbalanced dietary regimens (i.e., HFD) and aggravates metabolic and inflammatory
dysfunctions, accelerating NAFLD progression to NASH [188,193].

From a mechanistic point of view, PM2.5 exposure can inhibit the expression of PPARα
and PPARγ, impairing the regulation of glucose and lipid metabolism, FAO, and immune
response, thus leading to hepatic steatosis, inflammation, and IR [194]. PM-induced
metabolic effects are, indeed, mediated at least in part by the downregulation of PPARα
and their lipid metabolism-related target genes in the liver (i.e., Cyp4a14; Cd36; Slc27a1,
solute carrier family 27 member 1) and in BAT (i.e., Ucp1, uncoupling protein 1), which
favor hepatic steatosis and BAT whitening [194]. In mice, exposure to PM2.5 for 16 weeks
decreases glycolysis and Krebs cycle intermediates, while increasing the incorporation
of 13C in the oxidative branch of the pentose phosphate pathway, suggesting that this
metabolic shift can support de novo synthesis of fatty acids prior to the onset of IR [195].
PM2.5 treatment induces lipid synthesis in human hepatic HepG2 cells as well [196].

Both short-term acute and long-term chronic exposure to PM2.5 stimulate inflammatory
cells and induce local tissue and systemic inflammation by increasing the levels of pro-
inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α) and liver injury associated with
dyslipidemia [191]. In the liver, PM-induced cytokines activate Kupffer cells and promote
inflammation through the activation of several molecular pathways, including c-JNKs-
activator protein 1 (AP1), toll-like receptor 4 (TLR4), and NF-κB, thus favoring NASH
development [197]. Additionally in adipocytes, together with impaired glucose tolerance,
IR, and mitochondrial alterations, PM2.5 may prompt the expression of pro-inflammatory
factors, such as TNFα and IL-6, and reduce anti-inflammatory factors, such as IL-10,
further contributing to the propagation of systemic inflammation [198]. In turn, pro-
inflammatory cytokines such as IL-6 may aggravate hepatic IR by inducing the activation
of the STAT3/SOCS3 (signal transducer and activator of transcription 3/suppressor of
cytokine signaling 3) pathway [199].

Prolonged PM2.5 exposure affects liver health also through the generation of ROS,
which elevates the risk of oxidative stress-driven NAFLD by triggering lipid accumulation
in the liver [192]. ROS production can also be mediated by heavy metals, especially Cr(VI),
Pb, and As, contained within or adsorbed to particles as well as by electrophilic reaction
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metabolites derived from organic compounds attached to the surface of particles [200].
PM2.5 -induced production of ROS may reduce cell antioxidant capacity by impairing
the translocation of nuclear transcription factor NRF-2 (nuclear factor erythroid 2–related
factor 2) to the nucleus, thus affecting the expression of their target genes and the activity
of antioxidant enzymes such as SOD, CAT (catalase), GPX (glutathione peroxidase), further
propagating the oxidative stress [192,201]. Excessive ROS production and insufficient
antioxidant activity may damage hepatic cells by altering the structure and function of
biological macromolecules such as DNA, proteins, and lipids and by activating NF-κB,
apoptosis, JNK, and p53 signaling pathways [191]. In turn, PM2.5-induced activation of
inflammation can boost the production of ROS and reactive nitrogen species [191,192],
further fostering oxidative stress. Oxidative stress derived from long-term exposure to
PM2.5 can cause ER stress, that, in turn, aggravates liver lipid accumulation and IR through
the selective activation of the unfolded protein response (UPR) signaling pathways, thus
accelerating the progression of NAFLD [202,203].

PM2.5 exposure can promote NAFLD development and progression even as a conse-
quence of changes in the intestinal microflora and gut dysbiosis [20,191,204,205]. Altered
intestinal microflora may, indeed, increase the production and secretion of harmful sub-
stances, especially LPS [204]. Once entered the blood and reached the liver through the
portal vein, intestinal bacteria-derived toxic derivatives may intensify a pro-inflammatory
response, further exacerbating NAFLD progression [191,206]. Exposure to high doses of
PM promotes a pro-oxidative and pro-inflammatory response and tight junction damage,
leading to the death of gastrointestinal epithelial cells and to increased intestinal perme-
ability [205]. In diet-induced mouse models of NAFLD, as well as in NAFLD patients,
intestinal barrier dysfunctions and altered intestinal permeability may facilitate the transfer
of LPS into the systemic circulation, exacerbating liver inflammation and the progression
of NAFLD toward NASH and fibrosis [20,207,208].

Evidence suggests that long-term exposure to PM2.5 might have different metabolic
effects in the two sexes [209]. Compared to their male counterparts, female mice showed
greater IR, increased levels of hepatic TG, free fatty acids (FFA), and cholesterol (CH), and
enhanced hepatic expression of ApoB (apolipoprotein B) and MTTP [209]. The greater
vulnerability of females towards PM2.5 can be due to the inhibition of the hypothalamus–
pituitary–adrenal (HPA) axis and to the decreased glucocorticoids levels, which may
contribute to IR and to the disorders of hepatic lipid metabolism [209].

In a rodent model of menopause, the lack of estrogen action predisposes females to
PM-negative effects by altering metabolic, oxidative, pro-inflammatory, and heat shock
protein levels [210], further pointing to the greater susceptibility towards air pollution of
females with unbalanced hormonal and reproductive systems.

4. Climate Change, Food Insecurity, and NAFLD

Although very poorly investigated, even climate change and global warming as
consequences of environmental pollution may further account for the increasing incidence
of NAFLD worldwide [211]. Global warming, indeed, threatens agriculture production
leading to food insecurity and shortage of food supplies and favors the consumption of
processed and imported foods with little nutritional value, thus accounting for an increased
risk for humans to develop metabolic disorders, including NAFLD [211–214].

Several studies have shown that global warming favors the growth rate and production
of microcystins (MCs), the most common class of liver toxins produced as secondary
metabolites by a number of widely distributed freshwater cyanobacteria [215–217]. MCs
are cyclic heptapeptides with two conventional amino acids in positions X and Y and
a unique β-amino acid ADDA (3-Amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-
dienoic acid) [215,218]. Based on their hydrophobicity and ability to form a chemical bond
between the toxin and the protein phosphatases within cells, the two conventional amino
acids differently contribute to MC toxicity and cell damage [218]. Among over 300 different
MCs identified to date, microcystin-LR (MC-LR, so-called because it contains amino acids
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leucine (L) and arginine (R) in the X and Y positions, respectively), is the most abundant,
persistent, and toxic MC variant, categorized as group 2B carcinogen by the International
Agency for Research on Cancer (IARC) [218].

Once synthesized, MCs are stored intracellularly and only released into the water
following cell lysis, either by a viral infection or during cell senescence. Human exposure
to MCs occurs through the chronic and accidental ingestion of contaminated drinking or
recreational water, inhalation or contact with the nasal mucous membrane, dermal contact
with toxins during recreational activities, and consumption of contaminated food (i.e., veg-
etables, fruit, fish, and shellfish) irrigated with or grown in contaminated water [219].
Although the majority of MCs is eliminated with the feces, part of MCs is absorbed in
the intestine and distributed to other organs, in particular to the liver [219], where MCs
can be easily uptaken due to the higher expression of the MC organic anion transporting
polypeptides (OATPs), especially Oatp1b2 as demonstrated for the mouse liver [218]. Once
inside and taken up by the cells, the toxins promote cell damage by specifically inhibiting
the serine/threonine protein phosphatases (PP)-PP1 and PP2A, leading to protein hyper-
phosphorylation, and alterations in the cytoskeleton, and increasing oxidative stress, cell
death, cytoskeleton disruption, and cell lysis [219,220].

Being the liver the primary target organ for MC toxicity [218,219], several epidemio-
logical and pre-clinical studies found a positive relationship between MCs and biomarkers
of liver damage as well as dysfunctions in glucose, triglyceride, lipid, and cholesterol
metabolic pathways [218,219,221–225]. Long-term environmental exposure to MCs in-
creases the risk of NAFLD in humans [221] and exacerbates hepatic injury in rodent models
of NAFLD [222–224,226], by increasing the expression of genes related to fatty acid biosyn-
thesis and uptake, oxidative stress, pro-inflammation, necrosis, fibrosis, collagen deposition,
hepatotoxicity, and by reducing the expression of genes involved in fatty acid β-oxidation,
lipoprotein transport, and anti-inflammatory response. The relationship between MC
exposure and NAFLD seems to be bi-directional since it has been reported that NAFLD
may alter MC-LR toxicokinetics and acute toxicity [227]. Interestingly, MC-LR’s impact on
liver functions in mice is different between the two sexes, with females showing higher
susceptibility to MC-LR compared to males [228].

The increase in mean temperature consequent to global warming may promote NAFLD
development even through the reduction of BAT activity with an impact on energy expenditure
and thermogenesis [229,230]. Limited capacity and functionality of BAT might furthermore
alter the regulation of glucose and lipid metabolism [231,232], triggering metabolic dysfunc-
tions (i.e., increased adiposity, IR, T2D, and gestational diabetes) [229,233–235] and NAFLD
development [236,237] due to the cross-talk between the BAT and the liver [231,238,239].
Environmental-induced BAT dysfunctionality may differently account for NAFLD susceptibil-
ity in the two sexes, as suggested by increasing evidence on sexual dimorphic and hormone-
dependent regulation of BAT metabolism [240–244].

5. Dietary Intake of Environmental Pollutants, Female Subfertility, and NAFLD

Given the strict relationship between reproduction and the regulation of energy
metabolism in female mammals [245], exposure to environmental pollutants may be
detrimental, especially in women with reproductive dysfunctions; conversely, acting as
EDCs, environmental pollutants may promote reproductive dysfunctions, further favoring
metabolic disorders. A canonical example is represented by PCOS, an endocrine and
metabolic condition affecting 5–18% of women, which diagnosis—according to the 2003
Rotterdam criteria—is confirmed with two of the three following criteria: clinical or bio-
chemical hyperandrogenism, irregular cycles, and polycystic ovary morphology [246,247].
PCOS women show an increased susceptibly to the development of metabolic dysfunctions,
including fatty liver, NAFLD, and NASH [248–250], likely a consequence of altered hor-
mone levels (increased androgens and androgens/estrogens ratio; decreased estrogens) and
IR [251–253]. Beyond genetic and epigenetic susceptibility, hypothalamic and ovarian dys-
functions, exposure to high androgen levels, IR, increased adiposity, and obesity [246,247],
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environmental pollutants have a role in PCOS physiopathology [254–259] and, thus, may
further contribute to NAFLD incidence in PCOS women (Figure 5).

Figure 5. Exposure to environmental endocrine pollutants such as BPA increases the susceptibility of
PCOS women to develop NAFLD. In ovarian theca cells, BPA enhances the production of androgens,
further impairing T/E2 ratio. At the hepatic level, BPA decreases SHBG, thus contributing to high
levels of free T. In the liver, androgens downregulate BPA liver catabolism, thereby increasing
circulating BPA levels. Abbreviations: BPA: Bisphenol A; E2: estradiol/estrogens; PCOS: polycystic
ovary syndrome; SHBG: sex hormone-binding globulin; T: testosterone/androgens. Figure created
with BioRender (https://biorender.com/, accessed on 11 May 2023).

Exposure to BPA, the main component of plastic containers, enhances the production
of androgens in ovarian theca cells and affects their hepatic metabolism by interacting with
SHBG (sex hormone-binding globulin) and with enzymes regulating their hydroxylation at
the hepatic level [254]. Androgens per se can downregulate BPA liver catabolism, increasing
its circulating levels and, thereby, promoting PCOS [254].

A positive association has been found between PCOS and heavy metals, especially
Cr, Cu, As, Cd, Pb, and Hg [258,260]. Acting as EDCs, heavy metals impair hypothalamic–
pituitary–gonadal (HPG) axis, promote androgen synthesis, and several inflammatory
and metabolic alterations, including the generation of oxidative stress [258,260]. In PCOS
women, indeed, serum As, Cd, Pb, and Hg levels are increased and negatively correlated
with serum levels of glutathione (GSH) and SOD [260].

Women exposed to high concentrations of fine air pollutants, including PM2.5, had an
increased risk of developing PCOS [259]. Organic solvents found in indoor decoration may
activate TNFα as well, and lead to excessive hepatic glucose production, low muscular
glucose uptake, and impaired insulin sensitivity, further increasing metabolic and ovulatory
dysfunctions in women suffering from PCOS [261].

6. Maternal Exposure to Pollutants and Developmental Origins of NAFLD

The epidemic and still growing prevalence of NAFLD worldwide [1] cannot be merely
explained by changes in diet, lifestyle, and environmental factors that occurred in the last
few decades, nor from their association with genetic risk factors that should have undergone

https://biorender.com/
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few changes in such a limited time frame. In addition to these risk factors, it is conceivable
that transgenerational effects may account for the developmental origins of NAFLD [25],
contributing to the spreading of this pathology. There is a growing body of evidence
showing that prenatal exposure to endocrine disruptors may alter liver metabolic programs
and represent a risk factor for NAFLD development later in life [262,263] (Figure 6). In this
view, prenatal exposure to environmental pollutants acting as endocrine and/or metabolic
disruptors may contribute to or aggravate NAFLD development and progression, as
suggested by several studies in rodents [264–272] and some clinical studies [273–275].

Figure 6. Gestational exposure to environmental pollutants acting as EDCs interferes with liver
metabolism programming and increases the risk of developing NAFLD later in life. Figure created
with BioRender (https://biorender.com/, accessed on 11 May 2023).

Gestational exposure to BPA induces fatty liver development in male offspring rodents
by altering the expression and activity of several nuclear transcription factors [264–266].
Prenatal exposure to BPA promotes lipid deposition in the liver of offspring male mice
through impairment of NR signaling, such as the inhibition of Hnf1b (hepatocyte nu-
clear factor 1b) and the upregulation of Pparγ [264]. In obese and diet-induced rodent
models of NAFLD, perinatal exposure to BPA leads to the induction of NRF2 signaling,
aggravates NAFLD onset, and exacerbates NAFLD progression toward a NASH-like phe-
notype [266–268]. The consumption of drinking water containing BPA during gestation
impairs the PI3K/Akt/mTOR (PI3K/Akt/mammalian target of rapamycin) and TLR4/NF-
κB pathways in the liver of offspring rats, resulting in the upregulation of lipogenic genes,
activation of the inflammatory response, dysregulation of autophagy and development of
NAFLD [265]. Possibly because the majority of pre-clinical studies have been conducted
in males, it has not been clarified whether prenatal exposure to BPA might lead to sex
differences in the offspring. In fact, while some studies have shown similar effects in the
liver of both sexes [265], other studies have reported that gestational and developmental
exposure to BPA leads to sexually dimorphic changes in hepatic gene expression and
epigenome at birth and may exacerbate HFD-induced hepatic steatosis in a sex-specific
fashion [269,270]. Perinatal exposure to endocrine-disrupting pollutants with estrogenic
activity may, indeed, have a greater impact on male offspring, likely interfering with the
liver metabolic programming prompted by estrogen signaling through organizational
effects at this developmental stage [28].

In humans, higher exposure to PFAAs during pregnancy has been found to be asso-
ciated with increased susceptibility to liver injury in children, who show higher serum
levels of ALT, AST, and GGT (gamma-glutamyltransferase), and increased serum levels of
aromatic AA and, especially, BCAA [273], the last ones having a role in NAFLD onset and
progression [276–279].

Beyond direct effects on the liver, fetal exposure to environmental pollutants such
as triphenyl phosphate (an organophosphate flame retardant) and nitenpyram (an insec-
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ticide used in agriculture) can trigger NAFLD and NASH development later in life as a
consequence of impaired intestinal dysbiosis and colonic mucosal damage [271,280].

In utero exposure to heavy metals, possibly acting as EDCs, such as As and Hg
increases offspring susceptibly to NAFLD, IR, liver inflammation, and injury [272,274].

In mice, gestational exposure to polystyrene NPs induces hepatic steatosis in the dams
and in adult female offspring but not male offspring, by enhancing the expression of genes
involved in DNL, FA uptake, and TG synthesis [281].

Maternal exposure to ≤PM2.5 predisposes adult male mice offspring to NAFLD and
other long-term metabolic dysfunctions such as obesity, T2D, insulin resistance, hyperten-
sion, hyperlipidemia, and metabolic syndrome, likely affecting organogenesis and tissue
functions [282–285]. In mice, prenatal exposure to diesel exhaust PM2.5 (DEP) leads to
increased lipogenesis and worsens fatty acid oxidation, favoring hepatic lipid deposition
in the adult male offspring [286]. In humans, the association between prenatal exposure
to ≤PM2.5 and the risk of developing NAFLD later in life is more consistent, likely due to
the very few population-based investigations completed [282]. Nevertheless, accordingly,
with the multiple-hits hypothesis of NAFLD pathogenesis [287], some studies support the
idea that early life PM2.5 exposure induces liver damage, especially in overweight/obese
children [275]. Interestingly, prenatal DEP exposure has been shown to relieve hepatic
steatosis and liver function in the offspring of mice fed with HFD, suggesting a complex
interaction between nutritional and environmental conditions in prompting NAFLD [286].
Although very little investigated, maternal exposure to PM2.5 seems to have sex-specific
effects in the offspring with a more severe impact on females, which show increased hepatic
expression of markers of oxidative stress and inflammation [288].

7. Discussion

The prevalence of NAFLD and its associated diseases has become a significant health
and economic burden nowadays and it is still rising. Although the well-known role of
EDCs in NAFLD development, the specific contribution of dietary intake of environmental
endocrine pollutants to the increasing incidence of NAFLD still represents a significant
gap in our knowledge. Although rodent studies have provided the strongest evidence for
this cause–effect association, only a small percentage of these studies have been focused
on females, limiting the understanding of the molecular mechanisms through which
females can be eventually more vulnerable to dietary exposure to environmental pollutants
depending on their hormonal status. Given the strict interplay between metabolism and
reproduction in females, dietary intake of contaminated food and water can be, indeed,
particularly detrimental to the liver health of females with impaired hormonal signaling
and reproductive dysfunctions. Conversely, environmental EDCs can trigger reproductive
alterations in females, that, in turn, facilitate NAFLD development and progression. In
addition to that, dietary intake of environmental endocrine pollutants during gestation
can be a risk factor for developing NAFLD for the mothers as well as for the offspring,
likely affecting the estrogen-driven programming of liver metabolism especially in males.
Given this evidence, additional rodent studies are warranted to expand our knowledge of
the consequences of dietary intake of environmental endocrine pollutants, with the aim to
elucidate the underlying mechanisms of action and to identify valuable biomarkers and
interventional strategies for the treatment of NAFLD.
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Factors, and Pathophysiology of Nonalcoholic Fatty Liver Disease (NAFLD) in Women with Polycystic Ovary Syndrome (PCOS).
Biomedicines 2022, 10, 131. [CrossRef]

249. Falzarano, C.; Lofton, T.; Osei-Ntansah, A.; Oliver, T.; Southward, T.; Stewart, S.; Andrisse, S. Nonalcoholic Fatty Liver Disease in
Women and Girls with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 258–272. [CrossRef]

250. Sarkar, M.; Terrault, N.; Chan, W.; Cedars, M.I.; Huddleston, H.G.; Duwaerts, C.C.; Balitzer, D.; Gill, R.M. Polycystic Ovary
Syndrome (PCOS) Is Associated with NASH Severity and Advanced Fibrosis. Liver Int. Off. J. Int. Assoc. Study Liver 2020,
40, 355–359. [CrossRef]

251. Cui, P.; Hu, W.; Ma, T.; Hu, M.; Tong, X.; Zhang, F.; Shi, J.; Xu, X.; Li, X.; Shao, L.R.; et al. Long-Term Androgen Excess Induces
Insulin Resistance and Non-Alcoholic Fatty Liver Disease in PCOS-like Rats. J. Steroid Biochem. Mol. Biol. 2021, 208, 105829.
[CrossRef] [PubMed]

252. Condorelli, R.A.; Calogero, A.E.; Di Mauro, M.; Mongioi’, L.M.; Cannarella, R.; Rosta, G.; La Vignera, S. Androgen Excess and
Metabolic Disorders in Women with PCOS: Beyond the Body Mass Index. J. Endocrinol. Investig. 2018, 41, 383–388. [CrossRef]

253. Roy, S.; Abudu, A.; Salinas, I.; Sinha, N.; Cline-Fedewa, H.; Yaw, A.M.; Qi, W.; Lydic, T.A.; Takahashi, D.L.; Hennebold, J.D.; et al.
Androgen-Mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS
Mice. Endocrinology 2022, 163, bqac127. [CrossRef] [PubMed]

254. Palioura, E.; Diamanti-Kandarakis, E. Polycystic Ovary Syndrome (PCOS) and Endocrine Disrupting Chemicals (EDCs). Rev.
Endocr. Metab. Disord. 2015, 16, 365–371. [CrossRef]

255. Hammarstrand, S.; Jakobsson, K.; Andersson, E.; Xu, Y.; Li, Y.; Olovsson, M.; Andersson, E.M. Perfluoroalkyl Substances (PFAS)
in Drinking Water and Risk for Polycystic Ovarian Syndrome, Uterine Leiomyoma, and Endometriosis: A Swedish Cohort Study.
Environ. Int. 2021, 157, 106819. [CrossRef] [PubMed]

256. Al-Saleh, I. The Relationship between Urinary Phthalate Metabolites and Polycystic Ovary Syndrome in Women Undergoing in
Vitro Fertilization: Nested Case-Control Study. Chemosphere 2022, 286, 131495. [CrossRef]

257. Kim, K.; Pollack, A.Z.; Nobles, C.J.; Sjaarda, L.A.; Zolton, J.R.; Radoc, J.G.; Schisterman, E.F.; Mumford, S.L. Associations between
Blood Cadmium and Endocrine Features Related to PCOS-Phenotypes in Healthy Women of Reproductive Age: A Prospective
Cohort Study. Environ. Health Glob. Access Sci. Source 2021, 20, 64. [CrossRef]

258. Zhang, C.; Xu, L.; Zhao, Y.; Wang, Y. Changes in Serum Heavy Metals in Polycystic Ovary Syndrome and Their Association
with Endocrine, Lipid-Metabolism, Inflammatory Characteristics and Pregnancy Outcomes. Reprod. Toxicol. 2022, 111, 20–26.
[CrossRef]

259. Lin, S.-Y.; Yang, Y.-C.; Chang, C.Y.-Y.; Lin, C.-C.; Hsu, W.-H.; Ju, S.-W.; Hsu, C.-Y.; Kao, C.-H. Risk of Polycystic Ovary Syndrome
in Women Exposed to Fine Air Pollutants and Acidic Gases: A Nationwide Cohort Analysis. Int. J. Environ. Res. Public. Health
2019, 16, 4816. [CrossRef]

260. Abudawood, M.; Tabassum, H.; Alanazi, A.H.; Almusallam, F.; Aljaser, F.; Ali, M.N.; Alenzi, N.D.; Alanazi, S.T.; Alghamdi, M.A.;
Altoum, G.H.; et al. Antioxidant Status in Relation to Heavy Metals Induced Oxidative Stress in Patients with Polycystic Ovarian
Syndrome (PCOS). Sci. Rep. 2021, 11, 22935. [CrossRef]

261. Zhang, B.; Zhou, W.; Shi, Y.; Zhang, J.; Cui, L.; Chen, Z.-J. Lifestyle and Environmental Contributions to Ovulatory Dysfunction in
Women of Polycystic Ovary Syndrome. BMC Endocr. Disord. 2020, 20, 19. [CrossRef] [PubMed]

262. Treviño, L.S.; Katz, T.A. Endocrine Disruptors and Developmental Origins of Nonalcoholic Fatty Liver Disease. Endocrinology
2018, 159, 20–31. [CrossRef] [PubMed]

263. Lynch, C.; Chan, C.S.; Drake, A.J. Early Life Programming and the Risk of Non-Alcoholic Fatty Liver Disease. J. Dev. Orig. Health
Dis. 2017, 8, 263–272. [CrossRef] [PubMed]

264. Long, Z.; Fan, J.; Wu, G.; Liu, X.; Wu, H.; Liu, J.; Chen, Y.; Su, S.; Cheng, X.; Xu, Z.; et al. Gestational Bisphenol A Exposure
Induces Fatty Liver Development in Male Offspring Mice through the Inhibition of HNF1b and Upregulation of PPARγ. Cell Biol.
Toxicol. 2021, 37, 65–84. [CrossRef]

265. Lin, R.; Wu, D.; Wu, F.-J.; Meng, Y.; Zhang, J.-H.; Wang, X.-G.; Jia, L.-H. Non-Alcoholic Fatty Liver Disease Induced by Perinatal
Exposure to Bisphenol a Is Associated With Activated MTOR and TLR4/NF-KB Signaling Pathways in Offspring Rats. Front.
Endocrinol. 2019, 10, 620. [CrossRef]

https://doi.org/10.3390/ijms23158250
https://www.ncbi.nlm.nih.gov/pubmed/35897816
https://doi.org/10.1002/oby.22698
https://www.ncbi.nlm.nih.gov/pubmed/31970907
https://doi.org/10.1038/nrendo.2013.203
https://www.ncbi.nlm.nih.gov/pubmed/24146033
https://doi.org/10.1056/NEJMcp1514916
https://doi.org/10.1016/S2213-8587(22)00163-2
https://doi.org/10.3390/biomedicines10010131
https://doi.org/10.1210/clinem/dgab658
https://doi.org/10.1111/liv.14279
https://doi.org/10.1016/j.jsbmb.2021.105829
https://www.ncbi.nlm.nih.gov/pubmed/33513383
https://doi.org/10.1007/s40618-017-0762-3
https://doi.org/10.1210/endocr/bqac127
https://www.ncbi.nlm.nih.gov/pubmed/35933634
https://doi.org/10.1007/s11154-016-9326-7
https://doi.org/10.1016/j.envint.2021.106819
https://www.ncbi.nlm.nih.gov/pubmed/34391986
https://doi.org/10.1016/j.chemosphere.2021.131495
https://doi.org/10.1186/s12940-021-00749-4
https://doi.org/10.1016/j.reprotox.2022.05.002
https://doi.org/10.3390/ijerph16234816
https://doi.org/10.1038/s41598-021-02120-6
https://doi.org/10.1186/s12902-020-0497-6
https://www.ncbi.nlm.nih.gov/pubmed/32000752
https://doi.org/10.1210/en.2017-00887
https://www.ncbi.nlm.nih.gov/pubmed/29126168
https://doi.org/10.1017/S2040174416000805
https://www.ncbi.nlm.nih.gov/pubmed/28112071
https://doi.org/10.1007/s10565-020-09535-3
https://doi.org/10.3389/fendo.2019.00620


Nutrients 2023, 15, 2335 29 of 30

266. Shimpi, P.C.; More, V.R.; Paranjpe, M.; Donepudi, A.C.; Goodrich, J.M.; Dolinoy, D.C.; Rubin, B.; Slitt, A.L. Hepatic Lipid
Accumulation and Nrf2 Expression Following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of
Nonalcoholic Liver Disease. Environ. Health Perspect. 2017, 125, 087005. [CrossRef] [PubMed]

267. Dabeer, S.; Raisuddin, S. Perinatal Exposure to Environmental Endocrine Disruptor Bisphenol A Aggravates the Onset of
Non-Alcoholic Fatty Liver Disease (NAFLD) in Weanling F1 Offspring of Obese Rats. Environ. Sci. Pollut. Res. 2023, 30, 3146–3165.
[CrossRef]

268. Wei, J.; Sun, X.; Chen, Y.; Li, Y.; Song, L.; Zhou, Z.; Xu, B.; Lin, Y.; Xu, S. Perinatal Exposure to Bisphenol A Exacerbates
Nonalcoholic Steatohepatitis-like Phenotype in Male Rat Offspring Fed on a High-Fat Diet. J. Endocrinol. 2014, 222, 313–325.
[CrossRef]

269. Strakovsky, R.S.; Wang, H.; Engeseth, N.J.; Flaws, J.A.; Helferich, W.G.; Pan, Y.-X.; Lezmi, S. Developmental Bisphenol A (BPA)
Exposure Leads to Sex-Specific Modification of Hepatic Gene Expression and Epigenome at Birth That May Exacerbate High-Fat
Diet-Induced Hepatic Steatosis. Toxicol. Appl. Pharmacol. 2015, 284, 101–112. [CrossRef]

270. Marchlewicz, E.; McCabe, C.; Djuric, Z.; Hoenerhoff, M.; Barks, J.; Tang, L.; Song, P.X.; Peterson, K.; Padmanabhan, V.; Dolinoy,
D.C. Gestational Exposure to High Fat Diets and Bisphenol A Alters Metabolic Outcomes in Dams and Offspring, but Produces
Hepatic Steatosis Only in Dams. Chemosphere 2022, 286, 131645. [CrossRef]

271. Wang, D.; Yan, S.; Yan, J.; Teng, M.; Meng, Z.; Li, R.; Zhou, Z.; Zhu, W. Effects of Triphenyl Phosphate Exposure during Fetal
Development on Obesity and Metabolic Dysfunctions in Adult Mice: Impaired Lipid Metabolism and Intestinal Dysbiosis.
Environ. Pollut. 2019, 246, 630–638. [CrossRef] [PubMed]

272. Ditzel, E.J.; Nguyen, T.; Parker, P.; Camenisch, T.D. Effects of Arsenite Exposure during Fetal Development on Energy Metabolism
and Susceptibility to Diet-Induced Fatty Liver Disease in Male Mice. Environ. Health Perspect. 2016, 124, 201–209. [CrossRef]
[PubMed]

273. Stratakis, N.; Conti, D.V.; Jin, R.; Margetaki, K.; Valvi, D.; Siskos, A.P.; Maitre, L.; Garcia, E.; Varo, N.; Zhao, Y.; et al. Prenatal
Exposure to Perfluoroalkyl Substances Associated with Increased Susceptibility to Liver Injury in Children. Hepatology 2020,
72, 1758–1770. [CrossRef] [PubMed]

274. Stratakis, N.; Golden-Mason, L.; Margetaki, K.; Zhao, Y.; Valvi, D.; Garcia, E.; Maitre, L.; Andrusaityte, S.; Basagana, X.; Borràs, E.;
et al. In Utero Exposure to Mercury Is Associated with Increased Susceptibility to Liver Injury and Inflammation in Childhood.
Hepatology 2021, 74, 1546–1559. [CrossRef]

275. Garcia, E.; Stratakis, N.; Valvi, D.; Maitre, L.; Varo, N.; Aasvang, G.M.; Andrusaityte, S.; Basagana, X.; Casas, M.; de Castro, M.;
et al. Prenatal and Childhood Exposure to Air Pollution and Traffic and the Risk of Liver Injury in European Children. Environ.
Epidemiol. 2021, 5, e153. [CrossRef]

276. Lo, E.K.K.; Felicianna; Xu, J.-H.; Zhan, Q.; Zeng, Z.; El-Nezami, H. The Emerging Role of Branched-Chain Amino Acids in Liver
Diseases. Biomedicines 2022, 10, 1444. [CrossRef]

277. Grenier-Larouche, T.; Coulter Kwee, L.; Deleye, Y.; Leon-Mimila, P.; Walejko, J.M.; McGarrah, R.W.; Marceau, S.; Trahan, S.;
Racine, C.; Carpentier, A.C.; et al. Altered Branched-Chain α-Keto Acid Metabolism Is a Feature of NAFLD in Individuals with
Severe Obesity. JCI Insight 2022, 7, e159204. [CrossRef]

278. van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; de Borst, M.H.; Wolak-Dinsmore, J.; Connelly, M.A.; Bakker, S.J.L.;
Dullaart, R.P.F. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain
Amino Acids. Nutrients 2019, 11, 705. [CrossRef]

279. Lischka, J.; Schanzer, A.; Hojreh, A.; Ba Ssalamah, A.; Item, C.B.; de Gier, C.; Walleczek, N.-K.; Metz, T.F.; Jakober, I.; Greber-Platzer,
S.; et al. A Branched-Chain Amino Acid-Based Metabolic Score Can Predict Liver Fat in Children and Adolescents with Severe
Obesity. Pediatr. Obes. 2021, 16, e12739. [CrossRef]

280. Yan, S.; Tian, S.; Meng, Z.; Teng, M.; Sun, W.; Jia, M.; Zhou, Z.; Bi, S.; Zhu, W. Exposure to Nitenpyram during Pregnancy Causes
Colonic Mucosal Damage and Non-Alcoholic Steatohepatitis in Mouse Offspring: The Role of Gut Microbiota. Environ. Pollut.
2021, 271, 116306. [CrossRef]

281. Wang, X.; Zhao, Z.; Wang, X.; Hu, W.; Chu, X.; Qian, M.; Wang, R.; Yu, S.; Wu, Q.; Tang, J.; et al. Effects of Polystyrene Nanoplastic
Gestational Exposure on Mice. Chemosphere 2023, 324, 138255. [CrossRef]

282. Sun, J.; Liu, H.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Yang, G.; Wang, N. Predisposed Obesity and Long-Term Metabolic Diseases
from Maternal Exposure to Fine Particulate Matter (PM2.5)—A Review of Its Effect and Potential Mechanisms. Life Sci. 2022,
310, 121054. [CrossRef]

283. Wu, G.; Brown, J.; Zamora, M.L.; Miller, A.; Satterfield, M.C.; Meininger, C.J.; Steinhauser, C.B.; Johnson, G.A.; Burghardt, R.C.;
Bazer, F.W.; et al. Adverse Organogenesis and Predisposed Long-Term Metabolic Syndrome from Prenatal Exposure to Fine
Particulate Matter. Proc. Natl. Acad. Sci. USA 2019, 116, 11590–11595. [CrossRef] [PubMed]

284. Song, Y.; Chen, L.; Bennett, E.; Wheeler, A.J.; Southam, K.; Yen, S.; Johnston, F.; Zosky, G.R. Can Maternal Exposure to Air
Pollution Affect Post-Natal Liver Development? Toxics 2023, 11, 61. [CrossRef] [PubMed]

285. Pejhan, A.; Agah, J.; Adli, A.; Mehrabadi, S.; Raoufinia, R.; Mokamel, A.; Abroudi, M.; Ghalenovi, M.; Sadeghi, Z.; Bolghanabadi,
Z.; et al. Exposure to Air Pollution during Pregnancy and Newborn Liver Function. Chemosphere 2019, 226, 447–453. [CrossRef]
[PubMed]

https://doi.org/10.1289/EHP664
https://www.ncbi.nlm.nih.gov/pubmed/28796629
https://doi.org/10.1007/s11356-022-22246-y
https://doi.org/10.1530/JOE-14-0356
https://doi.org/10.1016/j.taap.2015.02.021
https://doi.org/10.1016/j.chemosphere.2021.131645
https://doi.org/10.1016/j.envpol.2018.12.053
https://www.ncbi.nlm.nih.gov/pubmed/30605818
https://doi.org/10.1289/ehp.1409501
https://www.ncbi.nlm.nih.gov/pubmed/26151952
https://doi.org/10.1002/hep.31483
https://www.ncbi.nlm.nih.gov/pubmed/32738061
https://doi.org/10.1002/hep.31809
https://doi.org/10.1097/EE9.0000000000000153
https://doi.org/10.3390/biomedicines10061444
https://doi.org/10.1172/jci.insight.159204
https://doi.org/10.3390/nu11030705
https://doi.org/10.1111/ijpo.12739
https://doi.org/10.1016/j.envpol.2020.116306
https://doi.org/10.1016/j.chemosphere.2023.138255
https://doi.org/10.1016/j.lfs.2022.121054
https://doi.org/10.1073/pnas.1902925116
https://www.ncbi.nlm.nih.gov/pubmed/31138695
https://doi.org/10.3390/toxics11010061
https://www.ncbi.nlm.nih.gov/pubmed/36668787
https://doi.org/10.1016/j.chemosphere.2019.03.185
https://www.ncbi.nlm.nih.gov/pubmed/30951939


Nutrients 2023, 15, 2335 30 of 30

286. Wang, X.; Yang, Y.; Zhu, P.; Wu, Y.; Jin, Y.; Yu, S.; Wei, H.; Qian, M.; Cao, W.; Xu, S.; et al. Prenatal Exposure to Diesel Exhaust
PM2.5 Programmed Non-Alcoholic Fatty Liver Disease Differently in Adult Male Offspring of Mice Fed Normal Chow and a
High-Fat Diet. Environ. Pollut. 2019, 255, 113366. [CrossRef] [PubMed]

287. Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a
Decade. Hepatology 2021, 73, 833–842. [CrossRef]

288. Chen, H.; Van Reyk, D.; Oliveira, A.; Chan, Y.L.; Town, S.E.; Rayner, B.; Pollock, C.A.; Saad, S.; George, J.; Padula, M.P.; et al.
Sex-Dependent Responses to Maternal Exposure to PM2.5 in the Offspring. Antioxidants 2022, 11, 2255. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envpol.2019.113366
https://www.ncbi.nlm.nih.gov/pubmed/31668954
https://doi.org/10.1002/hep.31518
https://doi.org/10.3390/antiox11112255

	Introduction 
	Nutrition, Sex Differences, and NAFLD 
	Nutrition, Environmental Pollutants, and NAFLD 
	Persistent Endocrine Disrupting Chemicals 
	Heavy Metals 
	Microplastics and Nanoplastics 
	Air Particulate Matter 

	Climate Change, Food Insecurity, and NAFLD 
	Dietary Intake of Environmental Pollutants, Female Subfertility, and NAFLD 
	Maternal Exposure to Pollutants and Developmental Origins of NAFLD 
	Discussion 
	References

