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Abstract: Genome-wide association studies (GWASs) have been used to discover genetic polymor-
phisms that affect cardiovascular diseases (CVDs). Structural equation modelling (SEM) has been
identified as a robust multivariate analysis tool. However, there is a paucity of research that has
conducted SEM in African populations. The purpose of this study was to create a model that may be
used to examine the relationships between genetic polymorphisms and their respective cardiovascu-
lar risk (CVR) factors. The procedure involved three steps. Firstly, the creation of latent variables
and the hypothesis model. Next, confirmatory factor analysis (CFA) to examine the relationships
between the latent variables, SNPs, dyslipidemia and metabolic syndrome, with their respective
indicators. Then finally, model fitting using JASP statistical software v.0.16.4.0. The indicators for the
SNPs and dyslipidemia all indicated significant factor loadings, −0.96 to 0.91 (p = <0.001) and 0.92 to
0.96 (p ≤ 0.001), respectively. The indicators for metabolic syndrome also had significant coefficients
of 0.20 (p = 0.673), 0.36 (p = 0.645) and 0.15 (p = 0.576), but they were not statistically significant. There
were no significant relationships observed between the SNPs, dyslipidemia and metabolic syndrome.
The SEM produced an acceptable model according to the fit indices.

Keywords: structural equation model; genetic polymorphisms; dyslipidemia; cardiometabolic;
cardiovascular risk; elderly; South Africa

1. Introduction

Cardiovascular diseases (CVDs) are still the primary cause of premature mortality
worldwide [1,2]. For this reason, prevention approaches by identifying individuals with
an increased risk is the utmost concern that needs to be addressed [1,3]. Some progress
has been made in the development of prediction tools for CVD outcomes. Prediction tools
such as the Framingham CVD risk score (FRS) model [4] and the Suita score model for
CVDs [5] have been used in many studies. Despite their success in the prediction of CVD
risks, they have been shown to be inconvenient in primary care, as medical professionals
need to calculate the risks of each component separately then incorporate all the factors.
Additionally, they have been reported to overestimate the CVD risks in some cases [4,5].

Various factors have been reported to contribute to the development of CVDs. Evi-
dence has shown that some of these factors are unique to an individual. Genetics has been
considered as a factor that impacts the pathogenesis of CVDs because mutations alter the
structure and quantity of the gene products, ultimately affecting the function of the gene
products such as cardiovascular risk factors (CVR) [6]. For example, a report by Hongmei
and co-authors [7] demonstrated that approximately 50 risk points in the human genome
can affect the incidence of CVD. Furthermore, large-scale GWASs have shown that some
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single-nucleotide polymorphisms (SNPs) not only increase the risk of CVD but also seem
to have pleiotropic effects. Pleiotropic means demonstrating a strong association with other
human diseases [8]. The extent to which genetics affect an individual’s health, however,
depends on factors such as age, inception and disease type [9].

At molecular a level, GWASs have also been effectively applied to discover genetic
polymorphisms that affect CVDs. The limitations of some of the techniques in GWASs
are that only important SNPs that are related to specific diseases are reported, and there
are concerns that these techniques might ultimately link the entire genome to disease
susceptibilities [10]. For this reason, the analyses of the relationships between these geno-
types and the CVD outcomes are still unclear because of the complexity of relationship
between genetics and environmental factors that are yet to be explored [11,12]. SEM tools
have, however, been determined to have more statistical power because of the categorized
modelling functionality that includes both latent and continuous variables [13].

SEM has been successfully used in a variety of fields such as psychiatry research [14]
and genetic analysis studies [15]. Most of these studies have, nevertheless, only been con-
ducted in western [16] or Asian countries [17]. Furthermore, many studies did not analyze
multiple SNPs and their individual or combined roles in these diseases simultaneously.
There is a paucity in the number of studies that have conducted SEM in African popula-
tions [18]. CVDs have become a burden in African countries including peri-urban and rural
areas because of the socio-economic transition and adoption of western diets [19]. There-
fore, we aimed to create a model that may be used to examine the relationship between
genetic polymorphisms and cardiovascular risk (CVR) factors.

2. Materials and Methods
2.1. Study Design and Sample

This study used a convenience sampling method of the elderly (n = 61) who attend a
day care in a black peri-urban population of Sharpeville, Vaal region, South Africa. Fasting
blood samples were collected on the same day (within 2 h) from the elderly participants
who met the inclusion criteria of age 60 years or older and voluntary attendees of the
Sharpeville day care centre, as well as signing the informed consent form for participation.
Participants who were not able to provide substantial information to complete the consent
process due to conditions such as dementia were excluded from this study.

2.2. DNA Extraction and Genotyping

Genomic DNA was extracted from peripheral blood samples using the Quick-DNA™
Miniprep DNA purification kit (Zymo Research, Irvine, CA, USA) following the manu-
facturer’s instructions. Microtubes were placed onto a rack using a cool block. A total
of 200 µL of each sample was added to a 1.5 mL microcentrifuge tube. Next, 200 µL of
BioFluid & Cell Buffer (Red) and 20 µL of Proteinase K was then added to the same 1.5 mL
microcentrifuge tube. The contents were mixed using a vortex for 15 s and then incubated
at 55 ◦C for 10 min. One volume of the genomic binding buffer was added to the digested
sample. The mixture was then mixed for another 15 s. The mixture was transferred to a
Zymo-Spin™ IIC-XL Column in a collection tube. This was then followed by centrifugation
at ≥12,000× g for 1 min. The collection tube with the flow through was discarded. A
total of 400 µL of the DNA pre-wash buffer was added to the same spin column in a new
collection tube and centrifuged at ≥12,000× g for 1 min. The collection tube was then
emptied. The mixture was washed in two steps by adding 700 µL and 200 µL g-DNA wash
buffers to the spin column, respectively, with subsequent centrifugation at ≥12,000× g
for 1 min. The collection tube was then emptied again after each wash. The spin column
was transferred to a clean microcentrifuge tube and 50 µL DNA elution buffer was added
directly on the matrix. This was followed by incubation for 5 min at room temperature,
then centrifugation at maximum speed for 1 min to elute the DNA. The DNA concentration
was measured by spectrophotometry using the NanoDrop® 2000 (NanoDrop Technologies,
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Wilmington, DE, USA) and DNA purity was determined by 1% agarose gel analysis using
the A260/A280 ratio. A ratio of ~1.8 is generally accepted as “pure” for DNA.

Genotyping was outsourced to Inqaba Biotechnical Industries (Pty) Ltd., Pretoria,
South Africa, which uses the Agena Bioscience, MassARRAY genotyping system, based
on single base-extension or cleavage chemistry in conjunction with matrix-assisted laser
desorption/ionization–time of flight (MALDI–TOF) mass spectrometry. Current advances
in GWASs have enabled the identification of several SNPs that have been linked to human
diseases including CVDs [10]. The SNPs for this study were identified by conducting a
literature search of PubMed databases and relevant articles to determine the specific SNPs
that have an association or influence on the risk factors of CVDs. Following the search, the
rs675 of apolipoprotein A-IV (ApoA-IV), rs699 of angiotensinogen (AGT), rs247616 and
rs1968905 of cholesteryl ester transfer protein (CETP), rs1801278 of insulin receptor sub-
strate-1 (IRS-1), rs1805087 of methylenetetrahydrofolate reductase (MTHFR), rs28362286
and rs67608943 of proprotein convertase subtilisin/kexin type 9 (PCSK9) were selected
based on their clinical significance (CVR) and prevalence. These SNPs were therefore
analyzed in each sample. They were genotyped using the TaqMan®Pre-designed SNP
Genotyping Assay Kit (Thermo Fisher Scientific, Foster City, CA, USA). The 20 µL reaction
mix consisted of: 1 µL template DNA (15 ng/µL), 10 µL TaqMan®Genotyping Master Mix
(Cat. # 4371355), 1 µL probe (TaqMan®Pre-designed SNP Genotyping Assay), and 8 µL
deionized water. The probe was diluted in Tris EDTA buffer (10 mM Tris–HCl (pH 8.0),
0.1 mM EDTA) (1:1) before the reaction. Polymerase Chain Reaction (PCR) was performed
according to the manufacturer’s specifications using the Bio-Rad CFX Real-Time PCR
System (Hercules, CA, USA). The primers and probes were purchased form Inqaba Biotech
(Pretoria, South Africa) at concentrations of 10 µM. PCR amplification of the target loci
involved amplifying each specific fragment of genomic DNA, which was then genotyped on
the Agena MassARRAY (San Diago, CA, USA) platform. A Multiplex PCR cocktail was then
prepared according to the manufacturer’s instructions. The products were then measured
using the MassARRAY Compact mass spectrometer and Agena real-time detection software
(San Diago, CA, USA). A no-template control was included in every PCR reaction to detect
false positive reactions. Detection of rs675, rs699, rs247616, rs1968905, rs1801278, rs1805087,
rs28362286 and rs67608943 was successful in the participants. Genotypes of the SNPs were
also detected.

2.3. Blood Pressure Measurements

Blood pressure (BP) measurements were conducted using a previously reported
method [20]. The participants were requested to sit quietly for a minimum of 5 min
in a chair with a back support, feet on the floor and arm supported at heart level before the
measurements. The Tensoval® duo control monitor was wrapped firmly around the right
arm wrist consistently to measure systolic and diastolic BP readings in duplicate on two
different days at the same time by a Health Professions Council of South Africa (HPCSA)-
registered nurse. For accuracy, the mean systolic and mean diastolic readings were then
determined and recorded. Hypertension was specified according to the South African
Hypertension Society (SAHS) guidelines at ≥140/90 mmHg.

2.4. Biochemical Measurements

Serum was prepared from the vacutainer blood collection tubes by centrifugation
of whole blood for 15 min at 4500 rpm. Aliquots of the serum were then stored in the
laboratory at −20 ◦C until analysis. Serum apolipoprotein A-IV (Apo A-IV), apolipopro-
tein B (ApoB), high-density lipoprotein cholesterol (HDL-C), homocysteine (hcy), insulin,
lipoprotein (a) (Lipo (a)), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC)
and triglyceride (TG) were measured quantitatively using standardized commercial kits
(Thermo Fisher Scientific, USA) on a Konelab 20i Thermo Scientific autoanalyzer (Thermo
Fisher Scientific, USA). The Konelab 20i Thermo Scientific autoanalyzer is a clinical chem-
istry analyzer that works on colorimetric and immunoturbidimetric principles. Lyophilised
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calibrator and quality control samples from the manufacturer were reconstituted before
use and run before the serum samples to validate the tests. Proprotein convertase subtil-
isin/kexin type 9 (PCSK9) was assessed using an internationally standardized kit from
EIAab® (Eiaab, Wuhan, China). The kit consisted of assay plates with micro-titre wells
pre-coated with antibodies specific to PCSK9 (Eiaab, Wuhan, China). Reagent preparation
included reconstitution of a wash buffer with distilled water, reconstituting a standard with
sample diluent, and preparation of a detection reagent A and B working solution with their
corresponding assay diluents (Eiaab, Wuhan, China). Washing steps were conducted with
the W206—Microplate Washer (Chengdu Empsun Medical Technology Co., Ltd., Chengdu,
China). The final absorbance readings were conducted using a microplate reader (Rayto,
RT-2100C, Shenzhen, China). The plate was immediately read using the M201—ELISA
microplate reader (Chengdu Empsun Medical Technology Co., Ltd., Sichuan, China). These
calibration standards were run in duplicate from which a standard curve was generated to
determine serum PCSK9 levels.

2.5. Development of Latent Variables

In this analysis, the SNP names rs1801278 (SP1), rs1805087 (SP2), rs1968905 (SP3),
rs247616 (SP4), rs28362286 (SP5), rs675 (SP6) and rs699 (SP7) were denoted to enable shorter
identification in the JASP statistical software v.0.16.4.0 for Windows (JASP Team, 2023). The
preliminary analysis using a covariance matrix assay (exploratory factor analysis) showed
that in our population only SP1 (IRS1), SP2 (MTHFR), SP3 (CETP), SP4 (CETP) and SP5
(PCSK9) were strongly correlated; for this reason, only these five were used as indicators
for SNPs. Initially, we attempted to use the usual CVD risk indicators for an extended lipid
profile (elevated TC, TG, LDL-C, HDL-C, Apo A-I, ApoB and Lipo (a)) [21] and metabolic
syndrome (obesity, elevated glucose, BP and lipidaemia) [22]. Nevertheless, we found
that only TC, LDL-C, ApoB and Lipo (a) had statistically significant loadings in the model;
therefore, these four were used as indicators for dyslipidemia. Furthermore, only glucose,
BP and PCSK9 had statistically significant loadings in the model; therefore, these three
were used as indicators for metabolic syndrome. Hence, the other indicators were excluded
from the final diagram.

2.6. Data Analysis and Validation (Structural Equation Modeling)

All the raw data was cleaned and captured in Microsoft Office Excel (Microsoft Corp,
Redmon, WA, USA). A conceptual framework was developed to indicate the possible
relationships between the latent variables (Figure 1). SEM was performed in our sample
based on the hypothesized model in Figure 1. The directional arrows (single-headed)
imply regression, while the double-headed curved arrows in the figure imply a covariance
between two variables (correlation) [23].
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The procedure involved three steps. Firstly, we created the latent variables and the
hypothesis model. The variables were derived from the SNPs and CVR factors in our
population. The SNPs for this study were selected based on their association to CVR
in the literature; namely, rs675 (ApoA-IV), rs699 (AGT), rs247616 and rs1968905 (CETP),
rs1801278 (IRS-1), rs1805087 (MTHFR), rs28362286 and rs67608943 (PCSK9). The CVR fac-
tors that were investigated are glucose, blood pressure (BP), apolipoprotein A-1 (ApoA1),
apolipoprotein B (ApoB), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-
C), insulin, lipoprotein (a) (Lipo(a)), low-density lipoprotein cholesterol (LDL-C), homocys-
teine (hcy), proprotein convertase subtilisin/kexin type 9 (PCSK9) and triglyceride (TG).
This was then followed by confirmatory factor analysis (CFA) which was used to examine
the relationship between the latent variables: SNPs, dyslipidemia and metabolic syndrome
and their respective indicators (CVR). Once this was performed, the model was then fit
using the JASP statistical software v.0.16.4.0 for Windows (JASP Team, 2023) using the
lavaan (v. 0.6–1) package for R [24].

Following the SEM, we estimated and validated the model using the chi-square test
(χ2), root mean square error of approximation (RMSEA), the standardized root mean
square residual (SRMR), comparative fit index (CFI), goodness-of-fit index (GFI) and
Tucker–Lewis index (TLI). The chi-square test (χ2) measures a relationship between two
categorical variables. Hence, a non-significant difference is ideal [25–27]. The root mean
square error of approximation (RMSEA) measures the projected difference between the
population and model-implied population covariance matrices per degree of freedom. A
value of zero signifies a perfect fit while higher values indicate the lack of fit [26,28,29].
The standardized root mean square residual (SRMR) measures the difference between
the observed correlation and the correlation matrix. The comparative fit index (CFI)
explores the model fit by assessing the difference between the data and the hypothesized
model. It ranges from 0.0 to 1.0. A higher CFI value implies a better model fit [22]. The
goodness-of-fit index (GFI) evaluates the difference between the sample covariance matrix
(S) and the estimated covariance. It also ranges from 0.0 to 1.0 [30,31]. The Tucker–Lewis
index (TLI) is a gradational fit index that is generally used in linear mean and covariance
structure modeling. It also ranges from 0.0 to 1.0 [25,26,32]. The term “factor loadings”
indicates the standard coefficients that are observed between the variables and the latent
variables [24,33,34]. We hypothesized relationships between the genetic polymorphisms,
dyslipidemia and metabolic syndrome as risk factors for CVD based on the literature.

3. Results

The factor loadings and standardized coefficients as shown in Figure 2 and Table 1
provide information on the interactions between the latent variables and their respective
indicators. As expected, the indicators for the SNPs and dyslipidemia all indicated signifi-
cant factor loadings, with standardized coefficients ranging from −0.96 to 0.91 (p = <0.001)
and 0.92 to 0.96 (p ≤ 0.001), respectively. The indicators for metabolic syndrome also had
significant coefficients of 0.20 (p = 0.673), 0.36 (p = 0.645) and 0.15 (p = 0.576), but they were
not statistically significant.

There were no significant relationships observed between the SNPs (based on rs1801278,
rs1805087, rs247616, rs1968905 and rs28362286), dyslipidemia (based on TC, LDL-C, ApoB
and Lipo (a)) and metabolic syndrome (based on glucose, BP and PCSK9). The findings
of the SEM analysis that explored the relationships between the SNPs, dyslipidemia and
metabolic syndrome are shown in Table 2, and the goodness-of-fit of the model is summa-
rized in Table 3.
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Figure 2. Structural equation model of the relationships between the SNPs and CVR factors (dys-
lipidemia and metabolic syndrome). KEY: Single-nucleotide polymorphism (SNP); SP1—rs1801278;
SP2—rs1805087; SP3—rs247616; SP4—rs1968905; SP5—rs28362286; dyslipidemia (Dys); glucose
(glu); metabolic syndrome (MtS); blood pressure (BP); apolipoprotein B (ApB); total cholesterol
(TC); lipoprotein (a) (Lpa), low-density lipoprotein cholesterol (LDL); proprotein convertase subtil-
isin/kexin type 9 (PK9).

Table 1. Relationship between latent variables and their indicators.

Latent Variable Indicator Factor Loading p-Value (Significance)

SNPs SP1 0.91 <0.001

SP2 −0.67 <0.001

SP3 −0.96 <0.001

SP4 −0.58 <0.001

SP5 0.59 <0.001

Dyslipidemia TC 0.92 <0.001

LDL-C 0.96 <0.001

ApoB 0.96 <0.001

Lipo (a) 0.45 0.001

Metabolic syndrome Glucose 0.20 0.673

BP 0.36 0.645

PCSK9 0.15 0.576
KEY: SP1—rs1801278; SP2—rs1805087; SP3—rs247616; SP4—rs1968905; SP5—rs28362286. Statistical signifi-
cance = p < 0.05; single-nucleotide polymorphism (SNP); blood pressure (BP); apolipoprotein B (ApoB); total
cholesterol (TC); lipoprotein (a) (Lipo(a)), low-density lipoprotein cholesterol (LDL-C); proprotein convertase
subtilisin/kexin type 9 (PCSK9).
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Table 2. SEM of the relationships between the SNPs and the CVR factors.

Pathway Association p-Value (Significance)

SNPs↔ Dys −0.114 0.440

SNPs↔MetS −0.194 0.612

Dys↔MetS 0.719 0.619
Statistical significance = p < 0.05; single-nucleotide polymorphism (SNP); dyslipidemia (Dys); metabolic
syndrome (MetS).

Table 3. Model fit.

Model x2 df RMSEA RMSEA 90% CI SRMR CFI TLI

SEM 118.483 51 0.164 0.126–0.203 0.087 0.825 0.773

(p ≤ 0.001) Marginal Acceptable Good Moderate/OK

Goodness-of-Fit of the Model

The chi-square statistic for the model was 118.483 with 51 degrees of freedom
(p ≤ 0.001). Regarding the goodness-of-fit indices, RMSEA was 0.164 (90% CI: 0.126–0.203)
suggesting a marginal fit. This is because we had a small population and RMSEA has been
reported to be affected by sample size [26,28,29,35]. The SRMR and CFI were 0.087 and
0.825, respectively, both suggesting an acceptable fit. However, the TLI was 0.773 suggest-
ing a mediocre fit. The SEM analysis produced an overall acceptable model according to
the fit indices [36].

4. Discussion

The goal of our study was to develop and explore the relationships between genetic
polymorphisms and cardiovascular risk factors in an elderly population from a peri-urban
community. Studies have reported that rs1801278 [37], rs1805087 [38], rs247616 [39] and
rs28362286 [40] have demonstrated a clinical significance in the development of CVDs. In
this study, these variables were used as a collective to measure SNPs, and they were statisti-
cally significant. This indicated that they were good measures of SNPs. The indicators for
dyslipidemia in our study were elevated serum TC, LDL-C, ApoB and Lipo (a) which are
some known risk factors for CVD [41]. As anticipated, these parameters had high loadings
for dyslipidemia (p = 0.001). Several studies have shown a high prevalence of dyslipidemia
in South Africa [42–44]. For example, in a multinational study, Dave and co-authors [42]
reported that South Africa had the highest prevalence of dyslipidemia (89.9%) compared to
other countries such as Kenya, Mozambique, Zambia, Senegal, Uganda, Togo and Malawi.
Dyslipidemia is a known major risk factor for CVD with adverse outcomes and should,
therefore, be controlled in the elderly population. Literature has shown that glucose, BP and
PCSK9 are some parameters that may be used to describe metabolic syndrome [45]. In our
study, these were combined to create a measure for metabolic syndrome. It was surprising
to see that even though these variables had loadings for metabolic syndrome, they were not
statistically significant. Previous studies [46–48] have shown a high prevalence of metabolic
syndrome in South Africa which increases with age. This presents an increased risk for
CVDs, especially in the elderly.

According to our hypothesized model, we expected to see an effect of the SNPs on
dyslipidemia [39,49] and metabolic syndrome [37,38,40,50] based on literature. Surprisingly,
in our model, no significant relationship was observed between the SNPs, dyslipidemia
and metabolic syndrome and eventually CVR. This finding affirms our assumption in the
previous chapter that the heterozygous and homozygous genotypes of the SNPs that we
investigated may have independent and possible collective roles in increasing the risk of
CVDs. Our findings lend support to a report by Paththinige and co-authors [51] who stated
that a majority of the genetic polymorphisms that have been discovered have a small effect
on the outcome of CVR-linked conditions such as dyslipidemia and metabolic syndrome.
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There are, however, some conflicting results on the effect of genetic polymorphisms
on the different markers of CVDs. This might be the other reason why there is inadequate
information on the mechanisms and inheritance of these complex conditions. For example,
there is a body of evidence that suggests that some genetic mutations or polymorphisms
that occur in the genes of the lipid profile parameters [51–53] and metabolic markers [54–57]
have a minimal or no effect on the outcomes of these CVR factors. While on the other hand,
some studies have demonstrated a significant effect of polymorphisms on the CVR factors
such as the lipid profile [58,59] and metabolic markers [60,61]. This inconsistency in all
these reports is what makes the exact role of these polymorphisms on CVR factors still
unclear and, therefore, warrants further investigations using a standardized approach with
more robust genetic tools such as SEM [13].

CVDs are a growing challenge with devastating outcomes. Studies have been con-
ducted to try and understand these conditions but there is an urgent need to further
investigate them at a molecular genetic level [2,62]. The discovery and development of
new approaches to study the molecular mechanisms and pathways will offer new under-
standings into these diseases. This may facilitate the production of new prevention and
treatment approaches. Additionally, this might give insights into the discovery of genetic
markers or models that may be used for screening and monitoring CVDs [62]. Genome-
wide association studies (GWASs) and nutrigenomics have been effective in producing a
vast amount of data from genes, polymorphisms and their interactions in diseases such
as type 2 diabetes, hypertension and CVDs [63,64]. SEM has been identified as a robust
multivariate analysis tool that is demonstrated to have an excessive number of possibilities
in research while we see a rise in the amount of genomic data globally [13].

We propose a model that may provide an opportunity to better understand the complex
interaction of genetic polymorphisms in the CETP, IRS1, MTHFR and PCSK9 genes with
the ApoB, BP, glucose, TC, LDL-C, Lipo (a) and PCSK9 levels in a black elderly population
from Sharpeville in South Africa. Models such as this may enable early detection of CVDs,
especially in asymptomatic individuals, allow precise treatment and lessen the mortality
efforts by the department of health or policy makers [51].

From published reports, it appears that the use of indices to assess the fitness of a
model is still adaptable. While there is no benchmark, it is evident that the more fit indices
are applied to a model, the better for its acceptance. Hu and Bentler [26] recommend that at
least two fit indices should be used in combination. In our study, we reported five indices;
namely, CFI, TLI, RMSEA, SRMR and GFI. Table 1 shows all the values which are in line
with the combined fit indices, suggesting that our proposed model is acceptable. We also
presume that the fit index of our model would have been even further improved with a
bigger sample size, better dispersion of the variables (polymorphisms and CVR factors) and
a lesser amount of missing data as shown in the literature [65–68]. To date, there are several
recommended cutoff values for various indices, but none serve as the determining criteria
for all applications [26,29,33,36,65,69]. The resulting model had acceptable goodness-of-
fit measures.

5. Conclusions

The novelty of the present study is that we developed a model to explain some of the
mechanisms that link genetic polymorphisms with the risk factors of CVD (dyslipidemia
and metabolic syndrome). Prior to this study, there were no reports that measured the
pathways that relate the variables of dyslipidemia and metabolic syndrome in this elderly
population. This study used SEM which enabled simultaneous analysis of a combination
of different SNPs from different genes with an extended number of different CVR factors.
Additionally, our findings supplement insights into an area with a paucity of information
known as nutrigenomics. We recommend further studies with such models in diverse
populations with larger samples to clarify and directly highlight the exact roles of genetic
polymorphisms on the CVR factors. Additionally, we recommend potential interven-
tions by the ministry of health and policy makers such as awareness of dyslipidemia and
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metabolic syndrome, regular screening of such conditions, promotion of physical activity
and facilitation of access to treatment.
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