Effects of Preoperative Sarcopenia-Related Parameters on Cardiac Autonomic Function in Women with Obesity Following Bariatric Surgery: A One-Year Prospective Study
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Ethical Characteristics
2.2. Participants and Study Design
2.3. Anthropometric Measurements and Body Composition
2.4. Muscle Function Evaluation
2.5. Blood Pressure and Electrocardiogram Recording
2.6. Heart Rate Variability Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline
3.2. Follow-Up over One Year
4. Discussion
Potential Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Hanatani, S.; Izumiya, Y.; Yamamoto, M.; Araki, S.; Fujisue, K.; Arima, Y.; Takashio, S.; Yamamoto, E.; Kaikita, K.; Matsushita, K.; et al. A simple method of sarcopenia detection can predict adverse cardiovascular events in patients with abdominal obesity. Int. J. Obes. 2021, 45, 2214–2220. [Google Scholar] [CrossRef]
- da Fonseca, G.W.P.; von Haehling, S. Sarcopaenia complicating heart failure. Eur. Heart J. Suppl. 2019, 21, L20–L23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sztajzel, J.; Golay, A.; Makoundou, V.; Lehmann, T.N.; Barthassat, V.; Sievert, K.; Pataky, Z.; Assimacopoulos-Jeannet, F.; Bobbioni-Harsch, E. Impact of body fat mass extent on cardiac autonomic alterations in women. Eur. J. Clin. Investig. 2009, 39, 649–656. [Google Scholar] [CrossRef]
- Carvalho, N.N.C.; de Oliveira Junior, F.A.; da Silva, G.; Baccin Martins, V.J.; Braga, V.A.; da Costa-Silva, J.H.; Fernandes Pimenta, F.C.; de Brito Alves, J.L. Impact of arterial hypertension and type 2 diabetes on cardiac autonomic modulation in obese individuals with recommendation for bariatric surgery. Diabetes Metab. Syndr. Obes. 2019, 12, 1503–1511. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Park, D.; Kim, I.; Won, J.U.; Hwang, J.; Roh, J. Autonomic dysfunction of overweight combined with low muscle mass. Clin. Auton. Res. 2013, 23, 325–331. [Google Scholar] [CrossRef]
- Freitas, V.P.; Passos, R.D.S.; Oliveira, A.A.; Ribeiro, I.J.S.; Freire, I.V.; Schettino, L.; Teles, M.F.; Casotti, C.A.; Pereira, R. Sarcopenia is associated to an impaired autonomic heart rate modulation in community-dwelling old adults. Arch. Gerontol. Geriatr. 2018, 76, 120–124. [Google Scholar] [CrossRef]
- Singh, J.P.; Larson, M.G.; Tsuji, H.; Evans, J.C.; O’Donnell, C.J.; Levy, D. Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension 1998, 32, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Parati, G.; Esler, M. The human sympathetic nervous system: Its relevance in hypertension and heart failure. Eur. Heart J. 2012, 33, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Mortara, A.; Capomolla, S.; Febo, O.; Ferrari, R.; Franchini, M.; Gnemmi, M.; Opasich, C.; et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003, 107, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lira, M.M.P.; de Medeiros Filho, J.E.M.; Baccin Martins, V.J.; da Silva, G.; de Oliveira Junior, F.A.; de Almeida Filho, E.J.B.; Silva, A.S.; Henrique da Costa-Silva, J.; de Brito Alves, J.L. Association of worsening of nonalcoholic fatty liver disease with cardiometabolic function and intestinal bacterial overgrowth: A cross-sectional study. PLoS ONE 2020, 15, e0237360. [Google Scholar] [CrossRef]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D.N.; Faler, B.J.; Choi, Y.U.; Prasad, B.M. Time Course of Blood Pressure Decrease After Bariatric Surgery in Normotensive and Hypertensive Patients. Obes. Surg. 2018, 28, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.G.; Yazdi, F.; Reisin, E. Bariatric Surgery and Hypertension. Am. J. Hypertens. 2017, 31, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Benjamim, C.J.R.; Pontes, Y.M.M.; de Sousa Junior, F.W.; Porto, A.A.; Bueno Junior, C.R.; Marcelino da Silva, A.A.; Ferro Cavalcante, T.C.; Garner, D.M.; Valenti, V.E. Does bariatric surgery improve cardiac autonomic modulation assessed by heart rate variability? A systematic review. Surg. Obes. Relat. Dis. 2021, 17, 1497–1509. [Google Scholar] [CrossRef]
- Gomide Braga, T.; das Gracas Coelho de Souza, M.; Maranhao, P.A.; Menezes, M.; Dellatorre-Teixeira, L.; Bouskela, E.; Le Roux, C.W.; Kraemer-Aguiar, L.G. Evaluation of Heart Rate Variability and Endothelial Function 3 Months After Bariatric Surgery. Obes. Surg. 2020, 30, 2450–2453. [Google Scholar] [CrossRef]
- Zhou, N.; Scoubeau, C.; Forton, K.; Loi, P.; Closset, J.; Deboeck, G.; Moraine, J.J.; Klass, M.; Faoro, V. Lean Mass Loss and Altered Muscular Aerobic Capacity after Bariatric Surgery. Obes. Facts 2022, 15, 248–256. [Google Scholar] [CrossRef]
- Brailoiu, E.; Deliu, E.; Sporici, R.A.; Brailoiu, G.C. Irisin evokes bradycardia by activating cardi-ac-projecting neurons of nucleus ambiguus. Physiol. Rep. 2015, 3, e12419. [Google Scholar] [CrossRef]
- Crispim Carvalho, N.N.; Baccin Martins, V.J.; Modesto Filho, J.; Bandeira, F.; Fernandes Pimenta, F.C.; de Brito Alves, J.L. Relationship between Skeletal Muscle Mass Indexes and Muscular Function, Metabolic Profile and Bone Mineral Density in Women with Recommendation for Bariatric Surgery. Diabetes Metab. Syndr. Obes. 2019, 12, 2645–2654. [Google Scholar] [CrossRef] [Green Version]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Otto, M.; Kautt, S.; Kremer, M.; Kienle, P.; Post, S.; Hasenberg, T. Handgrip strength as a predictor for post bariatric body composition. Obes. Surg. 2014, 24, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press. 2014, 23, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065.
- Romão da Silva, L.F.; de Oliveira, Y.; de Souza, E.L.; de Luna Freire, M.O.; Braga, V.A.; Magnani, M.; de Brito Alves, J.L. Effects of probiotic therapy on cardio-metabolic parameters and autonomic modulation in hypertensive women: A randomized, triple-blind, placebo-controlled trial. Food Funct. 2020, 11, 7152–7163. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G. Hidden Signals-The History and Methods of Heart Rate Variability. Front. Public Health 2017, 5, 265. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.; Palaniswami, M.; Kamen, P. Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol. Heart Circulatory Physiol. 2002, 283, H1873–H1886. [Google Scholar] [CrossRef] [Green Version]
- Sant Anna Junior, M.; Carneiro, J.R.; Carvalhal, R.F.; Torres Dde, F.; Cruz, G.G.; Quaresma, J.C.; Lugon, J.R.; Guimaraes, F.S. Cardiovascular Autonomic Dysfunction in Patients with Morbid Obesity. Arq. Bras. Cardiol. 2015, 105, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Snelder, S.M.; de Groot-de Laat, L.E.; Biter, L.U.; Castro Cabezas, M.; Pouw, N.; Birnie, E.; Boxma-de Klerk, B.M.; Klaassen, R.A.; Zijlstra, F.; van Dalen, B.M. Subclinical cardiac dysfunction in obesity patients is linked to autonomic dysfunction: Findings from the CARDIOBESE study. ESC Heart Fail. 2020, 7, 3726–3737. [Google Scholar] [CrossRef]
- Mattos, S.; Rabello da Cunha, M.; Barreto Silva, M.I.; Serfaty, F.; Tarvainen, M.P.; Klein, M.; Neves, M.F. Effects of weight loss through lifestyle changes on heart rate variability in overweight and obese patients: A systematic review. Clin. Nutr. 2022, 41, 2577–2586. [Google Scholar] [CrossRef]
- Maser, R.E.; Lenhard, M.J.; Peters, M.B.; Irgau, I.; Wynn, G.M. Effects of surgically induced weight loss by Roux-en-Y gastric bypass on cardiovascular autonomic nerve function. Surg. Obes. Relat. Dis. 2013, 9, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, A.; Alexiadou, K.; Liaskos, C.; Argyrakopoulou, G.; Balla, I.; Tentolouris, N.; Moyssakis, I.; Katsilambros, N.; Vafiadis, I.; Alexandrou, A.; et al. Improvement in cardiovascular indices after Roux-en-Y gastric bypass or sleeve gastrectomy for morbid obesity. Obes. Surg. 2013, 23, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Yu, H.J.; Lai, H.S.; Yang, P.J.; Lin, M.T.; Lai, F. Improvement of heart rate variability after decreased insulin resistance after sleeve gastrectomy for morbidly obesity patients. Surg. Obes. Relat. Dis. 2015, 11, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Ibacache, P.; Carcamo, P.; Miranda, C.; Bottinelli, A.; Guzman, J.; Martinez-Rosales, E.; Artero, E.G.; Cano-Cappellacci, M. Improvements in Heart Rate Variability in Women with Obesity: Short-term Effects of Sleeve Gastrectomy. Obes. Surg. 2020, 30, 4038–4045. [Google Scholar] [CrossRef]
- Bobbioni-Harsch, E.; Sztajzel, J.; Barthassat, V.; Makoundou, V.; Gastaldi, G.; Sievert, K.; Chassot, G.; Huber, O.; Morel, P.; Assimacopoulos-Jeannet, F.; et al. Independent evolution of heart autonomic function and insulin sensitivity during weight loss. Obesity 2009, 17, 247–253. [Google Scholar] [CrossRef]
- Perugini, R.A.; Li, Y.; Rosenthal, L.; Gallagher-Dorval, K.; Kelly, J.J.; Czerniach, D.R. Reduced heart rate variability correlates with insulin resistance but not with measures of obesity in population undergoing laparoscopic Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2010, 6, 237–241. [Google Scholar] [CrossRef]
- Lips, M.A.; de Groot, G.H.; De Kam, M.; Berends, F.J.; Wiezer, R.; Van Wagensveld, B.A.; Swank, D.J.; Luijten, A.; Pijl, H.; Burggraaf, J. Autonomic nervous system activity in diabetic and healthy obese female subjects and the effect of distinct weight loss strategies. Eur. J. Endocrinol. 2013, 169, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Gandolfini, M.P.; Coupaye, M.; Bouaziz, E.; Dehoux, M.; Hajage, D.; Lacorte, J.M.; Ledoux, S. Cardiovascular Changes after Gastric Bypass Surgery: Involvement of Increased Secretions of Glucagon-Like Peptide-1 and Brain Natriuretic Peptide. Obes. Surg. 2015, 25, 1933–1939. [Google Scholar] [CrossRef]
- Williams, D.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef]
- Liu, C.; Wei, A.; Wang, T. Irisin, an Effective Treatment for Cardiovascular Diseases? J. Cardiovasc. Dev. Dis. 2022, 9, 305. [Google Scholar] [CrossRef]
Variables | OB (n = 20) | SOP (n = 14) | p-Value |
---|---|---|---|
Age | 40.4 ± 8.5 | 39.0 ± 11.2 | 0.672 |
BMI | 41 ± 4 | 44 ± 4 | 0.131 |
ASM/wt × 100 (%) | 21.1 ± 1.8 | 18.6 ± 1.8 | <0.0001 |
Dominant HS (kg) | 32.5 ± 4.8 | 23.5 ± 3.8 | <0.0001 |
Neck circumference (cm) | 37.9 ± 3.2 | 39.2 ± 2.4 | 0.233 |
Calf circumference (cm) | 44.9 ±4.8 | 42.7 ± 4.1 | 0.288 |
Weight loss (%)—3 MO # | 16.4 (3.3–29.5) | 16.6 (11.9–38.7) | 0.875 |
Weight loss (%)—6 MO | 20.6 ± 8.0 | 24.2 ± 5.7 | 0.159 |
Weight loss (%)—1 Y | 24.3 ± 11.5 | 31.0 ± 9.9 | 0.086 |
SBP (mmHg) | 112 ± 13 | 110 ± 15 | 0.764 |
DBP (mmHg) | 74 ± 9 | 72 ± 7 | 0.502 |
T2DM % (n) | 14.3 (3) | 35.7 (5) | 0.285 |
Hypertension % (n) | 52.4 (11) | 57.1 (8) | 0.944 |
Sleeve gastrectomy % (n) | 23.8 (5) | 28.6 (4) | 0.937 |
Gastric bypass % (n) | 76.2 (16) | 71.4 (10) | 0.937 |
OB (n = 20) | SOP (n = 14) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 3 MO | 6 MO | 1 Y | Baseline | 3 MO | 6 MO | 1 Y | p-Value Time | I | p-Value Group | |
Wt (Kg) | 109.8 ± 13.9 | 91.2 ± 12.6 | 86.9 ± 12.4 | 82.7 ± 13.8 | 106.5 ± 11.1 | 86.8 ± 11.2 | 80.7 ± 10.6 | 73.1 ± 10.2 | <0.001 | 0.483 | 0.125 |
BMI (Kg/m2) | 41 ± 4 | 34 ± 3 | 32 ± 4 | 30 ± 4 | 44 ± 4 | 37 ± 4 | 33 ± 4 | 29 ± 4 | <0.001 | 0.060 | 0.377 |
FFMI | 19.8 ± 1.9 | 19.1 ± 1.7 | 19.0 ± 1.7 | 18.7 ± 1.9 | 20.4 ± 1.8 | 18.9 ± 1.7 | 18.3 ± 1.5 | 18.1 ± 1.8 | <0.001 | 0.120 | 0.663 |
BFP (%) | 49.5 ± 5.1 | 45.9 ± 3.7 | 41.1 ± 5.5 | 39.2 ± 7.1 | 53.3 ± 4.9 | 48.6 ± 3.4 | 44.1 ± 6.3 | 38.0 ± 9.5 | <0.001 | 0.134 | 0.204 |
ASM/wt × 100 (%) | 21.1 ± 1.8 | 22.4 ± 1.2 | 23.9 ± 1.8 | 24.7 ± 2.3 | 18.6 ± 1.8 | 21.2 ± 1.8 | 22.2 ± 2.6 | 24 ± 3.5 | <0.001 | 0.006 | 0.025 |
Dominant HS (kg) | 32.5 ± 4.8 | 30.9 ± 3.5 | 30.0 ± 3.0 | 28.2 ± 4.3 | 23.5 ± 3.8 | 22.5 ± 4.2 | 22.6 ± 4.4 | 21.4 ± 3.6 | 0.002 | 0.400 | <0.001 |
OB (n = 20) | SOP (n = 14) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Baseline | 3 MO | 6 MO | 1 Y | Baseline | 3 MO | 6 MO | 1 Y | p-Value (Time) | I | p-Value (Group) |
SBP, mmHg | 110 ± 11 | 104 ± 10 | 106 ± 12 | 104 ± 12 | 110 ± 15 | 110 ± 18 | 105 ± 9 | 106 ± 10 | 0.129 | 0.513 | 0.588 |
DBP, mmHg | 72 ± 8 | 68 ± 8 | 66 ± 11 | 66 ± 8 | 72 ± 7 | 69 ± 7 | 67 ± 7 | 66 ± 7 | 0.004 | 0.888 | 0.929 |
HR (bpm) | 71.7 ± 1.1 | 63.9 ± 8.7 | 64.4 ± 8.0 | 63.4 ± 7.8 | 77.7 ± 8.5 | 63.4 ± 9.1 | 63.1 ± 9.6 | 62.9 ± 9.5 | 0.000 | 0.387 | 0.685 |
SDHR, bpm | 3.11 ± 0.8 | 2.60 ± 0.8 | 2.81 ± 0.8 | 2.61 ± 0.6 | 3.35 ± 1.4 | 2.71 ±1.3 | 2.83 ± 1.8 | 2.60 ± 0.9 | 0.009 | 0.807 | 0.770 |
SDRR, ms | 38.7 ± 15.5 | 41.0 ± 16.7 | 42.1 ± 13.3 | 41.7 ± 15.0 | 35.9 ±17.9 | 40.2 ± 15.7 | 41.7 ± 23.4 | 36.3 ± 11.8 | 0.614 | 0.597 | 0.789 |
RMSSD, ms | 32.5 ± 17.1 | 41.1 ± 19.8 | 41.9 ± 19.7 | 48.1 ± 29.4 | 25.7 ± 18.3 | 31.2 ± 14.9 | 33.1 ± 16.2 | 30.7 ± 17.5 | 0.226 | 0.485 | 0.043 |
PRR50, ms | 17.2 ± 16.7 | 21.4 ± 19.6 | 24.5 ± 22.6 | 24.2 ±20.2 | 8.2 ± 12.8 | 12.7 ± 13.6 | 14.7 ± 15.4 | 13.9 ± 17.3 | 0.531 | 0.994 | 0.071 |
LF, nu | 42.8 ± 18.4 | 32.6 ± 10.9 | 31.9 ± 12.1 | 30.4 ± 11.1 | 54.8 ± 16.4 | 40.5 ± 16.1 | 40.6 ± 18.8 | 36.9 ± 17.2 | 0.007 | 0.892 | 0.020 |
HF, nu | 55.7 ± 17.1 | 64.3 ± 11.2 | 62.2 ± 14.7 | 64.8 ± 12.2 | 44.1 ± 15.4 | 57.2 ± 15.9 | 56.5 ± 17.0 | 60.3 ± 15.8 | 0.005 | 0.802 | 0.056 |
LF/HF | 1.03 ± 0.95 | 0.58 ± 0.29 | 0.65 ± 0.50 | 0.64 ± 0.48 | 1.60 ± 0.91 | 0.95 ± 0.89 | 1.04 ± 0.99 | 0.76 ± 0.60 | 0.003 | 0.295 | 0.096 |
SD1, ms | 22.9 ± 12.1 | 28.1 ± 14.6 | 31.1 ± 15.9 | 32.5 ± 19.7 | 18.3 ± 12.8 | 24.0 ± 12.2 | 23.2 ± 11.0 | 21.9 ± 12.2 | 0.260 | 0.748 | 0.071 |
SD2, ms | 49.2 ± 19.0 | 48.9 ± 20.2 | 50.9 ± 15.7 | 48.2 ± 12.9 | 46.3 ± 23.1 | 49.5 ± 20.3 | 52.8 ± 31.0 | 46.0 ± 12.7 | 0.554 | 0.994 | 0.901 |
SD2/SD1 | 2.47 ± 0.90 | 1.92 ± 0.61 | 1.95 ± 1.02 | 1.72 ± 0.50 | 2.91 ± 1.04 | 2.30 ± 1.18 | 2.43 ± 1.05 | 2.53 ± 1.21 | 0.092 | 0.480 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispim Carvalho, N.N.; Baccin Martins, V.J.; da Nóbrega, V.A.; de Arruda Neta, A.d.C.P.; Cavalcante da Fonseca, L.A.; Bandeira, F.; de Brito Alves, J.L. Effects of Preoperative Sarcopenia-Related Parameters on Cardiac Autonomic Function in Women with Obesity Following Bariatric Surgery: A One-Year Prospective Study. Nutrients 2023, 15, 2656. https://doi.org/10.3390/nu15122656
Crispim Carvalho NN, Baccin Martins VJ, da Nóbrega VA, de Arruda Neta AdCP, Cavalcante da Fonseca LA, Bandeira F, de Brito Alves JL. Effects of Preoperative Sarcopenia-Related Parameters on Cardiac Autonomic Function in Women with Obesity Following Bariatric Surgery: A One-Year Prospective Study. Nutrients. 2023; 15(12):2656. https://doi.org/10.3390/nu15122656
Chicago/Turabian StyleCrispim Carvalho, Nara Nóbrega, Vinícius José Baccin Martins, Vinícius Almeida da Nóbrega, Adélia da Costa Pereira de Arruda Neta, Luís Antônio Cavalcante da Fonseca, Francisco Bandeira, and José Luiz de Brito Alves. 2023. "Effects of Preoperative Sarcopenia-Related Parameters on Cardiac Autonomic Function in Women with Obesity Following Bariatric Surgery: A One-Year Prospective Study" Nutrients 15, no. 12: 2656. https://doi.org/10.3390/nu15122656
APA StyleCrispim Carvalho, N. N., Baccin Martins, V. J., da Nóbrega, V. A., de Arruda Neta, A. d. C. P., Cavalcante da Fonseca, L. A., Bandeira, F., & de Brito Alves, J. L. (2023). Effects of Preoperative Sarcopenia-Related Parameters on Cardiac Autonomic Function in Women with Obesity Following Bariatric Surgery: A One-Year Prospective Study. Nutrients, 15(12), 2656. https://doi.org/10.3390/nu15122656