Legume Consumption and Blood Pressure Control in Individuals with Type 2 Diabetes and Hypertension: Cross-Sectional Findings from the TOSCA.IT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lackland, D.T.; Weber, M.A. Global Burden of Cardiovascular Disease and Stroke: Hypertension at the Core. Can. J. Cardiol. 2015, 31, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Al-Makki, A.; DiPette, D.; Whelton, P.K.; Murad, M.H.; Mustafa, R.A.; Acharya, S.; Beheiry, H.M.; Champagne, B.; Connell, K.; Cooney, M.T.; et al. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension 2022, 79, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kabakov, E.; Norymberg, C.; Osher, E.; Koffler, M.; Tordjman, K.; Greenman, Y.; Stern, N. Prevalence of hypertension in type 2 diabetes mellitus: Impact of the tightening definition of high blood pressure and association with confounding risk factors. J. Cardiometab. Syndr. 2006, 1, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.E.K.; Lee, K.E.; Cruickshanks, K.J.; Moss, S.E. The incidence of hypertension in insulin-dependent diabetes. Arch. Intern. Med. 1996, 156, 622–627. [Google Scholar] [CrossRef]
- Haffner, S.M.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Nondiabetic Subjects with and without Prior Myocardial Infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef]
- Adlerberth, A.M.; Rosengren, A.; Wilhelmsen, L.J. Diabetes and long-term risk of mortality from coronary and other causes in middle-aged Swedish men. A general population study. Diabetes Care. 1998, 21, 539–545. [Google Scholar] [CrossRef]
- Stamler, J.; Vaccaro, O.; Neaton, J.D.; Wentworth, D. Diabetes, Other Risk Factors, and 12-Yr Cardiovascular Mortality for Men Screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993, 16, 434–444. [Google Scholar] [CrossRef]
- Adler, A.I.; Stratton, I.M.; Neil, H.A.W.; Yudkin, J.S.; Matthews, D.R.; Cull, C.A.; Wright, A.D.; Turner, R.C.; Holman, R.R. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): Prospective observational study. Br. Med. J. 2000, 321, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.; Holman, R.; Stratton, I.; Cull, C.; Frighi, V.; Manley, S.; Matthews, D.; Neil, A.; McElroy, H.; Kohner, E.; et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br. Med. J. 1998, 317, 703–713. [Google Scholar] [CrossRef] [Green Version]
- De Pergola, G.; D’alessandro, A. Influence of Mediterranean Diet on Blood Pressure. Nutrients 2018, 10, 1700. [Google Scholar] [CrossRef] [Green Version]
- Filippou, C.D.; Thomopoulos, C.G.; Kouremeti, M.M.; Sotiropoulou, L.I.; Nihoyannopoulos, P.I.; Tousoulis, D.M.; Tsioufis, C.P. Mediterranean diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 3191–3200. [Google Scholar] [CrossRef]
- Lonnie, M.; Johnstone, A.M. The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet. Nutr. Bull. 2020, 45, 281–293. [Google Scholar] [CrossRef]
- Vogt, T.M.; Appel, L.J.; Obarzanek, E.; Moore, T.J.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Cutler, J.A.; Windhauser, M.M.; et al. Dietary Approaches to Stop Hypertension: Rationale, Design, and Methods. J. Am. Diet. Assoc. 1999, 99, S12–S18. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Laddu, D.R.; Arena, R.; Lavie, C.J. The role of diet for prevention and management of hypertension. Curr. Opin. Cardiol. 2018, 33, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Mejia, S.B.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of Legumes as Part of a Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, H.C.R.; Lousley, S.; Geekie, M.; Simpson, R.W.; Carter, R.D.; Hockaday, T.D.R.; Mann, J.I. A High Carbohydrate Leguminous Fibre Diet Improves All Aspects of Diabetic ControL. Lancet 1981, 317, 1–5. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Hedayati, M.; Azizi, F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur. J. Clin. Nutr. 2015, 69, 592–597. [Google Scholar] [CrossRef]
- Vaccaro, O.; Masulli, M.; Bonora, E.; Del Prato, S.; Giorda, C.B.; Maggioni, A.P.; Mocarelli, P.; Nicolucci, A.; Rivellese, A.A.; Squatrito, S.; et al. Addition of Either Pioglitazone or a Sulfonylurea in Type 2 Diabetic Patients Inadequately Controlled with Metformin Alone: Impact on Cardiovascular Events: A Randomized Controlled Trial. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, O.; Masulli, M.; Nicolucci, A.; Bonora, E.; Del Prato, S.; Maggioni, A.P.; Rivellese, A.A.; Squatrito, S.; Giorda, C.B.; Sesti, G.; et al. Effects on the Incidence of Cardiovascular Events of the Addition of Pioglitazone versus Sulfonylureas in Patients with Type 2 Diabetes Inadequately Controlled with Metformin (TOSCA.IT): A Randomised, Multicentre Trial. Lancet Diabetes Endocrinol. 2017, 5, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. Hypertension: New Guidelines from the International Society of Hypertension. Am. Fam. Physician 2021, 103, 763–765. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Pisani, P.; Faggiano, F.; Krogh, V.; Palli, D.; Vineis, P.; Berrino, F. Relative Validity and Reproducibility of a Food Frequency Dietary Questionnaire for Use in the Italian EPIC Centres. Int. J. Epidemiol. 1997, 26, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Pala, V.; Sieri, S.; Palli, D.; Salvini, S.; Berrino, F.; Bellegotti, M.; Frasca, G.; Tumino, R.; Sacerdote, C.; Fiorini, L.; et al. Diet in the Italian Epic Cohorts: Presentation of Data and Methodological Issues. Tumori J. 2003, 89, 594–607. [Google Scholar] [CrossRef]
- Bhagwat, S.; Haytowitz, D.B. USDA Database for the Isoflavone Content of Selected Foods; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2015.
- Haytowitz, D.; Wu, X.; Bhagwat, S. USDA Database for the Flavonoid Content of Selected Foods, Release 3.3; USDA Agricultural Research Service: Washington, DC, USA, 2018.
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Remón, A.; M’Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Neveu, V.; Pérez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Jayalath, V.H.; de Souza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Di Buono, M.; Bernstein, A.M.; Leiter, L.A.; Kris-Etherton, P.M.; et al. Effect of Dietary Pulses on Blood Pressure: A Systematic Review and Meta-analysis of Controlled Feeding Trials. Am. J. Hypertens. 2014, 27, 56–64. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Professional Practice Committee; Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; et al. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S113–S124. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, S308–S319. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, Y.; Fulgoni, V.L. Bean Consumption Is Associated with Greater Nutrient Intake, Reduced Systolic Blood Pressure, Lower Body Weight, and a Smaller Waist Circumference in Adults: Results from the National Health and Nutrition Examination Survey 1999–2002. J. Am. Coll. Nutr. 2008, 27, 569–576. [Google Scholar] [CrossRef]
- Hartley, M.; Fyfe, C.L.; Wareham, N.J.; Khaw, K.-T.; Johnstone, A.M.; Myint, P.K. Association between Legume Consumption and Risk of Hypertension in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Cohort. Nutrients 2022, 14, 3363. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.C.; Jackson, E.; Stanek, E.J.; Li, W.; Pagoto, S.L.; Hafner, A.R.; Ockene, I.S. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, V.M.R.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Brock, D.W.; Davis, C.K.; Irving, B.A.; Rodriguez, J.; Barrett, E.J.; Weltman, A.; Taylor, A.G.; Gaesser, G.A. A High-Carbohydrate, High-Fiber Meal Improves Endothelial Function in Adults with the Metabolic Syndrome. Diabetes Care 2006, 29, 2313–2315. [Google Scholar] [CrossRef] [Green Version]
- Chuman, H.; Sugimoto, T.; Nao-I, N. Vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries in vitro and increased optic disc blood flow in vivo. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 2381–2388. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Ye, Z.; Liu, M.; Zhang, Z.; Zhang, Y.; Li, H.; He, P.; Li, Q.; Liu, C.; et al. Inverse Association Between Variety of Proteins with Appropriate Quantity from Different Food Sources and New-Onset Hypertension. Hypertension 2022, 79, 1017–1027. [Google Scholar] [CrossRef]
- Garcia, B.D.F.; de Barros, M.; Rocha, T.D.S. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit. Rev. Food Sci. Nutr. 2021, 61, 2003–2021. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Quartile 1 (2.9 ± 1.7) | Quartile 2 (8.1 ± 1.8) | Quartile 3 (14.1 ± 2.7) | Quartile 4 (28.3 ± 10.6) | p-Value | |
---|---|---|---|---|---|
Cereals (pasta, rice, bread) | 98.5 ± 40.7 | 98.1 ± 35.9 | 93.9 ± 33.9 | 86.2 ± 33.6 | <0.001 |
Wholegrain cereals (bread) | 6.7 ± 15.7 | 6.5 ± 13.8 | 6.9 ± 15.6 | 9.7 ± 18.3 | 0.006 |
Potatoes | 9.2 ± 12.3 | 10.6 ± 14.9 | 11.0 ± 9.3 | 11.0 ± 12.6 | 0.074 |
Vegetables (salad, cooked vegetable) | 87.1 ± 55.6 | 86.7 ± 41.8 | 98.1 ± 47.7 | 109.9 ± 49.1 | <0.001 |
Fruits (all type) | 148.7 ± 89.4 | 150.8 ± 88.1 | 156.9 ± 90.5 | 185.8 ± 106.9 | <0.001 |
Nuts | 0.67 ± 2.12 | 0.50 ± 0.86 | 0.51 ± 0.93 | 0.57 ± 1.43 | 0.238 |
Fish | 19.2 ± 17.7 | 21.1 ± 14.7 | 23.1 ± 16.5 | 27.9 ± 20.8 | <0.001 |
Meat (red, white, and processed) | 53.5 ± 28.8 | 51.8 ± 23.9 | 53.0 ± 25.4 | 53.1 ± 25.2 | 0.776 |
Eggs | 9.4 ± 7.8 | 10.2 ± 6.5 | 10.7 ± 7.0 | 11.2 ± 7.9 | 0.002 |
Dairy Products | 20.7 ± 14.8 | 20.6 ± 13.8 | 20.0 ± 12.6 | 19.5 ± 12.7 | 0.491 |
Milk and Yogurt | 108.4 ± 105.4 | 104.7 ± 101.6 | 110.8 ± 100.0 | 117.0 ± 110.6 | 0.320 |
Olive Oil | 12.2 ± 6.3 | 13.0 ± 5.2 | 14.2 ± 5.5 | 15.8 ± 6.3 | <0.001 |
Animal fat (butter, cream, etc.) | 1.72 ± 1.78 | 1.60 ± 1.58 | 1.50 ± 1.46 | 1.24 ± 1.30 | <0.001 |
Alcoholic beverages (wine, beer) | 72.0 ± 98.0 | 64.1 ± 89.8 | 61.4 ± 81.2 | 51.3 ± 75.4 | 0.003 |
Sweetener beverages | 29.9 ± 64.0 | 26.5 ± 56.7 | 24.6 ± 46.9 | 25.4 ± 48.4 | 0.466 |
Coffee and tea | 80.8 ± 75.9 | 73.3 ± 59.1 | 76.9 ± 55.7 | 83.2 ± 72.5 | 0.105 |
Cake and pastries | 20.9 ± 21.6 | 21.9 ± 18.8 | 18.3 ± 17.7 | 15.4 ± 14.3 | <0.001 |
Quartile 1 (2.9 ± 1.7) | Quartile 2 (8.1 ± 1.8) | Quartile 3 (14.1 ± 2.7) | Quartile 4 (28.3 ± 10.6) | p-Value | |
---|---|---|---|---|---|
Energy (kcal/day) | 1908 ± 821 | 1996 ± 730 | 1929 ± 795 | 1655 ± 607 | <0.001 |
Proteins (% of TE) | 18.1 ± 2.7 | 18.1 ± 2.4 | 18.3 ± 2.5 | 18.6 ± 2.7 | 0.006 |
from animal food sources (% of TE) | 12.6 ± 3.3 | 12.5 ± 3.1 | 12.7 ± 3.1 | 12.9 ± 3.3 | 0.452 |
from vegetable food sources (% of TE) | 5.5 ± 1.2 | 5.6 ± 1.2 | 5.6 ± 1.1 | 5.8 ± 1.0 | 0.006 |
Total fat (% of TE) | 36.0 ± 6.5 | 36.5 ± 5.6 | 37.1 ± 5.9 | 37.7 ± 6.2 | 0.001 |
SAFA (% of TE) | 12.3 ± 2.7 | 12.4 ± 2.5 | 12.3 ± 2.5 | 12.0 ± 2.5 | 0.187 |
MUFA (% of TE) | 17.2 ± 4.0 | 17.6 ± 3.4 | 18.2 ± 3.6 | 18.8 ± 4.0 | <0.001 |
PUFA (% of TE) | 4.3 ± 1.1 | 4.3 ± 1.0 | 4.5 ± 1.2 | 4.7 ± 1.2 | <0.001 |
Cholesterol (mg/1000 kcal) | 177.3 ± 56.2 | 183.2 ± 50.0 | 182.5 ± 49.2 | 184.5 ± 54.3 | 0.162 |
Carbohydrates (% of TE) | 45.7 ± 8.0 | 45.3 ± 7.0 | 44.5 ± 7.2 | 43.6 ± 7.4 | <0.001 |
Starch (% of TE) | 29.3 ± 9.0 | 29.0 ± 8.1 | 28.2 ± 7.8 | 26.4 ± 7.7 | <0.001 |
Soluble carbohydrates (% of TE) | 16.4 ± 6.0 | 16.3 ± 5.6 | 16.2 ± 5.4 | 17.2 ± 5.5 | 0.030 |
Added Sugar (% of TE) | 2.6 ± 3.8 | 2.4 ± 3.5 | 2.3 ± 2.7 | 2.3 ± 3.2 | 0.263 |
Fibre (g/1000 kcal) | 9.5 ± 2.4 | 9.9 ± 2.3 | 10.8 ± 2.4 | 12.7 ± 2.8 | <0.001 |
Glycaemic Index (n) | 51.7 ± 3.6 | 51.8 ± 3.1 | 51.6 ± 3.4 | 51.5 ± 3.6 | 0.729 |
Glycaemic Load (%) | 117.5 ± 64.0 | 120.0 ± 51.4 | 113.8 ± 57.2 | 98.7 ± 41.6 | <0.001 |
Alcohol (g/day) | 12.3 ± 17.3 | 11.6 ± 18.1 | 10.4 ± 14.7 | 7.8 ± 12.6 | <0.001 |
Sodium (mg/day) | 2158 ± 1186 | 2250 ± 1108 | 2136 ± 1076 | 1767 ± 851 | <0.001 |
Potassium (mg/day) | 2883 ± 1093 | 3068 ± 1029 | 3089 ± 1124 | 2913 ± 1010 | 0.003 |
Polyphenols (mg/1000 kcal/day) | 345 ± 162 | 348 ± 139 | 371 ± 144 | 417 ± 168 | <0.001 |
Systolic Blood Pressure | Diastolic Blood Pressure | |||
---|---|---|---|---|
ß-Coefficient | p-Value | ß-Coefficient | p-Value | |
Cereals (pasta, rice, bread) | −0.046 | 0.302 | 0.017 | 0.703 |
Wholegrain cereals (bread) | −0.004 | 0.863 | −0.019 | 0.422 |
Potatoes | −0.004 | 0.853 | 0.016 | 0.508 |
Legumes | −0.087 | <0.001 | −0.061 | 0.014 |
Vegetables (salad, cooked vegetables) | −0.005 | 0.889 | 0.050 | 0.196 |
Fruits (all type) | −0.023 | 0.422 | −0.003 | 0.905 |
Nuts | 0.018 | 0.455 | −0.013 | 0.572 |
Fish | 0.036 | 0.122 | 0.025 | 0.551 |
Meat (red, white, and processed) | 0.060 | 0.239 | 0.050 | 0.330 |
Eggs | 0.010 | 0.688 | 0.005 | 0.844 |
Dairy products | 0.043 | 0.127 | 0.016 | 0.566 |
Milk and yogurt | 0.008 | 0.247 | −0.039 | 0.242 |
Olive oil | 0.008 | 0.848 | −0.044 | 0.309 |
Animal fat (butter, cream, etc.) | 0.044 | 0.079 | 0.052 | 0.057 |
Alcoholic beverages (wine, beer) | 0.022 | 0.477 | 0.055 | 0.080 |
Sweetener beverages | 0.024 | 0.342 | 0.049 | 0.062 |
Coffee and tea | 0.027 | 0.265 | −0.001 | 0.964 |
Cake and pastries | −0.012 | 0.733 | 0.035 | 0.305 |
Systolic Blood Pressure | Diastolic Blood Pressure | |||
---|---|---|---|---|
ß-Coefficient | p-Value | ß-Coefficient | p-Value | |
Model 1 | ||||
Proteins from vegetable food sources | −0.004 | 0.946 | 0.065 | 0.233 |
Fibre | −0.139 | 0.007 | −0.111 | 0.031 |
Sodium | 0.021 | 0.628 | 0.017 | 0.700 |
Potassium | 0.087 | 0.073 | 0.060 | 0.143 |
Polyphenols | −0.035 | 0.175 | −0.031 | 0.223 |
Model 2 | ||||
Legumes | −0.089 | <0.001 | −0.082 | 0.002 |
Proteins from vegetable food sources | −0.052 | 0.357 | 0.021 | 0.706 |
Fibre | −0.059 | 0.287 | −0.038 | 0.493 |
Sodium | 0.011 | 0.797 | 0.008 | 0.859 |
Potassium | 0.061 | 0.091 | 0.037 | 0.378 |
Polyphenols | −0.031 | 0.228 | −0.028 | 0.280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitale, M.; Giosuè, A.; Sieri, S.; Krogh, V.; Massimino, E.; Rivellese, A.A.; Riccardi, G.; Vaccaro, O.; Masulli, M. Legume Consumption and Blood Pressure Control in Individuals with Type 2 Diabetes and Hypertension: Cross-Sectional Findings from the TOSCA.IT Study. Nutrients 2023, 15, 2895. https://doi.org/10.3390/nu15132895
Vitale M, Giosuè A, Sieri S, Krogh V, Massimino E, Rivellese AA, Riccardi G, Vaccaro O, Masulli M. Legume Consumption and Blood Pressure Control in Individuals with Type 2 Diabetes and Hypertension: Cross-Sectional Findings from the TOSCA.IT Study. Nutrients. 2023; 15(13):2895. https://doi.org/10.3390/nu15132895
Chicago/Turabian StyleVitale, Marilena, Annalisa Giosuè, Sabina Sieri, Vittorio Krogh, Elena Massimino, Angela Albarosa Rivellese, Gabriele Riccardi, Olga Vaccaro, and Maria Masulli. 2023. "Legume Consumption and Blood Pressure Control in Individuals with Type 2 Diabetes and Hypertension: Cross-Sectional Findings from the TOSCA.IT Study" Nutrients 15, no. 13: 2895. https://doi.org/10.3390/nu15132895
APA StyleVitale, M., Giosuè, A., Sieri, S., Krogh, V., Massimino, E., Rivellese, A. A., Riccardi, G., Vaccaro, O., & Masulli, M. (2023). Legume Consumption and Blood Pressure Control in Individuals with Type 2 Diabetes and Hypertension: Cross-Sectional Findings from the TOSCA.IT Study. Nutrients, 15(13), 2895. https://doi.org/10.3390/nu15132895