The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Exposure Assessment
2.3. Outcome Assessment
2.4. Covariates
2.5. Statistical Analyses
2.6. Ethics
3. Results
3.1. Participants
3.2. Coffee and Tea Consumption and Dementia Risk
3.3. Type of Coffee and Dementia Risk
3.4. Coffee, Tea, and the Risk of MCI and AD
3.5. Sex Differences
3.6. ApoE4 Carrier Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
0 | 1 | 2 | ≥3 | p-Value for Trend | ||
---|---|---|---|---|---|---|
MCI | n | 1571 | 358 | 412 | 211 | |
Ref | 0.91 (0.78–1.06) | 1.07 (0.93–1.25) | 0.95 (0.78–1.16) | 0.91 | ||
AD | n | 354 | 84 | 88 | 46 | |
Ref | 0.94 (0.71–1.25) | 0.90 (0.68–1.19) | 1.01 (0.71–1.45) | 0.68 |
Coffee Consumption (Cups/Day) | ||||||||
---|---|---|---|---|---|---|---|---|
0–1 | 2–3 | 4–5 | 6–7 | ≥8 | p-Value for Trend | |||
Boiled coffee | Female | n | 1578 | 403 | 358 | 183 | 161 | |
Ref | 1.01 (0.57–1.80) | 1.28 (0.69–2.36) | 1.49 (0.73–3.05) | 2.68 (1.35–5.33) | <0.01 | |||
Male | n | 1454 | 353 | 304 | 174 | 185 | ||
Ref | 0.47 (0.25–0.85) | 1.02 (0.60–1.77) | 0.52 (0.25–1.09) | 0.78 (0.40–1.53) | 0.47 | |||
Other types of coffee | Female | n | 1083 | 577 | 582 | 254 | 187 | |
Ref | 1.26 (0.75–2.14) | 0.94 (0.52–1.71) | 1.06 (0.50–2.25) | 1.59 (0.75–3.40) | 0.48 | |||
Male | n | 1019 | 444 | 494 | 220 | 293 | ||
Ref | 0.78 (0.46–1.32) | 0.49 (0.28–0.87) | 0.57 (0.28–1.14) | 0.64 (0.34–1.21) | 0.10 |
Sex | 0 | 1 | 2 | ≥3 | p-Value for Trend | |
---|---|---|---|---|---|---|
Female | n | 2184 | 635 | 773 | 357 | |
Ref | 0.96 (0.71–1.29) | 0.97 (0.74–1.28) | 1.33 (0.92–1.92) | 0.39 | ||
Male | n | 2229 | 497 | 411 | 295 | |
Ref | 0.89 (0.63–1.26) | 0.92 (0.65–1.30) | 0.72 (0.47–1.10) | 0.15 |
ApoE4 | 0 | 1 | 2 | ≥3 | p-Value for Trend | |
---|---|---|---|---|---|---|
Non-carrier | n | 2950 | 767 | 769 | 42 | |
Ref | 0.98 (0.74–1.30) | 0.95 (0.72–1.26) | 0.98 (0.69–1.41) | 0.79 | ||
Carrier | n | 1255 | 315 | 348 | 183 | |
Ref | 0.85 (0.57–1.28) | 0.91 (0.63–1.32) | 1.16 (0.71–1.87) | 0.95 |
References
- Global Burden of Disease Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dementia. Fact Sheets. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 2 November 2022).
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Middleton, L.E.; Yaffe, K. Targets for the prevention of dementia. J. Alzheimers Dis. 2010, 20, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ruiz, J.A.; Leake, D.S.; Ames, J.M. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem. 2007, 55, 6962–6969. [Google Scholar] [CrossRef]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W.; et al. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef]
- Ullah, F.; Ali, T.; Ullah, N.; Kim, M.O. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem. Int. 2015, 90, 114–124. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Chen, J.Q.A.; Scheltens, P.; Groot, C.; Ossenkoppele, R. Associations Between Caffeine Consumption, Cognitive Decline, and Dementia: A Systematic Review. J. Alzheimers Dis. 2020, 78, 1519–1546. [Google Scholar] [CrossRef]
- Matsushita, N.; Nakanishi, Y.; Watanabe, Y.; Kitamura, K.; Kabasawa, K.; Takahashi, A.; Saito, T.; Kobayashi, R.; Takachi, R.; Oshiki, R.; et al. Association of coffee, green tea, and caffeine with the risk of dementia in older Japanese people. J. Am. Geriatr. Soc. 2021, 69, 3529–3544. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Li, S.; Li, W.-D.; Wang, Y. Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank. PLoS Med. 2021, 18, e1003830. [Google Scholar] [CrossRef]
- Gelber, R.P.; Petrovitch, H.; Masaki, K.H.; Ross, G.W.; White, L.R. Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J. Alzheimers Dis. 2011, 23, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.R.; Roses, A.D. Genetics of Alzheimer’s disease. Int. J. Neurol. 1991, 25–26, 41–51. [Google Scholar]
- Norwitz, N.G.; Saif, N.; Ariza, I.E.; Isaacson, R.S. Precision Nutrition for Alzheimer’s Prevention in ApoE4 Carriers. Nutrients 2021, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D.; He, Y. Coffee intake and the incident risk of cognitive disorders: A dose-response meta-analysis of nine prospective cohort studies. Clin. Nutr. 2017, 36, 730–736. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef]
- Clair, L.; Anderson, H.; Anderson, C.; Ekuma, O.; Prior, H.J. Cardiovascular disease and the risk of dementia: A survival analysis using administrative data from Manitoba. Can. J. Public Health 2022, 113, 455–464. [Google Scholar] [CrossRef]
- Farnsworth Von Cederwald, B.; Josefsson, M.; Wåhlin, A.; Nyberg, L.; Karalija, N. Association of Cardiovascular Risk Trajectory with Cognitive Decline and Incident Dementia. Neurology 2022, 98, e2013–e2022. [Google Scholar] [CrossRef]
- Åsvold, B.O.; Langhammer, A.; Rehn, T.A.; Kjelvik, G.; Grontvedt, T.V.; Sorgjerd, E.P.; Fenstad, J.S.; Heggland, J.; Holmen, O.; Stuifbergen, M.C.; et al. Cohort Profile Update: The HUNT Study, Norway. Int. J. Epidemiol. 2022, 52, e80–e91. [Google Scholar] [CrossRef]
- Gjøra, L.; Strand, B.H.; Bergh, S.; Borza, T.; Braekhus, A.; Engedal, K.; Johannessen, A.; Kvello-Alme, M.; Krokstad, S.; Livingston, G.; et al. Current and Future Prevalence Estimates of Mild Cognitive Impairment, Dementia, and Its Subtypes in a Population-Based Sample of People 70 Years and Older in Norway: The HUNT Study. J. Alzheimers Dis. 2021, 79, 1213–1226. [Google Scholar] [CrossRef]
- Black, D.W.; Grant, J.E. The Essential Companion to the Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2014. [Google Scholar]
- Holmen, J.; Midthjell, K.; Krüger, Ø.; Langhammer, A.; Lingaas Holmen, T.; Bratberg, G.; Vatten, L.; Lund-Larsen, P. The Nord-Trøndelag Health Study 1995-97 (HUNT 2): Objectives, contents, methods and participation. Nor. Epidemiol. 2003, 13, 19–32. [Google Scholar]
- Araújo, L.F.; Mirza, S.S.; Bos, D.; Niessen, W.J.; Barreto, S.M.; van der Lugt, A.; Vernooij, M.W.; Hofman, A.; Tiemeier, H.; Ikram, M.A. Association of Coffee Consumption with MRI Markers and Cognitive Function: A Population-Based Study. J. Alzheimers Dis. 2016, 53, 451–461. [Google Scholar] [CrossRef]
- Mirza, S.S.; Tiemeier, H.; de Bruijn, R.F.; Hofman, A.; Franco, O.H.; Kiefte-de Jong, J.; Koudstaal, P.J.; Ikram, M.A. Coffee consumption and incident dementia. Eur. J. Epidemiol. 2014, 29, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Urgert, R.; van der Weg, G.; Kosmeijer-Schuil, T.G.; van de Bovenkamp, P.; Hovenier, R.; Katan, M.B. Levels of the Cholesterol-Elevating Diterpenes Cafestol and Kahweol in Various Coffee Brews. J. Agric. Food Chem. 1995, 43, 2167–2172. [Google Scholar] [CrossRef]
- Tverdal, A.; Selmer, R.; Cohen, J.M.; Thelle, D.S. Coffee consumption and mortality from cardiovascular diseases and total mortality: Does the brewing method matter? Eur. J. Prev. Cardiol. 2020, 27, 1986–1993. [Google Scholar] [CrossRef]
- Johnson-Kozlow, M.; Kritz-Silverstein, D.; Barrett-Connor, E.; Morton, D. Coffee consumption and cognitive function among older adults. Am. J. Epidemiol. 2002, 156, 842–850. [Google Scholar] [CrossRef]
- Barp, J.; Araujo, A.S.; Fernandes, T.R.; Rigatto, K.V.; Llesuy, S.; Bello-Klein, A.; Singal, P. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz. J. Med. Biol. Res. 2002, 35, 1075–1081. [Google Scholar] [CrossRef]
- Ide, T.; Tsutsui, H.; Ohashi, N.; Hayashidani, S.; Suematsu, N.; Tsuchihashi, M.; Tamai, H.; Takeshita, A. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 438–442. [Google Scholar] [CrossRef]
- Ishizaka, Y.; Yamakado, M.; Toda, A.; Tani, M.; Ishizaka, N. Relationship between coffee consumption, oxidant status, and antioxidant potential in the Japanese general population. Clin. Chem. Lab. Med. 2013, 51, 1951–1959. [Google Scholar] [CrossRef]
- Mahley, R.W. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.; Murrell, J.; Ogunniyi, A.; Deeg, M.; Baiyewu, O.; Gao, S.; Gureje, O.; Dickens, J.; Evans, R.; Smith-Gamble, V.; et al. Cholesterol, APOE genotype, and Alzheimer disease: An epidemiologic study of Nigerian Yoruba. Neurology 2006, 66, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Wroolie, T.; Roat-Shumway, S.; Watson, K.; Reiman, E.; Rasgon, N. Effects of LDL Cholesterol and Statin Use on Verbal Learning and Memory in Older Adults at Genetic Risk for Alzheimer’s Disease. J. Alzheimers Dis. 2020, 75, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study. J. Alzheimers Dis. 2009, 16, 85–91. [Google Scholar] [CrossRef]
- Almajano, M.P.; Carbó, R.; Jiménez, J.A.L.; Gordon, M.H. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Beresniak, A.; Duru, G.; Berger, G.; Bremond-Gignac, D. Relationships between black tea consumption and key health indicators in the world: An ecological study. BMJ Open 2012, 2, e000648. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Yuan, Y.; Zhang, X.; Zuo, X.; Cui, L.; Liu, Y.; Chen, W.; Su, N.; Wang, H.; et al. Gender differences in the protective effects of green tea against amnestic mild cognitive impairment in the elderly Han population. Neuropsychiatr. Dis. Treat. 2018, 14, 1795–1801. [Google Scholar] [CrossRef]
- Noguchi-Shinohara, M.; Yuki, S.; Dohmoto, C.; Ikeda, Y.; Samuraki, M.; Iwasa, K.; Yokogawa, M.; Asai, K.; Komai, K.; Nakamura, H.; et al. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS ONE 2014, 9, e96013. [Google Scholar] [CrossRef]
- Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 2017, 23, 272–290. [Google Scholar] [CrossRef]
- Luca, M.; Luca, A.; Calandra, C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer’s Disease and Vascular Dementia. Oxid. Med. Cell. Longev. 2015, 2015, 504678. [Google Scholar] [CrossRef]
- Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2020, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Liu, C.; Yu, C.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Zhu, K.; Schmidt, D.; et al. Independent and Joint Associations of Tea Consumption and Smoking with Parkinson’s Disease Risk in Chinese Adults. J. Parkinsons Dis. 2022, 12, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.W. Association of Coffee and Caffeine Intake with the Risk of Parkinson Disease. JAMA 2000, 283, 2674. [Google Scholar] [CrossRef] [PubMed]
- Adu, M.D.; Bondonno, C.P.; Parmenter, B.H.; Sim, M.; Davey, R.J.; Murray, K.; Radavelli-Bagatini, S.; Magliano, D.J.; Daly, R.M.; Shaw, J.E.; et al. Association between non-tea flavonoid intake and risk of type 2 diabetes: The Australian diabetes, obesity and lifestyle study. Food Funct. 2022, 13, 4459–4468. [Google Scholar] [CrossRef]
- Mirmiran, P.; Carlström, M.; Bahadoran, Z.; Azizi, F. Long-term effects of coffee and caffeine intake on the risk of pre-diabetes and type 2 diabetes: Findings from a population with low coffee consumption. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1261–1266. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.E.; Loftfield, E.; Shu, X.O.; Abe, S.K.; Rahman, M.S.; Saito, E.; Islam, M.R.; Tsugane, S.; Sawada, N.; et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: A pooled analysis of prospective studies from the Asia Cohort Consortium. Int. J. Epidemiol. 2022, 51, 626–640. [Google Scholar] [CrossRef]
- Krokstad, S.; Langhammer, A.; Hveem, K.; Holmen, T.L.; Midthjell, K.; Stene, T.R.; Bratberg, G.; Heggland, J.; Holmen, J. Cohort Profile: The HUNT Study, Norway. Int. J. Epidemiol. 2013, 42, 968–977. [Google Scholar] [CrossRef]
Coffee Consumption (Cups/Day) | Tea Consumption (Cups/Day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Overall | 0–1 | 2–3 | 4–5 | 6–7 | ≥8 | 0 | 1 | 2 | ≥3 | |
Total study population, n | 7381 | 580 | 1770 | 2584 | 1248 | 1199 | 4413 | 1132 | 1184 | 652 |
Sex, male | 3432 (46.5) | 286 (49.3) | 768 (43.4) | 1099 (42.5) | 594 (47.6) | 685 (57.1) | 2229 (50.5) | 497 (43.9) | 411 (34.7) | 295 (45.2) |
Age | 55.85 ± 6.20 | 56.22 ± 6.19 | 56.57 ± 6.56 | 56.18 ± 6.43 | 55.40 ± 5.96 | 54.39 ± 5.36 | 55.76 ± 6.21 | 55.83 ± 6.31 | 56.22 ± 6.47 | 55.90 ± 5.96 |
Educational attainment | ||||||||||
Primary school | 2976 (40.3) | 162 (27.9) | 633 (35.8) | 1104 (42.7) | 532 (42.6) | 545 (45.5) | 1918 (43.5) | 363 (32.1) | 454 (38.3) | 241 (37.0) |
High school | 2655 (36.0) | 222 (38.3) | 642 (36.3) | 891 (34.5) | 452 (36.2) | 448 (37.4) | 1578 (35.8) | 425 (37.5) | 432 (36.5) | 220 (33.7) |
College/university | 1750 (23.7) | 196 (33.8) | 495 (28.0) | 589 (22.8) | 264 (21.2) | 206 (17.2) | 917 (20.8) | 344 (30.4) | 298 (25.2) | 191 (29.3) |
Marital status | ||||||||||
Unmarried | 310 (4.2) | 42 (7.2) | 70 (4.0) | 104 (4.0) | 47 (3.8) | 47 (3.9) | 197 (4.5) | 42 (3.7) | 41 (3.5) | 30 (4.6) |
Married | 6097 (82.6) | 462 (79.7) | 1457 (82.3) | 2137 (82.7) | 1057 (84.7) | 984 (82.1) | 3635 (82.4) | 945 (83.5) | 984 (83.1) | 533 (81.7) |
Widow(er)/divorced/separated | 974 (13.2) | 76 (13.1) | 243 (13.7) | 343 (13.3) | 144 (11.5) | 168 (14.0) | 581 (13.2) | 145 (12.8) | 159 (13.4) | 89 (13.7) |
Tea consumption (cups/day) | ||||||||||
0 | 4413 (59.8) | 181 (31.2) | 721 (40.7) | 1595 (61.7) | 935 (74.9) | 981 (81.8) | ||||
1 | 1132 (15.3) | 103 (17.8) | 436 (24.6) | 398 (15.4) | 120 (9.6) | 75 (6.3) | ||||
2 | 1184 (16.0) | 119 (20.5) | 397 (22.4) | 438 (17.0) | 139 (11.1) | 91 (7.6) | ||||
≥3 | 652 (8.8) | 177 (30.5) | 216 (12.2) | 153 (5.9) | 54 (4.3) | 52 (4.3) | ||||
Coffee consumption (cups/day) | ||||||||||
0–1 | 580 (7.9) | 181 (4.1) | 103 (9.1) | 119 (10.1) | 177 (27.1) | |||||
2–3 | 1770 (24.0) | 721 (16.3) | 436 (38.5) | 397 (33.5) | 216 (33.1) | |||||
4–5 | 2584 (35.0) | 1595 (36.1) | 398 (35.2) | 438 (37.0) | 153 (23.5) | |||||
6–7 | 1248 (16.9) | 935 (21.2) | 120 (10.6) | 139 (11.7) | 54 (8.3) | |||||
≥8 | 1199 (16.2) | 981 (22.2) | 75 (6.6) | 91 (7.7) | 52 (8.0) | |||||
BMI (kg/m2) | ||||||||||
<25 | 2449 (33.2) | 223 (38.4) | 613 (34.6) | 853 (33.0) | 383 (30.7) | 377 (31.4) | 1392 (31.5) | 407 (36.0) | 403 (34.0) | 247 (37.9) |
25–29.9 | 3759 (51.0) | 272 (46.9) | 888 (50.2) | 1317 (51.0) | 671 (53.8) | 611 (51.0) | 2286 (51.8) | 575 (50.8) | 597 (50.4) | 301 (46.2) |
30–34.9 | 939 (12.7) | 61 (10.5) | 210 (11.9) | 333 (12.9) | 163 (13.1) | 172 (14.3) | 597 (13.5) | 113 (10.0) | 146 (12.3) | 83 (12.7) |
≥35 | 234 (3.2) | 24 (4.1) | 59 (3.3) | 81 (3.1) | 31 (2.5) | 39 (3.3) | 138 (3.1) | 37 (3.3) | 38 (3.2) | 21 (3.2) |
Alcohol (units/week) | 1.71 ± 2.22 | 1.27 ± 2.13 | 1.61 ± 2.19 | 1.68 ± 2.13 | 1.78 ± 2.07 | 2.06 ± 2.58 | 1.78 ± 2.36 | 1.68 ± 2.02 | 1.50 ± 1.94 | 1.65 ± 2.12 |
PA (MET-h/week) | ||||||||||
≤8.3 | 3930 (53.2) | 303 (52.2) | 908 (51.3) | 1363 (52.7) | 672 (53.8) | 684 (57.0) | 2439 (55.3) | 558 (49.3) | 618 (52.2) | 315 (48.3) |
8.3–16.6 | 2273 (30.8) | 168 (29.0) | 575 (32.5) | 812 (31.4) | 393 (31.5) | 325 (27.1) | 1302 (29.5) | 383 (33.8) | 369 (31.2) | 219 (33.6) |
>16.6 | 1178 (16.0) | 109 (18.8) | 287 (16.2) | 409 (15.8) | 183 (14.7) | 190 (15.8) | 672 (15.2) | 191 (16.9) | 197 (16.6) | 118 (18.1) |
Smoking | ||||||||||
Never | 3305 (44.8) | 402 (69.3) | 1028 (58.1) | 1186 (45.9) | 441 (35.3) | 248 (20.7) | 1682 (38.1) | 636 (56.2) | 638 (53.9) | 349 (53.5) |
Previous | 2579 (34.9) | 133 (22.9) | 571 (32.3) | 943 (36.5) | 481 (38.5) | 451 (37.6) | 1608 (36.4) | 351 (31.0) | 395 (33.4) | 225 (34.5) |
Current | 1497 (20.3) | 45 (7.8) | 171 (9.7) | 455 (17.6) | 326 (26.1) | 500 (41.7) | 1123 (25.4) | 145 (12.8) | 151 (12.8) | 78 (12.0) |
DM, yes | 141 (1.9) | 14 (2.4) | 32 (1.8) | 49 (1.9) | 29 (2.3) | 17 (1.4) | 69 (1.6) | 25 (2.2) | 31 (2.6) | 16 (2.5) |
CVD, at least one | 179 (2.4) | 11 (1.9) | 43 (2.4) | 59 (2.3) | 26 (2.1) | 40 (3.3) | 120 (2.7) | 25 (2.2) | 20 (1.7) | 14 (2.1) |
ApoE4 carrier status, positive | 2101 (30.0) | 182 (33.1) | 480 (28.7) | 721 (29.4) | 368 (31.1) | 350 (30.3) | 1255 (29.8) | 315 (29.1) | 348 (31.2) | 183 (30.0) |
Cognitive status | ||||||||||
No CI | 3840 (55.1) | 331 (61.1) | 927 (55.8) | 1344 (55.1) | 636 (53.6) | 602 (53.0) | 2230 (53.7) | 636 (59.0) | 617 (55.2) | 357 (58.1) |
MCI | 2552 (36.7) | 177 (32.7) | 584 (35.2) | 896 (36.7) | 448 (37.8) | 447 (39.4) | 1571 (37.8) | 358 (33.2) | 412 (36.9) | 211 (34.4) |
Dementia, all causes | 985 (13.4) | 71 (12.2) | 259 (14.6) | 343 (13.3) | 163 (13.1) | 149 (12.4) | 610 (13.8) | 136 (12.0) | 155 (13.1) | 84 (12.9) |
AD | 572 (8.2) | 34 (6.3) | 150 (9.0) | 200 (8.2) | 102 (8.6) | 86 (7.6) | 354 (8.5) | 84 (7.8) | 88 (7.9) | 46 (7.5) |
Coffee Consumption (Cups/Day) | Tea Consumption (Cups/Day) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0–1 | 2–3 | 4–5 | 6–7 | ≥8 | p-Value for Trend | 0 | 1 | 2 | ≥3 | p-Value for Trend | |
Model 1 | Ref | 1.16 (0.86–1.57) | 1.09 (0.81–1.46) | 1.26 (0.91–1.73) | 1.45 (1.05–2.01) | 0.02 | Ref | 0.81 (0.66–1.01) | 0.84 (0.69–1.03) | 0.91 (0.70–1.18) | 0.11 |
Model 2 | Ref | 1.12 (0.82–1.52) | 0.95 (0.70–1.30) | 1.06 (0.75–1.48) | 1.11 (0.78–1.57) | 0.81 | Ref | 0.92 (0.74–1.15) | 0.92 (0.75–1.14) | 1.02 (0.77–1.34) | 0.71 |
Model 3 | Ref | 1.11 (0.81–1.51) | 0.94 (0.69–1.28) | 1.04 (0.74–1.46) | 1.09 (0.77–1.54) | 0.90 | Ref | 0.92 (0.74–1.16) | 0.92 (0.74–1.14) | 1.01 (0.76–1.33) | 0.65 |
Coffee Consumption (Cups/Day) | |||||||
---|---|---|---|---|---|---|---|
0–1 | 2–3 | 4–5 | 6–7 | ≥8 | p-Value for Trend | ||
Boiled coffee | n | 4284 | 1123 | 1006 | 511 | 457 | |
Model 2 | Ref | 1.14 (0.93–1.41) | 1.14 (0.92–1.41) | 1.38 (1.05–1.81) | 1.46 (1.08–1.96) | <0.01 | |
Model 4 | Ref | 1.01 (0.79–1.30) | 1.00 (0.75–1.30) | 1.19 (0.86–1.66) | 1.26 (0.88–1.80) | 0.17 | |
Other types of coffee | n | 3148 | 1447 | 1540 | 639 | 607 | |
Model 2 | Ref | 0.96 (0.79–1.18) | 0.67 (0.54–0.82) | 0.80 (0.60–1.07) | 0.86 (0.64–1.15) | <0.01 | |
Model 4 | Ref | 1.01 (0.80–1.28) | 0.71 (0.54–0.92) | 0.86 (0.61–1.21) | 0.93 (0.65–1.32) | 0.24 |
Coffee Consumption (Cups/Day) | ||||||||
---|---|---|---|---|---|---|---|---|
0–1 | 2–3 | 4–5 | 6–7 | ≥8 | p-Value for Trend | |||
MCI | Boiled coffee | n | 1405 | 369 | 407 | 199 | 172 | |
Ref | 1.03 (0.87–1.22) | 1.41 (1.16–1.70) | 1.29 (1.01–1.63) | 1.11 (0.86–1.43) | 0.04 | |||
Other types of coffee | n | 1138 | 462 | 521 | 212 | 219 | ||
Ref | 0.98 (0.83–1.16) | 0.97 (0.81–1.15) | 0.94 (0.75–1.18) | 1.01 (0.80–1.28) | 0.87 | |||
AD | Boiled coffee | n | 279 | 94 | 97 | 59 | 43 | |
Ref | 1.15 (0.83–1.58) | 1.37 (0.96–1.95) | 1.85 (1.22–2.81) | 1.65 (1.03–2.53) | <0.01 | |||
Other types of coffee | n | 295 | 109 | 92 | 41 | 35 | ||
Ref | 1.14 (0.83–1.55) | 0.79 (0.56–1.12) | 1.00 (0.64–1.56) | 1.03 (0.64–1.67) | 0.71 |
Coffee Consumption (Cups/Day) | ||||||||
---|---|---|---|---|---|---|---|---|
ApoE4 | 0–1 | 2–3 | 4–5 | 6–7 | ≥8 | p-Value for Trend | ||
Boiled coffee | Non-carrier | n | 2844 | 753 | 675 | 330 | 310 | |
Ref | 1.15 (0.84–1.58) | 1.15 (0.81–1.64) | 1.53 (1.00 –2.32) | 1.31 (0.82–2.09) | 0.10 | |||
Carrier | n | 1227 | 314 | 281 | 156 | 123 | ||
Ref | 0.87 (0.56–1.35) | 0.80 (0.44–1.46) | 1.02 (0.47–1.48) | 1.45 (0.79–2.66) | 0.57 | |||
Other types of coffee | Non-carrier | n | 2070 | 983 | 1031 | 417 | 411 | |
Ref | 1.14 (0.84–1.55) | 0.77 (0.54–1.09) | 0.81 (0.51–1.29) | 0.86 (0.54–1.39) | 0.19 | |||
Carrier | n | 912 | 392 | 433 | 29 | 181 | ||
Ref | 0.78 (0.51–1.20) | 0.61 (0.39–0.96) | 0.85 (0.48–1.52) | 1.05 (0.58–1.89) | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbel, D.; Åsvold, B.O.; Kolberg, M.; Selbæk, G.; Noordam, R.; Skjellegrind, H.K. The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients 2023, 15, 2469. https://doi.org/10.3390/nu15112469
Abbel D, Åsvold BO, Kolberg M, Selbæk G, Noordam R, Skjellegrind HK. The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients. 2023; 15(11):2469. https://doi.org/10.3390/nu15112469
Chicago/Turabian StyleAbbel, Denise, Bjørn Olav Åsvold, Marit Kolberg, Geir Selbæk, Raymond Noordam, and Håvard Kjesbu Skjellegrind. 2023. "The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study" Nutrients 15, no. 11: 2469. https://doi.org/10.3390/nu15112469
APA StyleAbbel, D., Åsvold, B. O., Kolberg, M., Selbæk, G., Noordam, R., & Skjellegrind, H. K. (2023). The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients, 15(11), 2469. https://doi.org/10.3390/nu15112469