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Abstract: In this randomized, double-blind triple-crossover study (NCT05142137), the digestive
tolerance and safety of a novel, slowly digestible carbohydrate (SDC), oligomalt, an α-1,3/α-1,6-
glucan α-glucose-based polymer, was assessed in healthy adults over three separate 7-day periods,
comparing a high dose of oligomalt (180 g/day) or a moderate dose of oligomalt (80 g/day in
combination with 100 g maltodextrin/day) with maltodextrin (180 g/day), provided as four daily
servings in 300 mL of water with a meal. Each period was followed by a one-week washout. A total
of 24 subjects (15 females, age 34 years, BMI 22.2 kg/m2, fasting blood glucose 4.9 mmol/L) were
recruited, of whom 22 completed the course. The effects on the primary endpoint (the Gastrointestinal
Symptom Rating Score (GSRS)) showed a statistically significant dose dependency, albeit of limited
clinical relevance, between a high dose of oligomalt and maltodextrin (mean (95% CI) 2.29 [2.04,
2.54] vs. 1.59 [1.34, 1.83], respectively; difference: [−1.01, −0.4], p < 0.0001), driven by the GSRS-
subdomains “Indigestion” and “Abdominal pain”. The GSRS difference ameliorated with product
exposure, and the GSRS in those who received high-dose oligomalt as their third intervention period
was similar to pre-intervention (mean ± standard deviation: 1.6 ± 0.4 and 1.4 ± 0.3, respectively).
Oligomalt did not have a clinically meaningful impact on the Bristol Stool Scale, and it did not cause
serious adverse events. These results support the use of oligomalt across various doses as an SDC in
healthy, normal weight, young adults.

Keywords: clinical trial; dietary carbohydrate; food; gastrointestinal tolerance

1. Introduction

Carbohydrates represent a large family of heterogenous molecules derived from
carbon, hydrogen, and oxygen that can be naturally occurring or derived. Dietary carbohy-
drates, also called “glycemic carbohydrate”, are a major macronutrient for both humans
and omnivorous animals, and it is recommended that adults in western countries obtain
approximately half their daily caloric intake from dietary carbohydrates. This is illustrated
by a variety of dietary guidelines, such as The Dietary Guidelines for Americans, which
recommend that carbohydrates make up 45–65% of total daily calories in people aged two
years old and older [1]. In other regions of the world, in particular in Asia, the percentage
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consumed in reality can be even higher [2]. While the absolute minimum dietary require-
ment for glycemic carbohydrates depends on the amount of fat and protein also being
ingested, the European Food Safety Authority (EFSA) recommends an intake of 130 g/day
to cover the need of glucose for the brain, with a minimum of 50 to100 g per day to prevent
ketosis [3]. Of the ingested carbohydrates, approx. 60% is in the form of polysaccharides,
mainly starch, whereas the disaccharides sucrose and lactose contribute approximately 30%
and 10%, respectively [4]. Monosaccharides (such as glucose and fructose) are naturally
present in fruits and found in manufactured foods and drinks.

Digestible carbohydrates are an important source of energy for most mammalian cells,
including as the primary source of fuel for the brain. They are also used as sweeteners
(mostly sucrose, glucose, and fructose) and to add texture, bulk, and increase appearance
and preservation/shelf life of many foods [4]. However, excess ingestion of sugars and
carbohydrates that are rapidly digested can lead to a number of unfavorable metabolic
alterations, e.g., increasing triglycerides, free fatty acids, and lipids [5–8], and are associated
with several health conditions (e.g., gout, fatty liver, obesity, type 2 diabetes mellitus,
cardiovascular disease). Therefore, several scientific interest groups in the field of nutrition
have issued recommendations on the amount of added sugar to be consumed; these include
the World Health Organization (WHO), which recommends an upper limit of free sugars at
10% of calories, with an ultimate goal of reducing sugars consumption to 5% of calories [9],
and the American Heart Association Nutrition Committee, which recommends that women
and men consume no more than 100 and 150 kcal of added sugar per day, respectively [10].

A growing interest in the health and food industry is therefore focused on the use
of complex dietary carbohydrates that are slowly digested and can substitute, or at least
reduce the amount of, the less-desired rapidly digestible carbohydrates. Unlike fiber,
defined by the WHO and Codex Alimentarius as all carbohydrates that are neither digested
nor absorbed in the small intestine and which have a degree of polymerization (DP) of ten or
more monomeric units [11], slowly digestible carbohydrates (SDC) are completely digested,
and they are defined as “carbohydrates that are likely to be completely digested in the small
intestine but at a slower rate” [12]. Since SDC, due to their structural complexity, are fully
but slowly digested throughout the small intestine, their net digestion profile should result
in a less-pronounced glycemic response, coupled with a lower insulin requirement [13].

There have been several innovations and developments that have aimed to identify an
appropriate SDC [14], which may have multiple applications for use, e.g., to replace more
rapid carbohydrates in food matrices while still being thermally stable and compatible with
liquid nutrition drinks and enteral formula manufacturing. Novel α-glucans, a large group
of linear, branched, or cyclic oligo- and polysaccharides of D-glucose, where the glucose
moieties are joined by either [α-D-Glcp-(1↔2)-α-D-Glcp], [α-D-Glcp-(1↔3)-α-D-Glcp], [α-
D-Glcp-(1↔4)-α-D-Glcp], or [α-D-Glcp-(1↔6)-α-D-Glcp] glycosidic linkages [15], represent
one such class of SDC.

This study evaluated the tolerability of oligomalt, a novel SDC (formerly also known
as alternan saccharide (AS 15)) with a DP of approximately 15 relative to a rapidly available
carbohydrates (maltodextrin), in healthy individuals. Since it is anticipated that oligomalt is
slower to digest than a readily available carbohydrate (such as corn syrup or maltodextrin),
albeit still fully digestible [16], this study aimed to specifically investigate the GI tolerability
of oligomalt when taken sub-chronically.

2. Materials and Methods
2.1. Study Design and Participants

In this single-centre, randomized-controlled, double-masked, three-period, three-
intervention, cross-over study, participants consumed two different doses of the investi-
gational product, or a control product, for 7 consecutive days. The study protocol was
approved by the Institutional Review Board of Orange County Research Center, USA,
and Temasek Polytechnic, Glycemic Index Research Unit, Singapore, and the study was
carried out in compliance with the Harmonized Tripartite Guideline for Good Clinical
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Practice from the International Conference on Harmonisation [17] and the Declaration of
Helsinki [18].

2.2. Inclusion and Exclusion Criteria

Eligible volunteers of any gender were enrolled in the study if, following informed
signed consent, they fulfilled the inclusion criteria. The key inclusion criteria were as
follows: male or female, self-reported to be healthy, age 18–65 years, BMI 18.5–29.9 kg/m2,
and having access to a smartphone with android or iOS version compatible with “Patient
Cloud application”. Key exclusion criteria included fasting plasma glucose ≥6.1 mmol/L
at screening, type 1 or type 2 diabetes, known food allergy or intolerance to the test product,
any treatment with medications known to affect gastric motility, or any condition known to
affect gastro-intestinal integrity and food absorption.

A further exclusion criterion was the habitual consumption of more than four servings
per day of high-fiber food or an extreme dietary habit low in carbohydrates. The former was
pragmatically assessed with the habitual dietary fiber intake short food frequency question-
naire (DFI-FFQ) [19], which derives a score (in grams) based on the participant’s recall of
average servings over the last year based on ingestion of fruit, vegetables, breads and cereals,
nuts and seeds, and legumes (scores > 35 g/day was considered high), while the latter was
based on three elimination questions (1: Do you eat any serving of any fruit during a typical
week? 2: Do you eat/drink any serving containing sugar during a typical week (soft drinks,
candy, juice, sports drink, chocolate, cakes, buns, pastries, ice cream and breakfast cereals)?
3: Do you eat any serving of any starch during a typical week (bread, pasta, rice, potatoes,
French fries, potato chips, porridge, muesli, beer, vegetables etc.)?) and if the answer was yes
to any one of these, they were not considered to be undertaking extreme dieting.

Moreover, participants who had any score of a “severe” symptom for any of the
symptoms included in the Gastrointestinal Symptom Rating Scale (GSRS), a validated
questionnaire exploring the presence and severity of gastrointestinal (GI) symptoms over
the previous 7 days [20,21], were excluded. A full list of in-/exclusion criteria is provided
in the Supplemental Material, Table S1.

2.3. Study Conduct and Schemes

During the different 7-day sequences with investigational product consumption
(Schematic study illustration in the Supplemental Material, Figure S1), participants con-
sumed either 180 g oligomalt/day (as 45 g 4 times daily), 80 g oligomalt (as 20 g 4 times
daily) plus 100 g maltodextrin (as 25 g 4 times daily), or 180 g maltodextrin alone (as
45 g 4 times daily). The total daily dosages to be tested reflected a high daily dose (i.e.,
180 g/day), e.g., the quantity an individual may receive from a sole source of nutrition
(enteral nutrition) or a realistic serving dose (i.e., 45 g) for a meal-replacement product
or oral nutritional supplement. To understand the GI effect of oligomalt specifically, the
overall carbohydrate amount was kept constant while the amount of oligomalt and easily
digested maltodextrin were adjusted to reflect the desired oligomalt dose provided. The
products were consumed under free living conditions outside of the research facility.

Given that the caloric load was 180 kcal per serving (or 720 kcal total/day), all par-
ticipants received general nutritional recommendations and were asked to pay specific
attention to their consumption of grains and cereals and sugar-rich foods and beverages
since the study contributed to an excess intake of energy.

2.4. Interventional Products

The maltodextrin used in this study was “Glucidex® 40” (Roquette Frères, Lestrem,
France), a maltodextrin with a dextrose equivalent equal to 40. Oligomalt, the novel α-
glucan polymer [α-D-Glcp-(1↔3)-α-D-Glcp], [α-D-Glcp-(1↔6)-α-D-Glcp], was produced in
collaboration with Evoxx technologies GmBH (Monheim am Rhein, Germany) as previously
described [16]. In short, oligomalt is produced via transglycosylation reaction catalyzed by
the enzyme, alternansucrase, with sucrose as a donor of one glucose moiety and maltose
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as the acceptor substrate. This reaction results in a linear oligosaccharide with alternating
α1-6 and α1-3 linkages.

The oligomalt used in this study was comprised of small quantities of free sugars
(<5.5% sugars, of which <0.2% is fructose and 5.3% is leucrose but zero glucose, sucrose,
isomaltose, or maltose), with an average ± standard deviation DP of 16.5 ± 0.1 and a
molecular weight of 2.7 ± 0.02 kDa.

The test products were provided as sachets (i.e., powders with approx. 4% moisture),
each containing 45 g of carbohydrates (either 45 g oligomalt, 20 g oligomalt + 25 g mal-
todextrin, or 45 g maltodextrin), which were to be dissolved in 300 mL water and taken
together with a meal.

2.5. Endpoints

The predefined primary objective of this trial was to investigate the gastrointestinal
tolerability of oligomalt when consumed daily for 7 consecutive days at two different
dosages (80 g/day in combination with 100 g of maltodextrin/day and 180 g/day, respec-
tively) as compared to maltodextrin (180 g/day), based on the GSRS questionnaire [20,21].
The effects on GSRS subdomains and the relationship between the intervention period,
or intervention sequence, and GSRS were analysed post hoc. The secondary objectives of
this trial were to investigate gastrointestinal tolerability based on daily stool evaluation
and assessed for each bowel movement and stool frequency, by the Bristol Stool Scale
questionnaire [22,23]. In addition to GI tolerability, any adverse events were captured over
the course of the study.

2.6. GSRS

The GSRS is a 15-item instrument designed to assess the symptoms associated with
common GI disorders. It has 5 subscales (reflux, diarrhea, constipation, abdominal pain,
and indigestion). Responses to the items range from 1 to 7, with higher scores represent-
ing more discomfort (1: No discomfort at all; 2: Slight discomfort; 3: Mild discomfort;
4: Moderate discomfort; 5: Moderately severe discomfort; 6: Severe discomfort; 7: Very
severe discomfort). It has been used in multiple studies across multiple conditions and is
well validated [20,21]. The GSRS delivers one overall score and five different subdomain
scores. The latter is obtained by combining different questionnaire items into a reflux score
(average score of items 2 and 3), diarrhea score (average score of items 11, 12, and 14),
constipation score (average score of items 10, 13, and 15), abdominal pain score (average
score of items 1, 4, and 5), and indigestion score (average score of items 6, 7, 8, and 9). The
total GSRS score is the average of all five sub-scores.

2.7. Bristol Stool Scale

The Bristol Stool Scale is a scale that classifies stools, ranging from the hardest to the
softest, and defines 7 types of stool: hard (types 1–2), normal (types 3–5), and loose stools
(types 6–7) [22,23]. The Bristol Stool Scale also indirectly reflects gut transit time [24], and
the instrument has been widely used in different populations and been found to have high
validity and reliability [25].

2.8. Sample Size Estimation

The sample size was determined based on previous safety studies carried out with
other SDCs on feasibility considerations at the investigational site, as well as considera-
tions pertaining to not exposing participants unnecessarily to study products and study
procedures. Thus, no formal sample size calculation was performed; however, a total of
n = 20 participants completing the study was considered necessary to provide meaningful
insights for longer-term tolerability and GI digestibility of oligomalt. Accounting for an
expected dropout of a maximum of 15%, we aimed to recruit 24 participants.
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2.9. Blinding and Randomisation

Each participant consumed all three test products in a sequence (Supplemental Mate-
rial, Figure S1) according to a crossover design. To account for potential systematic bias, all
6 possible sequences were used. Randomization was performed using iMedidata RTSM.
The research staff and the participants were unaware of the assigned intervention sequence.

2.10. Product Administration

The investigational product and the comparator were packed as individual doses of
45 g, and each individual was to take the product 4 times daily for one week. Participants
were asked to dissolve the powder in 300 mL of water at room temperature and were
also asked to take at least 3 of their 4 daily doses with a meal at timepoints 08:00 ± 2 h,
12:00 ± 2 h, 16:00 ± 2 h, and 20:00 ± 2 h (minimum time interval between individual
product intakes was ≥3 h). Upon ingestion of the last dose on day 7, a minimum washout
of 7 days was required before the next intervention period began, in random sequence, as
determined by the randomization system (3 × 3 crossover).

2.11. Data Collection

The participant-reported outcomes. i.e., questionnaires, were collected using the iMedi-
data patient cloud (i.e., in a remote set up), and each participant received a unique activation
code that needed to be used to generate their personal unique pin. Participants were asked to
report the following on a daily basis: product compliance, GSRS, and Bristol Stool Scale.

2.12. Statistical Analysis

The effects of the interventions on the GSRS (overall effect, subdomain effects, and
effects related to intervention period) and Bristol Stool Scale were assessed using a linear
mixed model, and they accounted for information from all 7 days of intervention. A p-value
of <0.05 was conventionally considered significant. Analysis of baseline characteristics,
adverse events and stool frequency according to Bristol Stool Scale, as well as the post hoc
analysis of GSRS by product and intervention sequence, were summarized descriptively.

3. Results

The first participant was screened 16 August 2021, and the third intervention sequence
ended on 11 October 2021. A total of 24 subjects were enrolled, randomized, and had at least
one investigational product intake. Two subjects dropped out, which resulted in 22 subjects
completing all periods and sequences, reflecting a high adherence to study procedures and
product compliance. The reasons for participants dropping out were that one person had
an adverse event after the first period (inflammation of the knee), which was not related
to the product, and the other withdrew from the study without further explanation. All
24 participants were included in the analysis set both for efficacy and safety.

The population, with mean age 34 years, was healthy (Table 1) by intention, reflected
by BMI 22.2 kg/m2, systolic/diastolic blood pressure 119/78 mmHg, and fasting blood
glucose 4.9 mmol/L at screening. None of the included participants habitually ate high
volumes of fiber or followed any extreme diet.
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Table 1. Baseline characteristics of the study population: n (%) or mean (SD).

Description n (%), or Mean (SD)

N 24 (100%)
Age, years 33.7 (9.02)

Sex, female/male 15 (62.5%)/9 (37.5%)
Weight, kg 65.3 (11.85)

Body Mass Index, kg/m2 22.2 (2.64)
Heart rate, beats per minute 69.6 (12.28)

Systolic Blood Pressure, mmHg 118.5 (14.54)
Diastolic Blood Pressure, mmHg 78.4 (10.07)

Blood glucose, mmol/L 4.9 (0.44)
Abbreviations: SD—standard deviation; kg—kilogram; mmHg—millimeter of mercury.

3.1. Effects on GSRS

Figure 1 depicts the overall response to the GSRS, i.e., regardless of the intervention
period (i.e., week 1, week 2, or week 3) or intervention sequence (i.e., which of the products
that was introduced first, second, and third), and Figure 2 depicts the GSRS subdomain
scores. As can be seen, a slight oligomalt dose dependency for the GSRS was observed,
with a statistically significant difference between maltodextrin and the highest oligomalt
dose (oligomalt 180 g/day mean (95% CI) 2.29 [2.04, 2.54] vs. maltodextrin 180 g/day
1.59 [1.34, 1.83], difference: [−1.01, −0.4], p < 0.0001) but not between the intermediate
oligomalt dose (oligomalt 80 g + maltodextrin 100 g/day 1.84 [1.58, 2.09] and maltodextrin
180 g/day 1.59 [1.34, 1.83], difference: [−0.55, 0.05], p = 0.1024). The clinical significance of
this result is considered to be limited.
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between different interventions are expressed with 95% CI and p-values. Abbreviations: g—day;
CI—confidence interval.

The subdomain scores of the GSRS (Figure 2) showed that reflux (oligomalt 180 g/day
1.50 [1.24, 1.77], oligomalt 80 g + maltodextrin 100 g/day 1.26 [0.99, 1.52], maltodextrin
180 g/day 1.32 [1.06, 1.57]), constipation (oligomalt 180 g/day 1.84 [1.52, 2.17], oligomalt
80 g + maltodextrin 100 g/day 1.41 [1.09, 1.73], maltodextrin 180 g/day 1.35 [1.03, 1.66]),
and abdominal pain (oligomalt 180 g/day 1.82 [1.51, 2.14], oligomalt 80 g + maltodextrin
100 g/day 1.63 [1.31, 1.95], maltodextrin 180 g/day 1.47 [1.16, 1.79]) were within the
reference range (~1.4,. 1.6, and 1.4, respectively [26]). There were no significant differences
for reflux between any dose of oligomalt and maltodextrin (p > 0.05); whereas a statistically
significant but not clinically relevant differences between the highest oligomalt dose and
maltodextrin for constipation (difference [−0.89, 0.10], p = 0.0156) and abdominal pain
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(difference: [−0.67, −0.04], p = 0.0289) was seen. There was also a significantly higher
score for the highest dose of oligomalt group vs. maltodextrin alone for diarrhea (oligomalt
180 g/day 2.38 [1.97, 2.80], oligomalt 80 g + maltodextrin 100 g/day 1.97 [1.56, 2.38],
maltodextrin 180 g/day 1.46 [1.06, 1.86]; difference: [−1.45, −0.4], p = 0.0009). With the
normative score for diarrhea ~1.4 [26], this indicates a tendency for more loose stools with
the high dose of oligomalt. Similarly, a significantly higher score for indigestion with
the highest dose of oligomalt vs. maltodextrin alone was observed (oligomalt 180 g/day
3.30 [2.84, 3.76], oligomalt 80 g + maltodextrin 100 g/day 2.49 [2.03, 2.95], maltodextrin
180 g/day 2.08 [1.63, 2.53]; difference: [−1.76, −0.67], p < 0.0001), but all groups appeared
to score higher than normative data (~1.8) for the indigestion subdomain.
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The corresponding overall GSRS value (regardless of intervention) by period (i.e.,
week 1, week 2, or week 3) is depicted in Figure 3, and it indicates a dynamic pattern with
a higher overall GSRS score for the first intervention period (2.08 [1.84, 2.33]) than the
second (1.98 [1.73, 2.23]) and third periods (1.65 [1.40, 1.90]), indicating a physiologic GI
adaption to all products with time. There was a significant difference between period 1 and
3 (difference: [0.13, 0.74], p = 0.0062) and between period 2 and 3 (difference: [0.02, 0.63],
p = 0.0370). Of note, within period 3, the overall GSRS score was within the reference range
(~1.6–1.7) [26].
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This observation was also supported by more granular analysis assessing intake of
oligomalt or maltodextrin by intervention sequence (Figure 4); for examples, in people who
received oligomalt 180 g/day as their third intervention sequence (i.e., after having received
maltodextrin 180 g/day and oligomalt 80 g + maltodextrin 100 g/day in the preceding
weeks), the mean ± standard deviation GSRS was 1.6 ± 0.4, which was numerically no
different from their baseline GSRS (1.4 ± 0.3).

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 3. Total score for Gastrointestinal Symptom Rating Scale by period regardless of interven-
tion. The figure shows the mean (95% CI) (Y-axis), and the differences between different periods are 
expressed with 95% CI and p-values. Abbreviations: CI—confidence interval. 

This observation was also supported by more granular analysis assessing intake of 
oligomalt or maltodextrin by intervention sequence (Figure 4); for examples, in people 
who received oligomalt 180 g/day as their third intervention sequence (i.e., after having 
received maltodextrin 180 g/day and oligomalt 80 g + maltodextrin 100 g/day in the pre-
ceding weeks), the mean ± standard deviation GSRS was 1.6 ± 0.4, which was numerically 
no different from their baseline GSRS (1.4 ± 0.3). 

 
Figure 4. Total Gastrointestinal Symptom Rating Scale by intervention and intervention period. The 
figure shows the mean Gastrointestinal Symptom Rating Scale (SD) (Y-axis) over the three treatment 
periods by intervention and published normative score. Baseline denotes score at V1. Abbreviations: 
g—day; SD—standard deviation. 

3.2. Effects on Stool Consistency 
Figure 5 displays the effects on stool consistency, and as indicated, there were no 

clinically relevant differences in Bristol Stool Scale across intervention groups, which were 
all considered to be within the normal range of 3–5 [23] (oligomalt 180 g/day 4.43 [4.13, 
4.74], oligomalt 80 g + maltodextrin 100 g/day 4.47 [4.16, 4.77], maltodextrin 180 g/day 4.08 

Figure 4. Total Gastrointestinal Symptom Rating Scale by intervention and intervention period. The
figure shows the mean Gastrointestinal Symptom Rating Scale (SD) (Y-axis) over the three treatment
periods by intervention and published normative score. Baseline denotes score at V1. Abbreviations:
g—day; SD—standard deviation.

3.2. Effects on Stool Consistency

Figure 5 displays the effects on stool consistency, and as indicated, there were no
clinically relevant differences in Bristol Stool Scale across intervention groups, which were
all considered to be within the normal range of 3–5 [23] (oligomalt 180 g/day 4.43 [4.13,
4.74], oligomalt 80 g + maltodextrin 100 g/day 4.47 [4.16, 4.77], maltodextrin 180 g/day
4.08 [3.79, 4.38]). However, statistically significant differences were noted between both
the 80 g oligomalt + maltodextrin 100 g/day group and the maltodextrin 180 g/day group
(difference: [−0.7, −0.07], p = 0.02), as well as the 180 g/day oligomalt and maltodextrin
180 g/day group (difference [−0.66, −0.04], p = 0.03), but without clinical relevance.
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Stool frequency by product and intervention sequence (Figure 6), obtained from the
number of entries into the Bristol Stool Scale questionnaire, also supports this observation.
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3.3. Safety and Adverse Events

Adverse events (Table 2) occurred in 60.9% of the subjects while receiving the highest
180 g/day oligomalt dose, 56.5% during the 80 g/day dose, and 29.2% in the maltodex-
trin group alone, with higher proportions dose-dependently considered to be related to
oligomalt. The numerical higher number of adverse events with oligomalt was driven
by the system organ class “Gastrointestinal disorders”, where a numerical imbalance was
seen for the preferred terms “Flatulence”, “Abdominal distension”, and “Abdominal pain”,
which align with the results of the GSRS. There were no reports of serious adverse events
or adverse events leading to discontinuation.

Table 2. Adverse events (AEs). Safety analysis set: subjects with events (%).

Oligomalt 80 g +
Maltodextrin 100 g Oligomalt 180 g/Day Maltodextrin 180 g/Day

N 23 23 24
Subjects with ≥1 AE 13 (56.5%) 14 (60.9%) 7 (29.2%)
Subjects with ≥1 serious AE 0 (0%) 0 (0%) 0 (0%)
Subjects with AE by worst
severity

• Mild
• Moderate
• Severe

3 (13%)
7 (30.4%)
3 (13%)

3 (13%)
8 (34.8%)
3 (13%)

3 (12.5%)
4 (16.7%)

0 (0%)
Subjects with ≥1 product
related AE

• Probable
• Unlikely
• Unrelated

8 (34.8%)
2 (8.7%)
3 (13%)

12 (52.2%)
0 (0%)

2 (8.7%)

4 (16.7%)
0 (0%)

3 (12.5%)
AEs by System Organ Class (SOC) and Preferred Terms (PT)

GI disorders 10 (43.5%) 12 (52.2%) 3 (12.5%)

- Abdominal distension 2 (20%) 9 (75%) 1 (33.3%)

- Abdominal pain 1 (10%) 4 (33.3%) 0

- Abdominal pain upper 0 0 1 (33.3%)
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Table 2. Cont.

Oligomalt 80 g +
Maltodextrin 100 g Oligomalt 180 g/Day Maltodextrin 180 g/Day

- Constipation 2 (20%) 1 (8.3%) 1 (33.3%)

- Diarrhea 2 (20%) 1 (8.3%)

- Feces discolored 1 (10%) 0 0

- Flatulence 1 (10%) 5 (41.7%) 1 (33.3%)

- Gastric disorder 1 (10%) 0 0

- GI pain 1 (10%) 1 (8.3%) 0

- GI sounds abnormal 0 1 (8.3%) 0

- Nausea 1 (10%) 2 (16.7%) 1 (33.3%)

- Vomiting 1 (10%) 0 0
General disorders and
administration site conditions 1 (4.3%) 0 0

Infections and infestations 3 (13%) 0 1 (4.2%)
Metabolism and nutrition
disorders 1 (4.3%) 0 0

Musculoskeletal and
connective tissue disorders 0 2 (8.7%) 0

Nervous system disorders 0 3 (13%) 2 (8.3%)
Reproductive system and
breast disorders 1 (4.3%) 1 (4.3%) 0

Respiratory, thoracic, and
mediastinal disorders 2 (8.7%) 0 1 (4.2%)

Skin and subcutaneous tissue
disorders 0 0 1 (4.2%)

4. Discussion

This study, in 24 healthy adult volunteers (15 females, age 34 years, BMI 22.2 kg/m2,
fasting blood glucose 4.9 mmol/L) with a moderate to low pre-enrollment fiber intake, in-
vestigated the 7-day tolerability and safety of ingestion of a novel SDC, oligomalt, ingested
at high or moderately high doses. We observed that oligomalt ingested four times daily,
either at 180 g/day or 80 g/day, was reasonably well tolerated relative to the ingestion
of 180 g/day of maltodextrin; it did not cause serious adverse events and demonstrated
high compliance. Of note, the study population had a GI adaptation to oligomalt, which
was reflected by an overall higher 7-day GSRS in the highest dose group and driven by
subdomain scores for indigestion and abdominal pain, which were ameliorated over time,
and by the intervention period, reaching norm values during in last period [25].

In consideration of a “minimal important difference” (MID), which is the smallest
difference in the scores that is perceived as significant by the clinician or the patient [26], this
has not uniformly been defined for GSRS, although the MID for GSRS in renal transplant
recipients has been proposed around 0.6 for abdominal pain, 0.8 for reflux, 0.4 for diarrhea,
0.7 for indigestion, and 0.7 for constipation [25]. As such, taking into account the adaptation
that occurs, there does not seem to be a clinically significant difference between high dose
of oligomalt and maltodextrin. The higher proportion of reported adverse events, which
was driven by GI adverse events, particularly with the highest dose, probably also reflects
this phenomenon, i.e., the overall numbers of adverse events reflect a higher number of
events with early onset and do not adequately account for the observed period where GSRS
is ameliorated. The clinical relevance of the early increase in GSRS is likely not clinically
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significant and is in line with expectations in a population with a low pre-intervention
intake of fiber products when exposed to a SDC [27,28], where an adaptation is expected.

The evolutive the GSRS pattern, with tolerability developed over time, therefore
underscores the product’s tolerability and safety profile, and is also supported by a previous
investigation of oligomalt that found that a 33 g dose was completely metabolized as
assessed with a hydrogen breath test over 4 h [16].

Another observation from this study was that there was no clinically meaningful
differential effect on stool consistency according to the Bristol Stool Scale. However, the
high-dose oligomalt resulted in a slight signal for increase in loose stool, aligned with
higher GSRS subdomain diarrhea score. Similar to the tolerability, the Bristol Stool Scale
score was subject to a GI adaptation, as indicated by the intervention sequence analysis
that found that the stool frequency was numerically lower at the third sequence compared
to the first.

Limitations and Strengths

The key limitation of this study was that exposure to individual products did not
extend beyond 7 consecutive days. However, in reality, participants were exposed to
oligomalt for at least 14 days of the overall 21 days of intervention, i.e., over two study
sequences, albeit with different doses and a washout period, which provides reassurance
with respect to longer-term tolerability. Additionally, this study was a single-center study,
involving a limited number of participants of predominantly Caucasian origin who did
not have any underlying health conditions, including inflammatory bowel disease or
gastrointestinal issues, at relatively young age. Blood or other biomarkers which could be
relevant, e.g., gut microbiota, were also not collected nor analyzed. Furthermore, oligomalt
was consumed with water only; whereas in reality, oligomalt will likely be consumed
in a complex food matrix, which usually translates to better tolerability [29] (although
the participants were instructed to consume the test drinks with meals during the study).
Given that the product, when taken with water in this study, was reasonably well tolerated,
particularly after some GI adaption, it is conceivable that it would be at least as well
tolerated in a food matrix. The main strength of this study is its use both a high and
intermediate dose of oligomalt to ensure tolerability at a range of intake doses. The high-
dose oligomalt was particularly high, resulting in favorable tolerability, and supports a
high tolerability window.

5. Conclusions

This study evaluated the GI tolerability of a novel SDC, oligomalt. Oligomalt was well
tolerated when taken at a moderate (80 g/day) or high (180 g/day) dose, with no effect
on stool frequency. An evolutive pattern with decreasing GI symptoms was seen with
exposure over time, with normative scores being reached following 2–3 weeks of exposure
to oligomalt. Given oligomalt’s healthier composition, it appears to be a potential viable
alternative carbohydrate source for nutritional products, when also taking into account the
implications for blood glucose, the insulin response, and overall metabolic health.
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