Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Procedures
2.3. 16S rDNA Sequencing and Data Processing
2.4. Metabolome Analysis
2.5. Statistical Analysis
2.5.1. Identification of Dietary Patterns
2.5.2. Relationship between Dietary Patterns and Risk of Colorectal Neoplasm
2.5.3. Relationship between Dietary Patterns and Risk of Colorectal Neoplasm Subtypes
2.5.4. Gut Microbiota Composition Analysis between Subgroups
2.5.5. Metabolomics-Based Analysis of Gut Microbiota Functional Differences between Subgroups
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Arima, K.; Zhong, R.; Ugai, T.; Zhao, M.; Haruki, K.; Akimoto, N.; Lau, M.C.; Okadome, K.; Mehta, R.S.; Väyrynen, J.P.; et al. Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: Analyses from two large prospective cohort studies. Gastroenterology 2022, 163, 862–874. [Google Scholar] [CrossRef]
- Mehta, R.S.; Nishihara, R.; Cao, Y.; Song, M.; Mima, K.; Qian, Z.R.; Nowak, J.A.; Kosumi, K.; Hamada, T.; Masugi, Y.; et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017, 3, 921–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition 2017, 43, 83–88. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Oh, J.H.; Shin, A.; Kim, J. Dietary patterns and colorectal cancer risk in a Korean population: A case-control study. Medicine (Baltimore) 2016, 95, e3759. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.C.; Yu, E.D.; Xiao, Y.; Bai, W.Y.; Chen, X.; He, L.P.; Yang, Y.X.; Zhou, P.H.; Jiang, X.L.; Xu, H.M.; et al. Derivation and validation of a prediction rule for estimating advanced colorectal neoplasm risk in average-risk Chinese. Am. J. Epidemiol. 2012, 175, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, X.; Yu, E.; Wang, N.; Cai, Q.; Shuai, Q.; Yan, F.; Jiang, L.; Wang, H.; Liu, J.; et al. Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: A case-control study. BMC Microbiol. 2018, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Brunius, C.; Fristedt, R.; Landberg, R. An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics 2020, 16, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Tóth-Király, I.; Bõthe, B.; Rigó, A.; Orosz, G. An illustration of the exploratory structural equation modeling (ESEM) framework on the passion scale. Front. Psychol. 2017, 8, 1968. [Google Scholar] [CrossRef] [Green Version]
- Holmes, I.; Harris, K.; Quince, C. Dirichlet multinomial mixtures: Generative models for microbial metagenomics. PLoS ONE 2012, 7, e30126. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Spiegelman, D.; Kuchiba, A.; Lochhead, P.; Kim, S.; Chan, A.T.; Poole, E.M.; Tamimi, R.; Tworoger, S.S.; Giovannucci, E.; et al. Statistical methods for studying disease subtype heterogeneity. Stat. Med. 2016, 35, 782–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd Algfoor, Z.; Shahrizal Sunar, M.; Abdullah, A.; Kolivand, H. Identification of metabolic pathways using pathfinding approaches: A systematic review. Brief. Funct. Genom. 2017, 16, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 2019, 17, 275–289. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef]
- Song, M.; Garrett, W.S.; Chan, A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015, 148, 1244–1260.e16. [Google Scholar] [CrossRef] [Green Version]
- Ocvirk, S.; Wilson, A.S.; Appolonia, C.N.; Thomas, T.K.; O’Keefe, S.J.D. Fiber, fat, and colorectal cancer: New insight into modifiable dietary risk factors. Curr. Gastroenterol. Rep. 2019, 21, 62. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef] [PubMed]
- Horvath, T.D.; Ihekweazu, F.D.; Haidacher, S.J.; Ruan, W.; Engevik, K.A.; Fultz, R.; Hoch, K.M.; Luna, R.A.; Oezguen, N.; Spinler, J.K.; et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience 2022, 25, 104158. [Google Scholar] [CrossRef] [PubMed]
- Carretta, M.D.; Quiroga, J.; López, R.; Hidalgo, M.A.; Burgos, R.A. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Front. Physiol. 2021, 12, 662739. [Google Scholar]
- Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell. Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef]
- Fliss-Isakov, N.; Kariv, R.; Webb, M.; Ivancovsky-Wajcman, D.; Zaslavsky, O.; Margalit, D.; Shibolet, O.; Zelber-Sagi, S. A healthy lifestyle pattern has a protective association with colorectal polyps. Eur. J. Clin. Nutr. 2020, 74, 328–337. [Google Scholar] [CrossRef]
- Carethers, J.M.; Jung, B.H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 2015, 149, 1177–1190.e3. [Google Scholar] [CrossRef] [Green Version]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, S.; Konishi, Y.; Narukawa, M.; Sugiura, Y.; Yoshimoto, S.; Arai, Y.; Sato, S.; Yoshida, Y.; Tsuji, S.; Uemura, K.; et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat. Commun. 2021, 12, 5674. [Google Scholar] [CrossRef] [PubMed]
- Rebersek, M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021, 21, 1325. [Google Scholar]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, G.; Wang, L.; Zhou, X.; Sun, J.; Li, X.; Zhu, Y.; He, Y.; Kofonikolas, K.; Bogaert, D.; et al. A systematic review of microbial markers for risk prediction of colorectal neoplasia. Br. J. Cancer 2022, 126, 1318–1328. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The genus Alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Oh, B.S.; Choi, W.J.; Kim, J.S.; Ryu, S.W.; Yu, S.Y.; Lee, J.S.; Park, S.H.; Kang, S.W.; Lee, J.; Jung, W.Y.; et al. Cell-free supernatant of Odoribacter splanchnicus isolated from human feces exhibits anti-colorectal cancer activity. Front. Microbiol. 2021, 12, 736343. [Google Scholar] [CrossRef]
- O’Keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–706. [Google Scholar] [CrossRef]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic metabolomics: Major impact on the metabolome. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Ma, J.; Smith-Warner, S.A.; Lee, J.E.; Giovannucci, E. Vitamin B6 and colorectal cancer: Current evidence and future directions. World J. Gastroenterol. 2013, 19, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Badawy, A.A. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015, 35, e00261. [Google Scholar] [CrossRef]
- Jean-Louis, S.; Akare, S.; Ali, M.A.; Mash, E.A., Jr.; Meuillet, E.; Martinez, J.D. Deoxycholic acid induces intracellular signaling through membrane perturbations. J. Biol. Chem. 2006, 281, 14948–14960. [Google Scholar] [CrossRef] [Green Version]
- Gaulke, C.A.; Sharpton, T.J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 2018, 24, 1495–1496. [Google Scholar] [CrossRef]
- Deschasaux, M.; Bouter, K.E.; Prodan, A.; Levin, E.; Groen, A.K.; Herrema, H.; Tremaroli, V.; Bakker, G.J.; Attaye, I.; Pinto-Sietsma, S.J.; et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 2018, 24, 1526–1531. [Google Scholar] [CrossRef]
Variable | Colorectal Cancer (n = 130) | Colorectal Adenoma (n = 120) | Control Group (n = 160) |
---|---|---|---|
Healthy dietary pattern a | |||
Median | −0.21 | 0.02 | 0.22 |
Range | −2.37 to 1.93 | −2.09 to 1.93 | −1.62 to 1.93 |
High-fat dietary pattern a | |||
Median | −0.2 | −0.01 | −0.04 |
Range | −1.77 to 3.02 | −1.77 to 2.89 | −1.42 to 2.89 |
Age, years | |||
Mean (SD) | 60.54 (9.84) | 59.06 (10.11) | 57.98 (8.82) |
Range | 40 to 88 | 40 to 84 | 40 to 79 |
Sex, No. (%) | |||
Female | 65 (50.0) | 49 (40.8) | 80 (50.0) |
Male | 65 (50.0) | 71 (59.2) | 80 (50.0) |
Education degree, No. (%) | |||
Illiteracy | 15 (12.0) | 5 (4.2) | 6 (4.0) |
Primary | 20 (15.0) | 22 (18.3) | 23 (14.0) |
Middle | 79 (61.0) | 65 (54.2) | 101 (63.0) |
High | 16 (12.0) | 28 (23.3) | 30 (19.0) |
Physical activity, No. (%) | |||
Sedentary | 22 (16.9) | 30 (25.0) | 29 (18.0) |
Mild | 53 (40.8) | 55 (46.0) | 75 (47.0) |
Moderate | 31 (23.8) | 25 (21.0) | 41 (26.0) |
Severe | 24 (18.5) | 10 (8.0) | 15 (9.0) |
Smoking, No. (%) | |||
No | 91 (70.0) | 75 (62.5) | 126 (79.0) |
Yes | 39 (30.0) | 45 (37.5) | 34 (21.0) |
Mean (SD), pack-years | 8.38 (15.05) | 9.08 (15.34) | 5.86 (14.37) |
Range, pack-years | 0 to 60 | 0 to 100 | 0 to 70 |
Drinking, No. (%) | |||
No | 98 (75.0) | 87 (72.5) | 133 (83.0) |
Yes | 32 (25.0) | 33 (27.5) | 27 (17.0) |
Body mass index b, kg/m2 | |||
Mean (SD) | 23.59 (3.09) | 24.03 (3.33) | 23.87 (3.28) |
Range | 17.02 to 33.33 | 15.43 to 32.24 | 16.53 to 35.16 |
Group | Healthy Pattern | p b | pheterogeneity c | High-Fat Pattern | p b | pheterogeneity c |
---|---|---|---|---|---|---|
Control (N = 160) | ||||||
Median (Range) | 0.22 (−1.62 to 1.93) | −0.04 (−1.42 to 2.89) | ||||
All colorectal cancer (N = 130) | ||||||
Median (Range) | −0.21 (−2.37 to 1.93) | <0.001 | −0.20 (−1.77 to 3.02) | 0.997 | ||
Multivariable-adjusted OR (95% CI) d | 0.62 (0.48 to 0.81) | 0.001 | 1.06 (0.83 to 1.35) | 0.631 | ||
Type I colorectal cancer (N = 68) | 0.345 | 0.601 | ||||
Median (Range) | −0.18 (−1.83 to 1.93) | 0.007 | (type I vs. II) | −0.20 (−1.77 to 3.02) | 0.868 | (type I vs. II) |
Multivariable-adjusted OR (95% CI) d | 0.66 (0.48 to 0.89) | 0.006 | 1.04 (0.77 to 1.40) | 0.801 | ||
Type II colorectal cancer (N = 48) | 0.026 | 0.132 | ||||
Median (Range) | −0.82 (−2.37 to 1.72) | <0.001 | (type II vs. III) | −0.23 (−1.53 to 2.64) | 0.581 | (type II vs. III) |
Multivariable-adjusted OR (95% CI) d | 0.42 (0.29 to 0.62) | <0.001 | 0.94 (0.67 to 1.32) | 0.940 | ||
Type III colorectal cancer (N = 14) | 0.037 | 0.225 | ||||
Median (Range) | 0.02 (−1.40 to 1.93) | 0.592 | (type I vs. III) | −0.08 (−0.81 to 2.65) | 0.128 | (type I vs. III) |
Multivariable-adjusted OR (95% CI) d | 0.94 (0.52 to 1.69) | 0.828 | 1.44 (0.88 to 2.37) | 0.149 | ||
All colorectal adenoma (N = 120) | ||||||
Median (Range) | 0.02 (−2.09 to 1.93) | 0.099 | −0.01 (−1.77 to 2.89) | 0.668 | ||
Multivariable-adjusted OR (95% CI) d | 0.83 (0.65 to 1.07) | 0.146 | 1.01 (0.79 to 1.29) | 0.957 | ||
Type I colorectal adenoma (N = 50) | 0.860 | 0.830 | ||||
Median (Range) | −0.11 (−1.85 to 1.93) | 0.042 | (type I vs. II) | −0.11 (−1.77 to 2.89) | 0.839 | (type I vs. II) |
Multivariable-adjusted OR (95% CI) d | 0.72 (0.51 to 1.01) | 0.059 | 0.99 (0.72 to 1.35) | 0.930 | ||
Type II colorectal adenoma (N = 52) | 0.010 | 0.623 | ||||
Median (Range) | 0.00 (−2.09 to 1.72) | 0.082 | (type II vs. III) | −0.01 (−1.77 to 2.73) | 0.869 | (type II vs. III) |
Multivariable-adjusted OR (95% CI) d | 0.70 (0.49 to 1.00) | 0.050 | 1.00 (0.71 to 1.41) | 0.988 | ||
Type III colorectal adenoma (N = 18) | 0.007 | 0.740 | ||||
Median (Range) | 0.93 (−0.86 to 1.93) | 0.118 | (type I vs. III) | −0.01 (−0.56 to 1.62) | 0.147 | (type I vs. III) |
Multivariable-adjusted OR (95% CI) d | 1.47 (0.84 to 2.56) | 0.178 | 1.23 (0.74 to 2.04) | 0.436 |
Group | Healthy Pattern | p b | pheterogeneity c | High-Fat Pattern | p b | pheterogeneity c | ||||
---|---|---|---|---|---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 1 | Quartile 2 | Quartile 3 | |||||
Control (N = 160) | ||||||||||
No. (%) | 56 (35.0) | 52 (32.5) | 52 (32.5) | 59 (36.9) | 51 (31.9) | 50 (31.2) | ||||
All colorectal cancer (N = 130) | ||||||||||
No. (%) | 80 (61.5) | 24 (18.5) | 26 (20.0) | <0.001 | 53 (40.8) | 36 (27.7) | 41 (31.5) | 0.704 | ||
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.36 (0.19 to 0.66) | 0.38 (0.2 to 0.71) | 0.001 | 1 (Referent) | 0.80 (0.45 to 1.44) | 0.99 (0.55 to 1.76) | 0.925 | ||
Type I colorectal cancer (N = 68) | 0.644 | 0.636 | ||||||||
No. (%) | 39 (57.4) | 12 (17.6) | 17 (25.0) | 0.006 | (type I vs. II) | 31 (45.6) | 15 (22.1) | 22 (32.3) | 0.283 | (type I vs. II) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.40 (0.18 to 0.86) | 0.52 (0.25 to 1.11) | 0.054 | 1 (Referent) | 0.62 (0.30 to 1.31) | 0.97 (0.48 to 1.95) | 0.824 | ||
Type II colorectal cancer (N = 48) | 0.046 | 0.139 | ||||||||
No. (%) | 35 (72.9) | 7 (14.6) | 6 (12.5) | <0.001 | (type II vs. III) | 20 (41.7) | 15 (31.2) | 13 (27.1) | 0.803 | (type II vs. III) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.21 (0.09 to 0.52) | 0.19 (0.07 to 0.48) | <0.001 | 1 (Referent) | 0.84 (0.39 to 1.83) | 0.69 (0.31 to 1.55) | 0.369 | ||
Type III colorectal cancer (N = 14) | 0.049 | 0.219 | ||||||||
No. (%) | 6 (42.9) | 5 (35.7) | 3 (21.4) | 0.683 | (type I vs. III) | 2 (14.3) | 6 (42.9) | 6 (42.9) | 0.236 | (type I vs. III) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.8 (0.22 to 2.85) | 0.51 (0.12 to 2.19) | 0.722 | 1 (Referent) | 3.22 (0.61 to 16.91) | 3.26 (0.62 to 17.18) | 0.179 | ||
All colorectal adenoma (N = 120) | ||||||||||
No. (%) | 59 (49.2) | 26 (21.7) | 35 (29.2) | 0.039 | 45 (37.5) | 36 (30.0) | 39 (32.5) | 0.942 | ||
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.48 (0.27 to 0.88) | 0.67 (0.38 to 1.18) | 0.120 | 1 (Referent) | 0.90 (0.50 to 1.60) | 0.97 (0.54 to 1.73) | 0.901 | ||
Type I colorectal adenoma (N = 50) | 0.643 | 0.927 | ||||||||
No. (%) | 27 (54.0) | 12 (24.0) | 11 (22.0) | 0.056 | (type I vs. II) | 21 (42.0) | 12 (24.0) | 17 (34.0) | 0.565 | (type I vs. II) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.48 (0.22 to 1.06) | 0.44 (0.20 to 0.99) | 0.033 | 1 (Referent) | 0.62 (0.27 to 1.39) | 0.88 (0.42 to 1.88) | 0.710 | ||
Type II colorectal adenoma (N = 52) | 0.030 | 0.438 | ||||||||
No. (%) | 26 (50.0) | 12 (23.1) | 14 (26.9) | 0.147 | (type II vs. III) | 22 (42.3) | 13 (25.0) | 17 (32.7) | 0.624 | (type II vs. III) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.46 (0.20 to 1.05) | 0.50 (0.23 to 1.09) | 0.068 | 1 (Referent) | 0.58 (0.26 to 1.31) | 0.94 (0.44 to 1.99) | 0.804 | ||
Type III colorectal adenoma (N = 18) | 0.013 | 0.477 | ||||||||
No. (%) | 6 (33.3) | 2 (11.1) | 10 (55.6) | 0.085 | (type I vs. III) | 2 (11.1) | 11 (61.1) | 5 (27.8) | 0.028 | (type I vs. III) |
Multivariable-adjusted OR (95% CI) d | 1 (Referent) | 0.30 (0.06 to 1.62) | 1.63 (0.53 to 4.98) | 0.295 | 1 (Referent) | 6.38 (1.33 to 30.7) | 2.67 (0.49 to 14.55) | 0.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.-A.; Zhang, Y.-Z.; Yu, E.-D.; Ding, W.-Q.; Jiang, Q.-W.; Cai, Q.-C.; Zhong, L. Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population. Nutrients 2023, 15, 2940. https://doi.org/10.3390/nu15132940
Cai J-A, Zhang Y-Z, Yu E-D, Ding W-Q, Jiang Q-W, Cai Q-C, Zhong L. Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population. Nutrients. 2023; 15(13):2940. https://doi.org/10.3390/nu15132940
Chicago/Turabian StyleCai, Jia-An, Yong-Zhen Zhang, En-Da Yu, Wei-Qun Ding, Qing-Wu Jiang, Quan-Cai Cai, and Liang Zhong. 2023. "Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population" Nutrients 15, no. 13: 2940. https://doi.org/10.3390/nu15132940
APA StyleCai, J. -A., Zhang, Y. -Z., Yu, E. -D., Ding, W. -Q., Jiang, Q. -W., Cai, Q. -C., & Zhong, L. (2023). Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population. Nutrients, 15(13), 2940. https://doi.org/10.3390/nu15132940