Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Body Weight and General Health
2.3. Blood Tests
2.3.1. Preparation of Blood Serum
2.3.2. Serum Biochemistry Test
2.4. Twenty-Four-Hour Locomotor Activity
2.5. Y-Maze Test
2.6. Motor Skill Learning Test
2.7. Real-Time Polymerase Chain Reaction (PCR)
2.8. Immunohistochemistry
DAPI Staining and Normalization
2.9. In Vitro Assay
2.10. Statistical Analyses
3. Results
3.1. Changes in Body Weight Owing to Loss of Maxillary First Molars and Effect of Capsaicin Diet
3.2. Effects of Missing Maxillary Molars and Capsaicin Feeding on the Memory and Behavior of Mice
3.2.1. Twenty-Four-Hour Locomotor Activity
3.2.2. Memory and Behavior
3.2.3. Microglia- and Neuron-Associated mRNA and Protein Expression in the Hypothalamus and Hippocampus
3.2.4. Astrocyte-Related mRNA and Protein Expression in the Hypothalamus and Hippocampus
3.2.5. AMPA-Related and Trpv1 mRNA and Protein Expression in the Hypothalamus and Hippocampus
3.2.6. Expression of Gfap and Trpv1 mRNA in Cultured Astrocytes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inaba, M.; Okuno, S.; Ohno, Y. Importance of Considering Malnutrition and Sarcopenia in Order to Improve the QOL of Elderly Hemodialysis Patients in Japan in\ the Era of 100-Year Life. Nutrients 2021, 13, 2377. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Kuramoto, E.; Dhar, A.; Wang, R.P.-H.; Seki, H.; Iwai, H.; Yamanaka, A.; Matsumoto, S.-E.; Hara, H.; Michikawa, M.; et al. Neurodegeneration of Trigeminal Mesencephalic Neurons by the Tooth Loss Triggers the Progression of Alzheimer’s Disease in 3×Tg-AD Model Mice. J. Alzheimers Dis. 2020, 76, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, M.; Tada, H.; Wang, J.; Yamada, M.; Kurosawa, M.; Satoh, A.; Ogiso, N.; Shikama, Y.; Matsushita, K. Molar Loss Induces Hypothalamic and Hippocampal Astrogliosis in Aged Mice. Sci. Rep. 2022, 12, 6409. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Niino, M.; Shido, K. A Case-Control Study of Alzheimer’s Disease in Japan—Significance of Life-Styles. Dementia 1994, 5, 314–326. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kondo, K.; Hirai, H.; Nakade, M.; Aida, J.; Hirata, Y. Association between Self-Reported Dental Health Status and Onset of Dementia: A 4-Year Prospective Cohort Study of Older Japanese Adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosom. Med. 2012, 74, 241–248. [Google Scholar] [CrossRef]
- Noble, J.M.; Scarmeas, N.; Papapanou, P.N. Poor Oral Health as a Chronic, Potentially Modifiable Dementia Risk Factor: Review of the Literature. Curr. Neurol. Neurosci. Rep. 2013, 13, 384. [Google Scholar] [CrossRef]
- Takeuchi, K.; Ohara, T.; Furuta, M.; Takeshita, T.; Shibata, Y.; Hata, J.; Yoshida, D.; Yamashita, Y.; Ninomiya, T. Tooth Loss and Risk of Dementia in the Community: The Hisayama Study. J. Am. Geriatr. Soc. 2017, 65, e95–e100. [Google Scholar] [CrossRef]
- Saito, S.; Ohi, T.; Murakami, T.; Komiyama, T.; Miyoshi, Y.; Endo, K.; Satoh, M.; Asayama, K.; Inoue, R.; Kikuya, M.; et al. Association between Tooth Loss and Cognitive Impairment in Community-Dwelling Older Japanese Adults: A 4-Year Prospective Cohort Study from the Ohasama Study. BMC Oral Health 2018, 18, 142. [Google Scholar] [CrossRef]
- Iida, S.; Hara, T.; Araki, D.; Ishimine-Kuroda, C.; Kurozumi, A.; Sakamoto, S.; Miyazaki, T.; Minagi, S. Memory-Related Gene Expression Profile of the Male Rat Hippocampus Induced by Teeth Extraction and Occlusal Support Recovery. Arch. Oral Biol. 2014, 59, 133–141. [Google Scholar] [CrossRef]
- Takehara, S.; Shimoyama, K. Factors Affecting the Motivation for Dental Check-Ups and Anxiety in the Elderly in Tokyo. Gerodontology 2009, 26, 105–111. [Google Scholar] [CrossRef]
- Gao, T.-L.; Yuan, X.-T.; Yang, D.; Dai, H.-L.; Wang, W.-J.; Peng, X.; Shao, H.-J.; Jin, Z.-F.; Fu, Z.-J. Expression of HMGB1 and RAGE in Rat and Human Brains after Traumatic Brain Injury. J. Trauma. Acute Care Surg. 2012, 72, 643–649. [Google Scholar] [CrossRef]
- Kocaelli, H.; Yaltirik, M.; Yargic, L.I.; Ozbas, H. Alzheimer’s Disease and Dental Management. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Little, J.W. Dental Management of Patients with Alzheimer’s Disease. Gen. Dent. 2005, 53, 289–296, quiz 297. [Google Scholar] [PubMed]
- Sofroniew, M.V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 2014, 7, a020420. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal Aging Induces A1-like Astrocyte Reactivity. Proc. Natl. Acad. Sci. USA 2018, 115, E1896–E1905. [Google Scholar] [CrossRef]
- Bussian, T.J.; Aziz, A.; Meyer, C.F.; Swenson, B.L.; van Deursen, J.M.; Baker, D.J. Clearance of Senescent Glial Cells Prevents Tau-Dependent Pathology and Cognitive Decline. Nature 2018, 562, 578–582. [Google Scholar] [CrossRef]
- Cohen, J.; Torres, C. Astrocyte Senescence: Evidence and Significance. Aging Cell 2019, 18, e12937. [Google Scholar] [CrossRef]
- Ebihara, T.; Takahashi, H.; Ebihara, S.; Okazaki, T.; Sasaki, T.; Watando, A.; Nemoto, M.; Sasaki, H. Capsaicin Troche for Swallowing Dysfunction in Older People. J. Am. Geriatr. Soc. 2005, 53, 824–828. [Google Scholar] [CrossRef]
- Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef]
- Huh, H.-C.; Lee, S.-Y.; Lee, S.-K.; Park, N.H.; Han, I.-S. Capsaicin Induces Apoptosis of Cisplatin-Resistant Stomach Cancer Cells by Causing Degradation of Cisplatin-Inducible Aurora-A Protein. Nutr. Cancer 2011, 63, 1095–1103. [Google Scholar] [CrossRef]
- O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the Mystery of Capsaicin: A Tool to Understand and Treat Pain. Pharmacol. Rev. 2012, 64, 939–971. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-J.; Peng, J.; Li, Y.-J. Recent Advances in the Study on Capsaicinoids and Capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kang, Y.-H. Anti-Inflammatory and Antioxidant Activities of Red Pepper (Capsicum Annuum L.) Stalk Extracts: Comparison of Pericarp and Placenta Extracts. J. Funct. Foods 2013, 5, 1724–1731. [Google Scholar] [CrossRef]
- Bal, S.; Sharangi, A.B.; Upadhyay, T.K.; Khan, F.; Pandey, P.; Siddiqui, S.; Saeed, M.; Lee, H.-J.; Yadav, D.K. Biomedical and Antioxidant Potentialities in Chilli: Perspectives and Way Forward. Molecules 2022, 27, 6380. [Google Scholar] [CrossRef]
- Baskaran, P.; Markert, L.; Bennis, J.; Zimmerman, L.; Fox, J.; Thyagarajan, B. Assessment of Pharmacology, Safety, and Metabolic Activity of Capsaicin Feeding in Mice. Sci. Rep. 2019, 9, 8588. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, M.; Huang, Z.; Tian, X.; Li, J.; Pang, Y.; Song, W.; Tian Wang, Y.; Dong, Z. TRPV1 Activation Alleviates Cognitive and Synaptic Plasticity Impairments through Inhibiting AMPAR Endocytosis in APP23/PS45 Mouse Model of Alzheimer’s Disease. Aging Cell 2020, 19, e13113. [Google Scholar] [CrossRef]
- Wang, C.; Huang, W.; Lu, J.; Chen, H.; Yu, Z. TRPV1-Mediated Microglial Autophagy Attenuates Alzheimer’s Disease-Associated Pathology and Cognitive Decline. Front. Pharmacol. 2021, 12, 763866. [Google Scholar] [CrossRef]
- Yamasaki, N.; Maekawa, M.; Kobayashi, K.; Kajii, Y.; Maeda, J.; Soma, M.; Takao, K.; Tanda, K.; Ohira, K.; Toyama, K.; et al. Alpha-CaMKII Deficiency Causes Immature Dentate Gyrus, a Novel Candidate Endophenotype of Psychiatric Disorders. Mol. Brain 2008, 1, 6–21. [Google Scholar] [CrossRef]
- Wahl, F.; Allix, M.; Plotkine, M.; Boulu, R.G. Neurological and Behavioral Outcomes of Focal Cerebral Ischemia in Rats. Stroke 1992, 23, 267–272. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative C(T) Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Shi, P.; Chen, E.-Y.; Cs-Szabo, G.; Chee, A.; Tannoury, C.; Qin, L.; Lin, H.; An, S.; An, H.S.; Zhang, Y. Biglycan Inhibits Capsaicin-Induced Substance P Release by Cultured Dorsal Root Ganglion Neurons. Am. J. Phys. Med. Rehabil. 2016, 95, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Maciel-Barón, L.Á.; Morales-Rosales, S.L.; Silva-Palacios, A.; Rodríguez-Barrera, R.H.; García-Álvarez, J.A.; Luna-López, A.; Pérez, V.I.; Torres, C.; Königsberg, M. The Secretory Phenotype of Senescent Astrocytes Isolated from Wistar Newborn Rats Changes with Anti-Inflammatory Drugs, but Does Not Have a Short-Term Effect on Neuronal Mitochondrial Potential. Biogerontology 2018, 19, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Welz, P.-S.; Zinna, V.M.; Symeonidi, A.; Koronowski, K.B.; Kinouchi, K.; Smith, J.G.; Guillén, I.M.; Castellanos, A.; Furrow, S.; Aragón, F.; et al. BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis. Cell 2019, 177, 1436–1447.e12. [Google Scholar] [CrossRef]
- Takeda, Y.; Oue, H.; Okada, S.; Kawano, A.; Koretake, K.; Michikawa, M.; Akagawa, Y.; Tsuga, K. Molar Loss and Powder Diet Leads to Memory Deficit and Modifies the MRNA Expression of Brain-Derived Neurotrophic Factor in the Hippocampus of Adult Mice. BMC Neurosci. 2016, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Zhou, Q.; Niwa, M.; Kubo, K.-Y. Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review. Int. J. Mol. Sci. 2017, 18, 1687. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, G.; Colín-González, A.L.; Rangel-López, E.; Chavarría, A.; Santamaría, A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid. Redox Signal. 2018, 28, 1626–1651. [Google Scholar] [CrossRef]
- Osborn, L.M.; Kamphuis, W.; Wadman, W.J.; Hol, E.M. Astrogliosis: An Integral Player in the Pathogenesis of Alzheimer’s Disease. Prog. Neurobiol. 2016, 144, 121–141. [Google Scholar] [CrossRef]
- Janssens, P.L.H.R.; Hursel, R.; Westerterp-Plantenga, M.S. Capsaicin Increases Sensation of Fullness in Energy Balance, and Decreases Desire to Eat after Dinner in Negative Energy Balance. Appetite 2014, 77, 44–49. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Smeets, A.; Lejeune, M.P.G. Sensory and Gastrointestinal Satiety Effects of Capsaicin on Food Intake. Int. J. Obes. 2005, 29, 682–688. [Google Scholar] [CrossRef]
- Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin Induces Browning of White Adipose Tissue and Counters Obesity by Activating TRPV1 Channel-Dependent Mechanisms. Br. J. Pharmacol. 2016, 173, 2369–2389. [Google Scholar] [CrossRef]
- Baskaran, P.; Krishnan, V.; Fettel, K.; Gao, P.; Zhu, Z.; Ren, J.; Thyagarajan, B. TRPV1 Activation Counters Diet-Induced Obesity through Sirtuin-1 Activation and PRDM-16 Deacetylation in Brown Adipose Tissue. Int. J. Obes. 2017, 41, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.-Y.; Seong, J. Neonatal Capsaicin Treatment in Rats Affects TRPV1-Related Noxious Heat Sensation and Circadian Body Temperature Rhythm. J. Neurol. Sci. 2014, 341, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Lan, Y.; Xiao, J.; Song, M.; Chen, C.; Liang, C.; Huang, Q.; Cao, Y.; Ho, C.-T. Capsaicin Ameliorates the Redox Imbalance and Glucose Metabolism Disorder in an Insulin-Resistance Model via Circadian Clock-Related Mechanisms. J. Agric. Food Chem. 2019, 67, 10089–10096. [Google Scholar] [CrossRef] [PubMed]
- Price, K.H.; Dziema, H.; Aten, S.; Loeser, J.; Norona, F.E.; Hoyt, K.; Obrietan, K. Modulation of Learning and Memory by the Targeted Deletion of the Circadian Clock Gene Bmal1 in Forebrain Circuits. Behav. Brain Res. 2016, 308, 222–235. [Google Scholar] [CrossRef]
- Hasegawa, S.; Fukushima, H.; Hosoda, H.; Serita, T.; Ishikawa, R.; Rokukawa, T.; Kawahara-Miki, R.; Zhang, Y.; Ohta, M.; Okada, S.; et al. Hippocampal Clock Regulates Memory Retrieval via Dopamine and PKA-Induced GluA1 Phosphorylation. Nat. Commun. 2019, 10, 5766. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Cirillo, C.; Capoccia, E.; Iuvone, T.; Cuomo, R.; Sarnelli, G.; Steardo, L.; Esposito, G. S100B Inhibitor Pentamidine Attenuates Reactive Gliosis and Reduces Neuronal Loss in a Mouse Model of Alzheimer’s Disease. Biomed. Res. Int. 2015, 2015, 508342. [Google Scholar] [CrossRef]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The Glutamate Receptor Ion Channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar]
- Kessels, H.W.; Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009, 61, 340–350. [Google Scholar] [CrossRef]
- Huganir, R.L.; Nicoll, R.A. AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron 2013, 80, 704–717. [Google Scholar] [CrossRef]
- García-Hernández, S.; Rubio, M.E. Role of GluA4 in the Acoustic and Tactile Startle Responses. Hear. Res. 2022, 414, 108410. [Google Scholar] [CrossRef] [PubMed]
- Kita, K.; Albergaria, C.; Machado, A.S.; Carey, M.R.; Müller, M.; Delvendahl, I. GluA4 Facilitates Cerebellar Expansion Coding and Enables Associative Memory Formation. Elife 2021, 10, e65152. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Burek, M.; Britz, S.; Lankamp, F.; Ketelhut, S.; Kemper, B.; Förster, C.; Gorzelanny, C.; Goycoolea, F.M. The Influence of Capsaicin on the Integrity of Microvascular Endothelial Cell Monolayers. Int. J. Mol. Sci. 2018, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Leung, F.W. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci. 2008, 83, 1–5. [Google Scholar] [CrossRef] [PubMed]
Name | Forward | Reverse |
---|---|---|
Mouse Arnt-like 1 (Bmal1) | TGCCACCAATCCATACACAG | TTCCCTCGGTCACATCCTAC |
Mouse Fos (c-Fos) | GGGGACAGCCTTTCCTACTA | CTGTCACCGTGGGGATAAAG |
Mouse Bdnf | TGCAGGGGCATAGACAAAAGG | CTTATGAATCGCCAGCCAATTCTC |
Mouse Aif1 (Iba-1) | CTTTTGGACTGCTGAAGGC | GTTTCTCCAGCATTCGCTTC |
Mouse Rbfox3 (NeuN) | CACCACTCTCTTGTCCGTTTGC | GGCTGAGCATATCTGTAAGCTGC |
Mouse Gfap | TCCTGGAACAGCAAAACAAG | CAGCCTCAGGTTGGTTTCAT |
Mouse s100β | CCCTCATTGATGTCTTCCACC | TCTCCATCACTTTGTCCACC |
Mouse GluA1 | GGACAACTCAAGCGTCCAGA | GTCGGTAGGAATAGCCCACG |
Mouse GluA2 | GCGTGGAAATAGAAAGGGCC | ACTCCAGTACCCAATCTTCCG |
Mouse GluA3 | ACCATCAGCATAGGTGGACTT | ACGTGGTAGTTCAAATGGAAGG |
Mouse GluA4 | GGCCAGGGAATTGACATGGA | CCTTTCGAGGTCCTGTGCTT |
Mouse Trpv1 | CATCTTCACCACGGCTGCTTAC | CAGACAGGATCTCTCCAGTGAC |
Mouse Gapdh | AACCTGCCAAGTATGATGA | GGAGTTGCTGTTGAAGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, M.; Tada, H.; Raju, R.; Wang, J.; Yokoi, H.; Ikuyo, Y.; Yamada, M.; Shikama, Y.; Matsushita, K. Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars. Nutrients 2023, 15, 2471. https://doi.org/10.3390/nu15112471
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars. Nutrients. 2023; 15(11):2471. https://doi.org/10.3390/nu15112471
Chicago/Turabian StyleFurukawa, Masae, Hirobumi Tada, Resmi Raju, Jingshu Wang, Haruna Yokoi, Yoriko Ikuyo, Mitsuyoshi Yamada, Yosuke Shikama, and Kenji Matsushita. 2023. "Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars" Nutrients 15, no. 11: 2471. https://doi.org/10.3390/nu15112471
APA StyleFurukawa, M., Tada, H., Raju, R., Wang, J., Yokoi, H., Ikuyo, Y., Yamada, M., Shikama, Y., & Matsushita, K. (2023). Long-Term Capsaicin Administration Ameliorates the Dysfunction and Astrogliosis of the Brain in Aged Mice with Missing Maxillary Molars. Nutrients, 15(11), 2471. https://doi.org/10.3390/nu15112471