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Abstract: Changes in the composition and ratio of the flora during colitis have been found to
potentially affect ovarian function through nutrient absorption. However, the mechanisms have
not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora
affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water.
High-throughput sequencing technology was used to clarify the composition and proportion of
bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number,
and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce
severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the
crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-
related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ were significantly decreased, as well as the
levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol,
progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly.
The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora
had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced
ovarian function.

Keywords: colitis; intestinal flora; ovary; steroid hormone; vitamin A

1. Introduction

Colitis is a common disease among animals and is related to the feeding process.
Animal enteritis can be caused by eating rotten or moldy feed, drinking unclean water,
living in poor sanitary conditions, and contracting bacterial infections. Colitis can cause
clinical symptoms such as weight loss, diarrhea, and blood in stool and can lead to the
decrease of milk production, a lower feed conversion rate, and slow growth [1,2]. The
occurrence of colitis is often associated with dysbiosis of the intestinal flora and disruption
of the balance between commensal and potentially pathogenic microorganisms in the
host, resulting in reduced intestinal flora diversity [3]. Currently, dextran sodium sulfate
(DSS) is widely used in constructing animal ulcerative colitis models. DSS damages
intestinal epithelial cells, causing dysbiosis; the consequent activation of immune cells
leads to intestinal inflammation. Animals that drank water with DSS showed weight loss,
hemorrhagic diarrhea, and typical bacterial infectious inflammation [4–6].

The intestinal flora is essential for maintaining mammalian health [7,8]. Changes in the
intestinal flora lead to changes in the metabolites of microbes, which are important for the
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health of the host. The intestinal flora can produce short-chain fatty acids (SCFAs) through
complex metabolism; SCFAs have anti-inflammatory effects and maintain the health of the
intestine [9]. In female animals, chronic inflammation induced by dysregulated intestinal
flora ecology induces hyperactivation of primordial follicles in the ovary [10]. With the
development of gonad–gut axis-related research, metabolic communication across the
gonads and intestinal flora is considered to be physiologically important [11]. In male
animals, DSS induced colitis and caused dysbiosis of the intestinal flora and an increase
in harmful bacteria. Lipopolysaccharides (LPS) produced by harmful bacteria enter the
testis due to circulation and cause inflammation of the testis and epididymis [12,13]. At
the same time, intestinal flora dysbiosis also causes disruption of vitamin A absorption,
which affects spermatogenesis and reduces sperm quality [14,15]. A study also showed
that intestinal flora disorders are associated with the disruption of vitamin A absorption,
which affects spermatogenesis and reduces sperm quality [14,15]. Increasingly, it has been
shown that animals with ulcerative colitis have low nutritional utilization and suffer from
malnutrition, especially impaired absorption of vitamin A [16,17] and disruption of bile
acid homeostasis [18,19], which ultimately leads to reduced fertility in animals [20].

At present, there is no sufficient evidence to confirm the effect of DSS-induced co-
litis on small intestinal absorption function. It is undeniable that the digestion and ab-
sorption of vitamin A mainly occurs in the small intestine. However, the colon can also
absorb vitamin A [21]. The main form of vitamin A in the body is retinoic acid, and the
formation of retinoic acid requires the catalysis of multiple enzymes. First, intracellular
retinol (a vitamin A derivative) binds to cellular retinol binding protein 1 (CRBP1) and
forms retinaldehyde in the presence of retinol dehydrogenase (RDH10), and retinal forms
retinoic acid under the action of aldehyde dehydrogenase (ALDH1A1). Retinoic acid binds
to CRABP1 and acts on the retinoic acid receptor (RARβ), which is then degraded by
CYP26A1 [22,23]. Vitamin A promotes the differentiation of spermatogonia [24] and has
regulatory effects on follicle development, ovarian steroidogenesis, oocyte maturation, and
luteal formation [25]. The main site of vitamin A absorption is in the small intestine, but
colonic microorganisms can use crude fiber to produce β-carotene (a vitamin A supplement)
that is absorbed by the colon [21]. Several studies have confirmed that vitamin A deficiency
hinders follicle development and reduces oocyte quality and ovarian steroid hormone
secretion [24]. The ovary is one of the reproductive organs of mammals and an important
site for follicle development and steroid hormone production. After sexual maturation,
cyclic follicle recruitment and development are regulated by gonadotropins and steroid
hormones secreted by the ovaries themselves [26]. Two steroid hormones, namely estrogen
and progesterone, are influenced by vitamins [27–29]. However, it is not clear whether
the disturbance of the intestinal flora in the colon and the development of ulcerative
colitis can cause disturbances in vitamin A absorption and metabolism and thus affect
ovarian function.

To investigate the effect of colitis on ovarian function, DSS was used to construct a
mouse colitis model and clarify the changes in the mouse intestinal flora under DSS induc-
tion by 16S rRNA high-throughput sequencing. Subsequently, the potential relationship
between vitamin A metabolism-related genes and specific flora was explored by combined
transcriptome sequencing analysis. Finally, ovarian reserve, oocyte quality, estradiol (E2),
progesterone, and anti-Mullerian hormone (AMH) levels were examined. This provides
a new perspective for exploring the effects and mechanisms of intestinal flora dysbiosis
caused by ulcerative colitis on the reproductive capacity of female animals, especially
ovarian function.
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2. Materials and Methods
2.1. Animals

Seven-week-old female BALB/c mice (Liaoning Changsheng Biotechnology Co., Ltd.,
Benxi, Liaoning, China) were housed at the Experimental Animal Center of Jilin University
(Jilin University, Changchun, China). The ambient temperature was controlled at 22 ± 2 ◦C,
the humidity was maintained at 60 ± 5%, and the light/dark cycle was 12 h. One week of
pre-feeding was performed before the formal experiments. Mice had unlimited access to
standard food and drinking water.

2.2. Colitis Model Construction

A mouse colitis model was constructed according to a previously described method [30].
Mice were randomly divided into the NC group and DSS group (30 mice in each group;
5 mice in each cage). Mice in the NC group were given normal drinking water, and mice
in the DSS group were given 2.5% DSS (MP Biochemicals, Solon, OH, USA) in drinking
water for 7 days. The body weight, fecal condition, and anal bleeding of the mice were
recorded daily. Mice were euthanized on day 8 after continuous feeding with water with or
without DSS. The colon and contents were then collected, placed in liquid nitrogen, and
snap frozen; finally, all samples were stored at −80 ◦C until further analysis.

2.3. DAI Score Assessment

Throughout the experimental period, the body weight of the mice was recorded
every morning, and the feces were collected to observe viscosity and bleeding. Fecal
bleeding was detected using the Fecal Occult Blood Kit (Zhuhai Beso Biotechnology Co.,
Ltd., Zhuhai, Guangdong, China). The disease activity index (DAI) score was assessed
based on previously described methods [31]. The weight loss, fecal condition, and fecal
bleeding were calculated. Details are shown in Supplementary Table S1.

2.4. Histological Analysis

The collected colonic tissues were rinsed with PBS, aspirated of excess fluid, and
then immediately fixed in 4% paraformaldehyde for 24 h, followed by dehydration and
paraffin embedding. Sections (4 µm thick) were stained with hematoxylin and eosin (H&E).
Histological scoring was performed according to previous criteria [32].

2.5. Vitamin A, E2, Progesterone (P), and AMH Level Measurement

Colonic and ovarian samples were obtained according to a previously described
method [33]. In brief, colon and ovarian tissues were homogenized in precooled PBS. The
homogenates were centrifuged at 5000× g for 5 min, and the supernatants were removed.
Vitamin A levels in colon and ovarian tissues were measured using a commercially available
mouse vitamin A ELISA kit (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai,
China), and the vitamin A levels in colon and ovarian tissues were normalized to the tissue
weight. The levels of E2, P, and AMH in serum were measured by related commercial
mouse ELISA kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China).

2.6. 16S rRNA and Colonic Transcriptome Sequencin

In brief, the fecal samples were sent to Biomarker Technologies Co., Ltd. (Beijing,
China) for 16S rRNA sequencing analysis. For colonic transcriptome sequencing, mice were
anesthetized and executed by cervical dislocation, and colon tissues were dissected and
collected from five mice in each group. Samples were sent to Biomarker Technologies Co.,
Ltd. (Beijing, China) for analysis. The detailed methods are shown in the Supplementary
Materials and Methods.



Nutrients 2023, 15, 2425 4 of 19

2.7. Real-Time Quantitative PCR (qPCR)

Total RNA was extracted from colon tissue using TRIzol reagent (Life Technologies,
Carlsbad, CA, USA). The extracted RNA was reverse transcribed into cDNA using the Mon-
ScriptTMRT III all-in-one Mix kit (Monad Biotech, Suzhou, China), and the MonAmpTM
ChemoHS qPCR Mix (Monad Biotech, China) reagent was used for quantitative real-time
fluorescent quantitative PCR amplification. The reaction conditions were 95 ◦C for 10 min,
followed by 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C for 30 s, for a total of 40 cycles. The
results were evaluated according to the exponential growth of the fluorescence signal, the
quantitative cycle (Cq) value, and the dissolution curve. β-actin was used as a control gene
using the 2−∆∆Ct method. The primer sequences are shown in Supplementary Table S2.

2.8. Protein Separation and Western Blot Analysis

Colon and ovarian tissues were milled by adding RIPA buffer (Beijing Solarbio Science
& Technology Co., Ltd., Beijing, China) containing 1% PMSF (Solarbio, Beijing, China). Af-
terward, the samples were lysed on ice for 30 min. After lysis, the mixture was centrifuged
at 16,000× g for 10 min to collect the protein-containing supernatant. Briefly, western blot
experiments were performed as described previously [34]. The antibodies used in the study
are shown in Supplementary Table S3. The detailed steps of western blot are shown in the
Supplementary Materials and Methods.

2.9. Oocyte Collection and In Vitro Maturation

On the 8th day after DSS treatment, germinal vesicle (GV)-stage oocytes were collected
from the bilateral ovaries of the mice under a stereomicroscope. The collected oocytes were
placed in drops consisting of 30 µL of M16 medium covered with mineral oil and were
incubated at 37 ◦C and 5% CO2 in an incubator for 12 h for maturation.

2.10. Reactive Oxygen Species (ROS) and Mitochondrial Membrane Potential (MMP, ∆Ψm) Assays

To measure the level of ROS in oocytes, GV-stage oocytes were incubated in M16
containing 10 µM DCFHDA (Invitrogen, Rochester, NY, USA) for 30 min at 37 ◦C in an incu-
bator with 5% CO2. Oocytes were then washed three times in PBS-PVA and photographed
using a fluorescence microscope (Nikon, Tokyo, Japan). To detect the MMP level, MII-
stage oocytes were placed into 2 µM 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl
carbocyanine iodide dye (Beyotime, Shanghai, China) containing PBS-PVA for 30 min at
37 ◦C in an incubator with 5% CO2. After washing with PBS-PVA three times, red/green
fluorescence signals were captured using fluorescence microscopy. Images were analyzed
for fluorescence intensity using ImageJ software.

2.11. Determination of ATP Levels

ATP levels were detected using an Enhanced ATP Assay Kit (Beyotime, China) ac-
cording to the product instructions. Standard reaction solutions were prepared prior to
measurement according to the manufacturer’s instructions. Briefly, 80 µL of lysate contain-
ing 50 oocytes was added to each well of a 96-well plate, followed by ultrasonic disruption,
and the supernatant was taken as the sample to be tested. Then, the prepared ATP detection
working solution was added. The optical detection value of the sample in the well was
assayed using a microplate reader (Tecan, Mannedorf, Switzerland) with a standard curve
for analysis.

2.12. In Vitro Fertilization (IVF)

The epididymal tail and vas deferens were removed from 10-week-old male mice,
quickly placed in 200 µL of TYH medium (Nanjing Aibei Biotechnology Co., Ltd., Nanjing,
China), and scratched to allow the sperm to flow out. The spermatozoa were incubated for
1 h at 37 ◦C in 5% CO2. The previously collected MII-stage oocytes were placed in human
tubal fluid (Nanjing Aibei Biotechnology Co., Ltd., China), and 5 µL of sperm from the
sperm capacitation fluid was added to the fertilization dish using a pipette. After 6 h of
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fertilization, zygotes were transferred from the fertilization droplet into the KSOM droplet.
After 24 h of fertilization, the number of 2-cell-stage cells was observed and recorded; then,
they were transferred into a new 50-µL KSOM culture medium droplet, and the medium
was not changed for the next 48 h.

2.13. Follicle Count

The ovaries of the mice were sectioned and stained as described above. Follicle counts
were performed on both ovaries according to a previous method [25]. All ovaries were
fixed in 4% buffered paraformaldehyde, embedded in a paraffin block, and then cut into
4-µm sections serially. To avoid duplicate counting of follicles in the same field of view,
a slice was selected every 25 µm for follicle counting. Each ovary required 10 sections
to count the sum of follicles at all levels: (1) primordial follicle: surrounded by a single
layer of flat granular cells; (2) primary follicle: surrounded by a single layer of cubic
granular cells; (3) secondary follicle: more than two layers of cubic granular cells wrapped;
(4) antral follicle: multilayer cubic granulosa cells are wrapped with an antrum; (5) atretic
follicles: the nucleus of the oocytes shrinks, chromosomes and cytosols are dissolved, and
the granule cell layer is reduced.

2.14. Statistical Analysis

All data are shown as the mean ± standard deviation (SD). A t test was used to
compare the data from the two groups. One-way analysis of variance (ANOVA) was
used to analyze differences between three or more groups. * p < 0.05 and ** p < 0.01 were
considered statistically significant. All statistical analyses were performed using SPSS
software (version 21.0, IBM, Chicago, IL, USA). The number of samples used (n) in different
experiments are shown in the figure legends.

3. Results
3.1. DSS-Induced Colitis in Mice

As shown in Figure 1A, the body weight of mice in the DSS group was significantly
lower compared to that of the NC group on day 6 (NC group, 21.58 ± 1.01 g, n = 15; DSS
group, 20.15 ± 1.66 g, n = 15, p < 0.01) and day 7 (NC group, 21.71 ± 1.12 g, n = 15; DSS
group, 19.48± 1.66 g, n = 15, p < 0.01) (Figure 1A). On day 7, the DAI index of the DSS group
was significantly higher than that of the NC group (NC group, 0.07 ± 0.26, n = 15; DSS
group, 7.87 ± 0.99, n = 15, p < 0.01, Figure 1B). After the DSS treatment, colonic tissues were
separated, and the length was measured. The colonic length of mice in the DSS group was
significantly shorter (NC group, 9.18 ± 0.58 cm, n = 15; DSS group, 5.42 ± 0.49 cm, n = 15,
p < 0.01, Figure 1C). HE staining of colon tissue showed that DSS group mice had increased
inflammatory cell infiltration, severe crypt damage, and goblet cell loss (Figure 1D). The
pathology score of the DSS group was significantly higher than that of the control group
(NC group, 0.06 ± 0.13 cm, n = 5; DSS group, 2.74 ± 0.48 cm, n = 5, p < 0.01, Figure 1E). In
addition, the mRNA levels of the inflammatory cytokines Il-1α, Il-1β, Il-6, and Tnf-α were
significantly higher in the DSS group (p < 0.01, Figure 1F). The mRNA levels of Zo-1 were
found to be significantly lower in the DSS group by measuring the mRNA levels of Zo-1
in colonic tissues (p < 0.05, Figure 1F). The above results indicated that the mouse colitis
model was successfully constructed after 7 days of consuming 2.5% DSS drinking water.
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Figure 1. 2.5% DSS induced acute colitis in mice. (A) DSS treatment reduced the body weight of mice
(n = 15 for each group). (B) DAI score changes in mice between the NC and DSS groups (n = 15 for
each group). (C) Representative image of the colon in mice with or without DSS treatment at day 7
(n = 15 for each group). DSS treatment significantly reduced the length of the colon (n = 15 for each
group). (D) HE staining of colon tissue sections. The circles are located at crypts, arrows point to
goblet cells, and triangles are located at inflammatory cells. Bar = 500 µm. (E) Histology score of mice
in the NC and DSS groups. (F) The mRNA levels of inflammatory factors and tight junction proteins
in colonic tissues. * p < 0.05; ** p < 0.01.

3.2. DSS Treatment Causes Dysbiosis of the Intestinal Flora

A Venn diagram was used to identify common and characteristic taxa in different
groups, and the results showed that the NC and DSS groups shared 573 OTUs; the number
of OTUs specific to the NC and DSS groups was 514 and 328, respectively (Figure 2A).
Compared with those of the NC group, the ACE (p < 0.01), Shannon (p < 0.05), and
Simpson (p < 0.01) indices of the DSS group were significantly decreased (Figure 2B–D).
PCoA showed that the flora composition of the NC group was different from that of the
DSS group (Figure 2E). Hierarchical cluster analysis showed that the microbial commu-
nity structure and composition in the NC group and the DSS group were significantly
different at the genus level. unclassified_Muribaculaceae, Lachnospiraceae_NK4A136_group,
Bacteroides, unclassified_Lachnospiraceae, Alistipes, Helicobacter, Odoribacter, Ligilactobacillus,
uncultured_Bacteroidalcs_bactcrium, and Alloprevotella were the 10 most dominantly abundant
bacteria in the NC and DSS groups (Figure 2F). DSS treatment altered the abundance of the
intestinal flora at the phylum, family, genus, and species levels (Supplementary Figure S1).
Moreover, the influence of the flora at different taxonomic levels with significant differences
in abundance and composition was evaluated according to LEfSe analysis. At the genus
level, unclassified_Muribaculaceae, uncultured_Bacteroidales_bacterium, Alloprevotella, Prevotel-
laceae_UCG_001, Alistipes, Lactobacillus, Bacteroides, Helicobacter, and Erysipelatoclostridium
had the greatest changes in abundance and composition, which had great impacts on the
entire colonic microbiota community. The influential flora with significant changes in
abundance and composition at other taxonomic levels are shown in Figure 2G.
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Figure 2. Effects of DSS treatment on the intestinal microbial diversity and composition in mice.
(A) Venn diagram showing the OTU distribution between the groups. (B) ACE index changes in mice
between the NC and DSS groups. (C) Simpson’s index changes in mice between the NC and DSS
groups. (D) Shannon index changes in mice between the NC and DSS groups. (E) PCoA plot of the
intestinal flora from mice in the NC and DSS group. (F) Relative abundances of the top 10 bacterial
genera between the NC and DSS groups. Each color represents a genus, and the length of the patch
represents the relative abundance ratio of all the bacterial communities in each sample. The other
genera are merged into an “others” category. (G) Evolutionary branching plot of LEfSe analysis. Flora
names are indicated with the order number letter (“a” to “a0”), abbreviation of taxonomy (p: Phylum;
c: Class; o: Order; f: Family; g: Genus; and s: Species), and detailed name. * p < 0.05; ** p < 0.01.
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3.3. DSS Treatment Changes the Gene Expression in the Colon

There were 903 differentially expressed genes in the colon of DSS-induced colitis
mice compared with normal mice. A total of 643 genes were significantly upregulated,
while 260 genes were significantly downregulated (Figure 3A and Supplementary Table S4).
There were differentially expressed gene hotspots in the NC group and the DSS group
(Figure 3B). The differentially expressed genes were subjected to GO functional annotation
analysis (Figure 3C). GO-enriched biological processes included immune response, inflam-
matory response, and cell surface receptor signaling pathway, in addition to retinoic acid
biosynthesis. Next, KEGG pathway enrichment analysis showed that these DEGs were
involved in 20 pathways, including the NF-kappa B signaling pathway, TNF signaling
pathway, and inflammatory bowel disease. Specifically, bile secretion, primary bile acid
biosynthesis, vitamin digestion and absorption, and retinol metabolism were also involved
(Figure 3D).
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3.4. Combined Analysis of the Gut Microbiota and Transcriptome

Based on the GO enrichment and KEGG enrichment results, we investigated whether
the absorption and metabolism of vitamin A were related to the intestinal flora. Correlation
analysis between differentially expressed genes and flora enriched for metabolism and
the absorption of vitamin A was performed at the genus level using Spearman analysis
(Figure 4). The results showed that genes related to the metabolic absorption of vitamin A
(Rdh10, Adh1a3, Adh1, Cyp26c67, Cyp26c68, Cyp26c40, and Dhrs9) were positively correlated
with unclassified_Muribaculaceae, Alistipes, and uncultured_Bacteridales_bacterium, while they
were negatively correlated with Helicobacter, Bacteroides, and Ligilactobacillus. Dhrs3 was
positively correlated with Helicobacter and Bacteroides, while it was negatively correlated
with unclassified_Muribaculaceae, Alistipes, and uncultured_Bacteridales_bacterium. These
results suggest that ulcerative colitis-induced dysbiosis of the intestinal flora may trigger
metabolism-related genetic alterations in vitamin A in the mouse colon.
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3.5. DSS-Induced Colitis Impairs Ovarian Function in Mice

To investigate the effect of colitis on ovarian function in mice, bilateral ovaries were
collected (Figure 5A), and there were no significant differences in general observations
or weight between normal and DSS-treated mice (NC group, 5.18 ± 1.16 mg, n = 15; DSS
group, 5.12 ± 1.09 mg, n = 15, Figure 5B). The numbers of primordial follicles (NC group,
64.00 ± 9.42; DSS group, 35.75 ± 10.78, p < 0.01), primary follicles (NC group, 25.75 ± 2.87;
DSS group, 15.5 ± 2.08, p < 0.05), secondary follicles (NC group, 19.5 ± 3.70; DSS group,
3.25 ± 0.50, p < 0.05), and antral follicles (NC group,13.25 ± 2.21; DSS group, 24 ± 6.21,
p < 0.05) in the DSS group was significantly reduced compared with those in the NC group
(Figure 5C,D). The number of atretic follicles was significantly increased in the DSS group
(NC group, 13.25 ± 2.22; DSS group, 24 ± 6.21, p < 0.01). Furthermore, the levels of serum
E2 (p < 0.05), P (p < 0.01) and AMH (p < 0.01) were significantly lower in the DSS group than
in the NC group (Figure 5E). These findings suggest that DSS-induced ulcerative colitis
decreases ovarian reserve and impairs ovarian endocrine function.
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Figure 5. Effects of DSS-induced colitis on ovarian function in mice. (A) General ovary morphology
with or without DSS treatment. (B) Ovary weight of mice in NC group and DSS group (n = 15 for
each group). (C) Representative HE sections of ovaries in NC group and DSS group (n = 4 for each
group). Bar = 200 µm. Primordial follicles (Pr), primary follicles (PF), secondary follicles (SF), antral
follicles (AF), and atretic follicles (Af). (D) Follicle counts at all levels: primordial follicles, primary
follicles, secondary follicles, antral follicles, and atretic follicles. (E) The relative levels of E2, P, and
AMH in serum of mice in NC group and DSS group. * p < 0.05; ** p < 0.01.

3.6. Colitis Reduced the Quality of Mouse Oocytes

Compared with the NC group, the number of oocytes in the DSS group was signif-
icantly reduced. (NC group, 14.00 ± 1.00; DSS group, 9.33 ± 1.53, p < 0.01, Figure 6A).
After culture for 12 h in vitro, most oocytes in the DSS-treated mice did not extrude the first
polar body (NC, 63.00 ± 1.91%; DSS, 47.02 ± 3.90%, p < 0.01, Figure 6B). The fluorescence
intensity of DCFHDA in oocytes of the DSS group was significantly higher than that of NC
group. (2.03± 0.30-fold, p < 0.01, Figure 6C). The MMP level of oocytes in DSS-treated mice
was significantly lower than that of normal mice (0.77 ± 0.16-fold, p < 0.01, Figure 6D,E).
The level of ATP was significantly lower in DSS-treated mice (0.42 ± 0.03-fold, p < 0.01,
Figure 6F). In addition, the blastocyst rate of oocytes fertilized in vitro derived from DSS-
treated mice was significantly lower (NC, 55.50 ± 4.05%; DSS, 44.49 ± 3.75%, p < 0.01,
Figure 6G) than that of oocytes from normal mice. These results suggest that colitis impairs
the quality of oocytes and reduces the embryo development capacity.
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Figure 6. Effects of DSS-induced ulcerative colitis on oocyte quality. (A) Representative image of
GV-stage oocytes collected from the ovaries of mice in the NC and DSS groups. Bar = 100 µm.
(B) Representative picture of oocytes developing from the GV to MII stage and the first polar body
extrusion rate of oocytes in the NC group and DSS group. Bar = 100 µm. (C) Representative images
of ROS signals in GV-stage oocytes of the NC and DSS groups. Changes in the relative DCFHDA
fluorescence intensity levels in GV-stage oocytes. (D) Representative JC-1 staining images of MII-stage
oocytes in the NC and DSS groups. (E) Relative fluorescence levels of JC-1 in MII-stage oocytes.
(F) Relative change of ATP levels in MII-stage oocytes. (G) Images of oocytes developing to blastocysts
after IVF. Ratio of oocytes developing to blastocysts after IVF in the NC and DSS groups. * p < 0.05;
** p < 0.01.
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3.7. DSS-Induced Colitis Induces Abnormal Vitamin A Metabolism and Reduces Steroid
Hormone Synthesis

The results of the gut microbial and transcriptomic analyses suggested that DSS-
induced ulcerative colitis triggered impaired absorption of vitamin A. Vitamin A plays
an important role in the regulation of animal reproduction. Therefore, we examined the
level of vitamin A in the serum, colon, and ovary. The results showed that the levels of
vitamin A in the serum, ovary, and colon were significantly lower in the DSS-treated group
than in the NC group (p < 0.05; Figure 7A). The mRNA expression levels of the vitamin
A metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ in the ovaries
of DSS-treated mice were significantly decreased (Figure 7B), indicating that the vitamin
A metabolism process in the ovary might be abnormal. In addition, the protein levels of
the STAR and CYP11A1 in the ovary were significantly decreased to 0.43 ± 0.17-fold and
0.56 ± 0.18-fold compared with levels in the NC group, respectively (Figure 7D,E, p < 0.05).
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(C) Western blot detection of STAR and CYP11A1 proteins in the ovary of mice with or without DSS
treatment. (D) Relative expression levels of STAR protein. (E) Relative expression levels of CYP11A1
protein. * p < 0.05; ** p < 0.01.

4. Discussion

DSS-induced colitis in mice shows symptoms similar to mammalian enteritis and can
be used as a model for animal enteritis studies [35]. In this study, DSS was used to construct
an ulcerative colitis model to explore the effects of colitis on ovarian function in mice. After
7 days of DSS consumption in drinking water, mice in the DSS-treated group showed
weight loss, bloody stools, shortened colon length, and an increased DAI score. HE staining
of the colon showed that inflammatory cell infiltration and loss of goblet cells occurred in
the DSS group. The mRNA levels of the proinflammatory factors Il1α, Il-1β, Il-6, and Tnf-α
were significantly increased in the DSS group, while the intestinal barrier system-related
gene Zo-1 was significantly decreased. The destruction of the intestinal barrier causes the
invasion of pathogens, which induce oxidative stress, thereby enhancing the intestinal
permeability and causing intestinal barrier dysfunction [36]. These results indicate that
the ulcerative colitis model was successfully constructed [20,37]. In addition, we found
abnormalities in the intestinal barrier system and microbial community structure and
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composition after DSS treatment. From the current results, we cannot determine whether
DSS can directly affect the related functions, including vitamin A absorption, without
affecting the microbiota. However, compared with the normal intestinal physiological
status, DSS treatment is an important trigger for the dysbiosis of intestinal microbiota
composition, leading to inflammation and impaired vitamin A absorption.

Dysbiosis of the intestinal flora is an important feature in the development of inflam-
matory bowel disease [38]. DSS treatment significantly reduced the α and β diversity of
intestinal microorganisms, indicating that DSS-induced colitis reduced the diversity and
richness of the intestinal flora and changed the composition of the intestinal flora, which in
turn caused dysbiosis of the intestinal flora. The intestinal flora characteristics of patients
with inflammatory bowel disease are different from those of healthy individuals [39]. LEfSe
analysis was used to compare NC and DSS-treated mice, and internal subgroup compari-
son analysis was conducted to identify species with significant differences in abundance
between the two groups at different taxonomic levels. Erysipelatoclostridium was found to
be positively correlated with the DAI scores, pathological score, TNF-α, and IL-1β [40].
Bacteroides have been shown to be associated with the deterioration of inflammatory bowel
disease [41–45]. In contrast, Muribaculaceae and Lactobacillus can produce succinate, acetate,
propionate [46], and butyrate [47], which alleviate inflammatory bowel disease by reducing
the level of intestinal inflammatory factors and restoring the balance of the intestinal mi-
crobiota [48,49]. The changes in the abundances of Rikenellaceae and Alistipes in this study
are also consistent with the results that the use of Lactobacillus strains and compounds can
promote the recovery of intestinal tight junctions, mucus thickness, and intestinal flora
stability in a DSS-induced colitis model [50–52]. In addition, the intestinal flora may be
involved in the metabolic absorption of host vitamin A [53]. When animals are vitamin A
deficient, the abundance of Helicobacter increases [54], while the abundances of Muribacu-
laceae, Roseburia, and Lactobacillus increase when animals are vitamin A sufficient [55–57].
Combined with the results related to this study, DSS-induced ulcerative colitis resulted in a
decrease in SCFA-producing bacterial genera. This change disrupts the homeostasis of the
colonic internal environment and may affect the absorption and metabolism of vitamin A
in the host while driving the progression of colitis.

After treatment with DSS, a total of 903 DEGs were found in the colon of mice. KEGG
pathway enrichment analysis showed that these DEGs were enriched in inflammation-
related pathways, including cytokine—cytokine receptor interaction, the TNF signaling
pathway, the PI3K-Akt signaling pathway, inflammatory bowel disease, the NF-kappaB
signaling pathway, and tight junctions. This result suggests that DSS treatment may
enhance the phosphorylation of PI3K/Akt and that phosphorylated Akt (p-Akt) activates
NF-κB by enhancing the phosphorylation of IκB [58], which in turn promotes the synthesis
of the inflammatory cytokines IL-6, IL-1β, and TNF-α [59]. DSS-induced colitis decreases
the expression of tight junction proteins in mice, which leads to disruption of the intestinal
barrier [60]. These results indicate that a damaged gut barrier might lead to increased
oxidative stress due to toxic substances and proteins such as LPS from streptococcus
spp. Interestingly, we also found that many DEGs were involved in bile secretion and
primary bile acid biosynthesis. Related studies have found that the relative abundances
of cholic acid (CA), lithocholic acid (LCA), and taurodeoxycholic acid (TUDCA) in DSS-
induced colitis mice were significantly reduced, and the homeostasis of bile acids was
destroyed [18,19]. The absorption of vitamin A depends on bile acids; dysregulation of
bile acids can disrupt absorption [14,61]. In contrast, vitamin A supplementation can
alleviate colitis [62,63]. These results suggest that DSS-induced colitis causes intestinal
barrier dysfunction and mucosal inflammation by damaging the epithelial barrier, allowing
dysbiosis and translocation of the flora, thereby potentially causing bile acid metabolism
disorders and interfering with vitamin A absorption.

The ovary is an important reproductive organ for ovulation and the secretion of sex
hormones in female animals. To investigate the effects of colitis on ovarian function, the
morphology and weight of the bilateral ovaries of mice were first assessed. There was no
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difference in ovarian morphology or weight. However, the number of primordial follicles
and antral follicles in the ovaries of colitis mice decreased, while the number of atresia
follicles increased. This finding indicates that colitis leads to a significant decrease in ovarian
reserve. At the same time, the level of serum AMH in the DSS group was significantly
reduced, which was consistent with the decrease in follicle count in the DSS group. This
result may be related to the fact that AMH maintains the number of primordial follicles
in the follicular pool by inhibiting the excessive activation of primordial follicles [64–66].
This function supports the conclusion that DSS-induced inflammation led to a significant
reduction in ovarian reserve in this study because AMH is mainly secreted by granulosa
cells of the antral follicles [67,68].

In addition to oocyte generation, the ovary is also responsible for producing steroid
hormones. Proper levels of steroid hormones play an important role in the reproductive
health of female animals. Estrogen and progesterone are the most important steroid
hormones in the ovary and are mainly produced by granulosa cells prior to ovulation [69].
In this study, a significant decrease in both estrogen and progesterone in the serum levels
was found in DSS-treated mice. This finding suggests that DSS-induced ulcerative colitis
leads to estrogen deficiency, which in turn potentially affects the number of primordial
and primary follicles in the ovary. This response may be due to the estrogen reduction
prematurely activating primordial follicles in the ovary [70]. Reduced estrogen also leads
to impaired follicular development and premature atresia [71]. This implies that acute
colitis may reduce estrogen by inducing the apoptosis of granulosa cells in a short period
of time and may lead to follicular atresia [72]. In addition, in vitro studies have shown
that inhibition of progesterone production during oocyte maturation greatly reduces the
percentage of MII-stage oocytes [73]. Progesterone can influence oocyte quality through
its effect on the development of the dominant follicle, and it plays an important role in
maintaining pregnancy and increasing the embryo implantation rate during ovulatory
follicle development [74,75]. This information suggests that DSS-induced ulcerative colitis
leads to a decrease in progesterone levels and damages the development of antral and
mature follicles.

In this study, DSS-induced colitis triggered ovarian dysfunction, resulting in reduced
ovarian reserve and impaired endocrine function, while the quality of oocytes was greatly
reduced. After DSS treatment, the in vitro maturation rate of oocytes decreased significantly.
The levels of ROS and ATP in oocytes of the DSS group were significantly increased.
This result implies that oocytes from individuals with DSS-induced colitis may undergo
mitochondrial dysfunction, which ultimately reduces oocyte quality and hinders oocyte
maturation [76,77]. Both MMP and ATP levels were significantly decreased in oocytes
from the DSS-treated group, which supports our hypothesis that DSS-induced ulcerative
colitis may cause oxidative stress in oocytes and reduce their fertilization potential [78–80].
IVF-related results also suggested that the oocyte-derived embryonic development ability
of the DSS group was significantly lower than that of the NC group, implying that the
potential adverse effects of DSS-induced ulcerative enteritis could persist at least until the
blastocyst stage.

According to previous studies [16,17] and the combined transcriptome and intestinal
flora analysis in this study, we hypothesized that impaired ovarian function is associated
with the impaired absorption and utilization of vitamin A induced by ulcerative colitis.
Adequate vitamin A is essential to maintain normal reproductive function. When vitamin
A deficiency occurs in mammals, it affects the implantation of embryos [81]. Therefore, the
levels of vitamin A in serum, colon, and ovary were determined; we found that vitamin A
levels were significantly decreased in the DSS group. Rdh10 encodes retinol dehydrogenase,
which converts retinol to retinaldehyde [82]. Adh1a3 encodes aldehyde dehydrogenase,
which catalyzes the formation of retinoic acid [83]. Dhrs3 and Dhrs9 are responsible
for catalyzing the biosynthesis of retinoic acid from retinal [84,85], while Cyp2c68 and
Cyp2c40 are genes related to retinol metabolism [86]. Combined with the results that Rdh10,
Adh1a3, Adh1, Dhrs9, Cyp2c68, and Cyp2c40 were positively correlated with Muribaculaceae,
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Alistipes, and uncultured_Bacteridales_bacterium, while they were negatively correlated with
Helicobacter and Bacteroides, it is suggested that the imbalance in the flora may cause
abnormal transformation of vitamin A in the host. The mRNA levels of Rdh10, Aldh1a1,
Cyp26a1, Cyp26b1, and Rarβ in the ovaries of the DSS group were significantly decreased,
suggesting that the production and oxidation of retinoic acid were reduced. This finding
also means that colitis can cause abnormal use and metabolism of vitamin A in the ovaries,
which is related to the significant prolongation of the estrous cycle of mice and the reduction
in oocyte maturation, fertilization, and blastocyst formation [87].

The result regarding the reduction in ovarian reserve in the DSS-treated mice is also
similar to other studies in which vitamin A deficiency led to a decrease in the number
of total follicles and the corpus luteum, an increase in atretic follicles, and a decrease in
the number and quality of ovulated oocytes [88]. This finding may also be related to the
fact that vitamin A is an antioxidant that prevents oxidative damage and improves oocyte
maturation and quality by maintaining adequate levels of antioxidant compounds and
endogenous enzymes [89]. This is also supported by the results showing elevated ROS
in oocytes of the DSS-treated group of mice. Vitamin A is involved in the production
of ovarian steroid hormones. Vitamin A deficiency decreases the steroidogenic activity
of the gonads [90]. Retinoic acid, the active form of vitamin A, promotes STAR and p-
STAR protein levels; increases Cyp17, Cyp11A1 and Star mRNA expression; and increases
the levels of pregnenolone and progesterone [24]. Progesterone and estradiol are steroid
hormones, both of which are formed from cholesterol. First, cholesterol is used to synthesize
pregnenolone. Then, pregnenolone is converted to progesterone. Pregnenolone can also
be converted into androgens and then into estrogens [91]. During this process, STAR is
thought to mediate the rapid increase in steroid hormone biosynthesis by facilitating the
entry of cholesterol into the inner mitochondrial membrane and is the rate-limiting step
in steroidogenesis [92]. CYP11A1 converts cholesterol to the steroid hormone precursor
pregnenolone [93]. This study found that the levels of STAR and CYP11A1 in the ovaries of
mice in the DSS group were significantly decreased, which was consistent with the results
of decreased E2 and P levels. These results suggest that the DSS-induced disruption of
the flora composition and colitis can affect ovarian function through abnormal vitamin A
utilization and metabolism.

5. Conclusions

In summary, DSS-induced ulcerative colitis caused an imbalance in the intestinal flora.
The altered intestinal flora was correlated with gene expression in the colon, which in
turn caused impaired vitamin A absorption and metabolism. The abnormal metabolism
of vitamin A in the ovaries impaired follicular development, decreased steroid hormone
secretion, and caused a decrease in mouse oocyte quality. All related results supported our
hypothesis that DSS-induced colitis and impaired vitamin A absorption reduced ovarian
function. Our work expanded the female animal gonad–gut axis effects by coupling the
intestinal flora and ovarian function, revealing that differences in the microbial community
composition and abundance are important for ovarian physiology and function.
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