Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Number of Retrieved Articles
3.2. The Analysis of Retrieved Articles
3.2.1. Sarcopenia and Nutrition
3.2.2. Frailty and Nutrition
3.2.3. Heart Failure and Nutrition
3.2.4. CKD and Nutrition
3.2.5. Diabetes and Nutrition
3.2.6. Stroke and Nutrition
3.2.7. Dementia and Nutrition
3.2.8. Osteoporosis and Nutrition
3.2.9. Fracture and Nutrition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- The Department of Economic and Social Affairs of the United Nations. World Social Report 2023: Leaving No One behind in an Aging World; United Nations: New York, NY, USA, 2023.
- The World Bank. Population Ages 65 and above (% of Total). Available online: http://databank.worldbank.org/databases/population-dynamics (accessed on 16 May 2023).
- American Diabetes Association. Older Adults: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S139–S147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Van Riet, E.E.S.; Hoes, A.W.; Wagenaar, K.P.; Limburg, A.; Landman, M.A.J.; Rutten, F.H. Epidemiology of Heart Failure: The Prevalence of Heart Failure and Ventricular Dysfunction in Older Adults over Time. A Systematic Review. Eur. J. Heart Fail. 2016, 18, 242–252. [Google Scholar] [CrossRef]
- Emmons-Bell, S.; Johnson, C.; Roth, G. Prevalence, Incidence and Survival of Heart Failure: A Systematic Review. Heart 2022, 108, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Ishimura, E.; Naganuma, T.; Kondo, K.; Fukushima, W.; Mui, K.; Inaba, M.; Hirota, Y. Prevalence of and Factors Associated with Chronic Kidney Disease (CKD) in Japanese Subjects without Notable Chronic Diseases, Undergoing an Annual Health Checkup. Kidney Blood Press. Res. 2012, 36, 139–148. [Google Scholar] [CrossRef]
- Murphy, D.; McCulloch, C.E.; Lin, F.; Banerjee, T.; Bragg-Gresham, J.L.; Eberhardt, M.S.; Morgenstern, H.; Pavkov, M.E.; Saran, R.; Powe, N.R.; et al. Trends in Prevalence of Chronic Kidney Disease in the United States. Ann. Intern. Med. 2016, 165, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Betzler, B.K.; Sultana, R.; He, F.; Tham, Y.C.; Lim, C.C.; Wang, Y.X.; Nangia, V.; Tai, E.S.; Rim, T.H.; Bikbov, M.M.; et al. Impact of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) GFR Estimating Equations on CKD Prevalence and Classification among Asians. Front. Med. 2022, 9, 957437. [Google Scholar] [CrossRef]
- Zemedikun, D.T.; Gray, L.J.; Khunti, K.; Davies, M.J.; Dhalwani, N.N. Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data. Mayo Clin. Proc. 2018, 93, 857–866. [Google Scholar] [CrossRef]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef]
- Avan, A.; Hachinski, V. Stroke and Dementia, Leading Causes of Neurological Disability and Death, Potential for Prevention. Alzheimer’s Dement. 2021, 17, 1072–1076. [Google Scholar] [CrossRef]
- Tarvonen-Schröder, S.; Niemi, T.; Koivisto, M. Inpatient Rehabilitation after Acute Severe Stroke: Predictive Value of the National Institutes of Health Stroke Scale among Other Potential Predictors for Discharge Destination. Adv. Rehabil. Sci. Pract. 2023, 12, 27536351231157970. [Google Scholar] [CrossRef]
- Makovski, T.T.; Schmitz, S.; Zeegers, M.P.; Stranges, S.; van den Akker, M. Multimorbidity and Quality of Life: Systematic Literature Review and Meta-Analysis. Ageing Res. Rev. 2019, 53, 100903. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef]
- Bahat, G.; Ilhan, B. Sarcopenia and the Cardiometabolic Syndrome: A Narrative Review. Eur. Geriatr. Med. 2016, 7, 220–223. [Google Scholar] [CrossRef]
- Stewart, R. Cardiovascular Disease and Frailty: What Are the Mechanistic Links? Clin. Chem. 2019, 65, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Bone, A.E.; Hepgul, N.; Kon, S.; Maddocks, M. Sarcopenia and Frailty in Chronic Respiratory Disease: Lessons from Gerontology. Chron. Respir. Dis. 2017, 14, 85–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, A.J.; Abdelhafiz, A.H.; Rodríguez-Mañas, L. Frailty and Sarcopenia—Newly Emerging and High Impact Complications of Diabetes. J. Diabetes Complicat. 2017, 31, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of Sarcopenia as a Comorbid Disease: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Pacifico, J.; Reijnierse, E.M.; Lim, W.K.; Maier, A.B. The Association between Sarcopenia as a Comorbid Disease and Incidence of Institutionalisation and Mortality in Geriatric Rehabilitation Inpatients: REStORing Health of Acutely Unwell AdulTs (RESORT). Gerontology 2021, 68, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jeong, J.B.; Kang, J.; Ahn, D.-W.; Kim, J.W.; Kim, B.G.; Lee, K.L.; Oh, S.; Yoon, S.H.; Park, S.J.; et al. Association between Sarcopenia Level and Metabolic Syndrome. PLoS ONE 2021, 16, e0248856. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Peel, N.M.; Krosch, M.; Hubbard, R.E. Frailty and Chronic Kidney Disease: A Systematic Review. Arch. Gerontol. Geriatr. 2017, 68, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in Chronic Kidney Disease: What Have We Learned so Far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef]
- Ribeiro, H.S.; Neri, S.G.R.; Oliveira, J.S.; Bennett, P.N.; Viana, J.L.; Lima, R.M. Association between Sarcopenia and Clinical Outcomes in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.C.; Chen, W.L.; Wu, L.W.; Chang, Y.W.; Kao, T.W. Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a Risk Factor for Falls in Elderly Individuals: Results from the IlSIRENTE Study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s Disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- O’Brien, J.T.; Thomas, A. Vascular Dementia. Lancet 2015, 386, 1698–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwanath, S.; Qaderi, V.; Steves, C.J.; Reid, C.M.; Hopper, I.; Ryan, J. Cognitive Decline and Risk of Dementia in Individuals with Heart Failure: A Systematic Review and Meta-Analysis. J. Card. Fail. 2022, 28, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, D.; Wagner, C.A.; Martino, G.; Nedergaard, M.; Zoccali, C.; Unwin, R.; Capasso, G. Mechanisms of Cognitive Dysfunction in CKD. Nat. Rev. Nephrol. 2020, 16, 452–469. [Google Scholar] [CrossRef] [PubMed]
- Bordier, L.; Doucet, J.; Boudet, J.; Bauduceau, B. Update on Cognitive Decline and Dementia in Elderly Patients with Diabetes. Diabetes Metab. 2014, 40, 331–337. [Google Scholar] [CrossRef]
- Aranda, M.P.; Kremer, I.N.; Hinton, L.; Zissimopoulos, J.; Whitmer, R.A.; Hummel, C.H.; Trejo, L.; Fabius, C. Impact of Dementia: Health Disparities, Population Trends, Care Interventions, and Economic Costs. J. Am. Geriatr. Soc. 2021, 69, 1774–1783. [Google Scholar] [CrossRef]
- Burks, H.B.; des Bordes, J.K.A.; Chadha, R.; Holmes, H.M.; Rianon, N.J. Quality of Life Assessment in Older Adults with Dementia: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2021, 50, 103–110. [Google Scholar] [CrossRef]
- Haagsma, J.A.; Olij, B.F.; Majdan, M.; van Beeck, E.F.; Vos, T.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Liu, Z.; et al. Falls in Older Aged Adults in 22 European Countries: Incidence, Mortality and Burden of Disease from 1990 to 2017. Inj. Prev. 2020, 26, i67–i74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyer, S.M.; Crotty, M.; Fairhall, N.; Magaziner, J.; Beaupre, L.A.; Cameron, I.D.; Sherrington, C.; Fragility Fracture Network (FFN) Rehabilitation Research Special Interest Group. A Critical Review of the Long-Term Disability Outcomes Following Hip Fracture. BMC Geriatr. 2016, 16, 158. [Google Scholar] [CrossRef] [Green Version]
- Guzon-Illescas, O.; Perez Fernandez, E.; Crespí Villarias, N.; Quirós Donate, F.J.; Peña, M.; Alonso-Blas, C.; García-Vadillo, A.; Mazzucchelli, R. Mortality after Osteoporotic Hip Fracture: Incidence, Trends, and Associated Factors. J. Orthop. Surg. Res. 2019, 14, 203. [Google Scholar] [CrossRef] [Green Version]
- Komar, B.; Schwingshackl, L.; Hoffmann, G. Effects of Leucine-Rich Protein Supplements on Anthropometric Parameter and Muscle Strength in the Elderly: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2015, 19, 437–446. [Google Scholar] [CrossRef]
- Martínez-Arnau, F.M.; Fonfría-Vivas, R.; Cauli, O. Beneficial Effects of Leucine Supplementation on Criteria for Sarcopenia: A Systematic Review. Nutrients 2019, 11, 2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Lee, H.J.; Lim, J.-Y. Effects of Leucine-Rich Protein Supplements in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Gerontol. Geriatr. 2022, 102, 104758. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Fu, X.; Hu, Q.; Chen, L.; Zuo, H. The Effect of Leucine Supplementation on Sarcopenia-Related Measures in Older Adults: A Systematic Review and Meta-Analysis of 17 Randomized Controlled Trials. Front. Nutr. 2022, 9, 929891. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xia, Y.; Jiang, J.; Du, H.; Guo, X.; Liu, X.; Li, C.; Huang, G.; Niu, K. Effect of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Muscle Loss in Older Adults: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2015, 61, 168–175. [Google Scholar] [CrossRef]
- Bear, D.E.; Langan, A.; Dimidi, E.; Wandrag, L.; Harridge, S.D.R.; Hart, N.; Connolly, B.; Whelan, K. β-Hydroxy-β-Methylbutyrate and Its Impact on Skeletal Muscle Mass and Physical Function in Clinical Practice: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2019, 109, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Zhao, A.; He, J. Effect of β-Hydroxy-β-Methylbutyrate (HMB) on the Muscle Strength in the Elderly Population: A Meta-Analysis. Front. Nutr. 2022, 9, 914866. [Google Scholar] [CrossRef]
- Zanini, B.; Simonetto, A.; Zubani, M.; Castellano, M.; Gilioli, G. The Effects of Cow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients 2020, 12, 2548. [Google Scholar] [CrossRef]
- Da Camargo, L.R.; Doneda, D.; Oliveira, V.R. Whey Protein Ingestion in Elderly Diet and the Association with Physical, Performance and Clinical Outcomes. Exp. Gerontol. 2020, 137, 110936. [Google Scholar] [CrossRef]
- Martin-Cantero, A.; Reijnierse, E.M.; Gill, B.M.T.; Maier, A.B. Factors Influencing the Efficacy of Nutritional Interventions on Muscle Mass in Older Adults: A Systematic Review and Meta-Analysis. Nutr. Rev. 2021, 79, 315–330. [Google Scholar] [CrossRef]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG). Nutritional Interventions to Improve Muscle Mass, Muscle Strength, and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef]
- Khor, P.Y.; Vearing, R.M.; Charlton, K.E. The Effectiveness of Nutrition Interventions in Improving Frailty and Its Associated Constructs Related to Malnutrition and Functional Decline among Community-Dwelling Older Adults: A Systematic Review. J. Hum. Nutr. Diet. 2022, 35, 566–582. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; Franssen, R.; Dullemeijer, C.; van Dronkelaar, C.; Kyung Kim, H.; Ispoglou, T.; Zhu, K.; Prince, R.L.; van Loon, L.J.C.; de Groot, L.C.P.G.M. The Impact of Dietary Protein or Amino Acid Supplementation on Muscle Mass and Strength in Elderly People: Individual Participant Data and Meta-Analysis of RCT’s. J. Nutr. Health Aging 2017, 21, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-Y.; Huang, K.-S.; Chen, K.-M.; Chou, C.-P.; Tu, Y.-K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-Analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-D.; Wu, Y.-T.; Tsauo, J.-Y.; Chen, P.-R.; Tu, Y.-K.; Chen, H.-C.; Liou, T.-H. Effects of Protein Supplementation Combined with Exercise Training on Muscle Mass and Function in Older Adults with Lower-Extremity Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Trials. Nutrients 2020, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Conde Maldonado, E.; Marqués-Jiménez, D.; Casas-Agustench, P.; Bach-Faig, A. Effect of Supplementation with Leucine Alone, with Other Nutrients or with Physical Exercise in Older People with Sarcopenia: A Systematic Review. Endocrinol. Diabetes Nutr. 2022, 69, 601–613. [Google Scholar] [CrossRef]
- Kirwan, R.P.; Mazidi, M.; Rodríguez García, C.; Lane, K.E.; Jafari, A.; Butler, T.; Perez de Heredia, F.; Davies, I.G. Protein Interventions Augment the Effect of Resistance Exercise on Appendicular Lean Mass and Handgrip Strength in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2022, 115, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Kim, H.; Bae, J. Does the Combination of Resistance Training and a Nutritional Intervention Have a Synergic Effect on Muscle Mass, Strength, and Physical Function in Older Adults? A Systematic Review and Meta-Analysis. BMC Geriatr. 2021, 21, 639. [Google Scholar] [CrossRef]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and Physical Activity in the Prevention and Treatment of Sarcopenia: Systematic Review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K.; Quinn, M.A.; Saunders, D.H.; Greig, C.A. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Courel-Ibáñez, J.; Vetrovsky, T.; Dadova, K.; Pallarés, J.G.; Steffl, M. Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis. Nutrients 2019, 11, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodorakopoulos, C.; Jones, J.; Bannerman, E.; Greig, C.A. Effectiveness of Nutritional and Exercise Interventions to Improve Body Composition and Muscle Strength or Function in Sarcopenic Obese Older Adults: A Systematic Review. Nutr. Res. 2017, 43, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.-H.; Liu, J.Y.W.; Välimäki, M. Effectiveness of Non-Pharmacological Interventions on the Management of Sarcopenic Obesity: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2020, 135, 110937. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, A.E.; Greig, C.A. The Effect of Combined Resistance Exercise Training and Vitamin D3 Supplementation on Musculoskeletal Health and Function in Older Adults: A Systematic Review and Meta-Analysis. BMJ Open 2017, 7, e014619. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.-H.; Chen, K.-H.; Chen, C.; Chu, W.-C.; Kang, Y.-N. The Optimal Strategy of Vitamin D for Sarcopenia: A Network Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 3589. [Google Scholar] [CrossRef]
- Cintoni, M.; Grassi, F.; Palombaro, M.; Rinninella, E.; Pulcini, G.; Di Donato, A.; Salvatore, L.; Quero, G.; Tortora, G.; Alfieri, S.; et al. Nutritional Interventions during Chemotherapy for Pancreatic Cancer: A Systematic Review of Prospective Studies. Nutrients 2023, 15, 727. [Google Scholar] [CrossRef]
- Bozzetti, F. Nutritional Interventions in Elderly Gastrointestinal Cancer Patients: The Evidence from Randomized Controlled Trials. Support Care Cancer 2019, 27, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Johnston, H.E.; Takefala, T.G.; Kelly, J.T.; Keating, S.E.; Coombes, J.S.; Macdonald, G.A.; Hickman, I.J.; Mayr, H.L. The Effect of Diet and Exercise Interventions on Body Composition in Liver Cirrhosis: A Systematic Review. Nutrients 2022, 14, 3365. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.-J.; Lu, Q. The Effect of Oral Nutritional Supplement on Muscle Fitness of Patients Undergoing Dialysis: A Systematic Review and Meta-Analysis. J. Adv. Nurs. 2021, 77, 1716–1730. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN Practical Guideline: Clinical Nutrition in Liver Disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barazzoni, R.; Busetto, L.; Campmans-Kuijpers, M.; Cardinale, V.; Chermesh, I.; Eshraghian, A.; Kani, H.T.; Khannoussi, W.; Lacaze, L.; et al. European Guideline on Obesity Care in Patients with Gastrointestinal and Liver Diseases—Joint ESPEN/UEG Guideline. Clin. Nutr. 2022, 41, 2364–2405. [Google Scholar] [CrossRef]
- Liu, C.; Xu, H.; Chen, L.; Zhu, M. Exercise and Nutritional Intervention for Physical Function of the Prefrail: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2022, 23, 1431.e1–1431.e19. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Gao, Y.; Qin, L.; Feng, H.; Tan, H.; Chen, Q.; Peng, L.; Wu, I.X.Y. Comparative Effectiveness of Non-Pharmacological Interventions for Frailty: A Systematic Review and Network Meta-Analysis. Age Ageing 2023, 52, afad004. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, M.B.; Avgerinou, C.; Fukushima, F.B.; Vidal, E.I.O. Nutritional Interventions for the Management of Frailty in Older Adults: Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutr. Rev. 2021, 79, 889–913. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.; Rice, S.; Arisa, O.; Johnson, E.; Tanner, L.; Marshall, C.; Sotire, T.; Richmond, C.; O’Keefe, H.; Mohammed, W.; et al. Oral Nutritional Interventions in Frail Older People Who Are Malnourished or at Risk of Malnutrition: A Systematic Review. Health Technol. Assess 2022, 26, 1–112. [Google Scholar] [CrossRef]
- Han, C.Y.; Miller, M.; Yaxley, A.; Baldwin, C.; Woodman, R.; Sharma, Y. Effectiveness of Combined Exercise and Nutrition Interventions in Prefrail or Frail Older Hospitalised Patients: A Systematic Review and Meta-Analysis. BMJ Open 2020, 10, e040146. [Google Scholar] [CrossRef] [PubMed]
- Lorbergs, A.L.; Prorok, J.C.; Holroyd-Leduc, J.; Bouchard, D.R.; Giguere, A.; Gramlich, L.; Keller, H.; Tang, A.; Racey, M.; Ali, M.U.; et al. Nutrition and Physical Activity Clinical Practice Guidelines for Older Adults Living with Frailty. J. Frailty Aging 2022, 11, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, H.; Lin, Z.; Li, X.; Kong, X.; Sun, G. Review of Nutritional Screening and Assessment Tools and Clinical Outcomes in Heart Failure. Heart Fail. Rev. 2016, 21, 549–565. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Zhou, Y.; Liu, X.; Zou, C.; Ji, S.; Liang, T. Prediction of All-Cause Mortality with Malnutrition Assessed by Nutritional Screening and Assessment Tools in Patients with Heart Failure: A Systematic Review. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1361–1374. [Google Scholar] [CrossRef]
- Dong, C.-H.; Chen, S.-Y.; Zeng, H.-L.; Yang, B.; Pan, J. Geriatric Nutritional Risk Index Predicts All-Cause Mortality in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Clinics 2021, 76, e2258. [Google Scholar] [CrossRef]
- Li, H.; Cen, K.; Sun, W.; Feng, B. Prognostic Value of Geriatric Nutritional Risk Index in Elderly Patients with Heart Failure: A Meta-Analysis. Aging Clin. Exp. Res. 2021, 33, 1477–1486. [Google Scholar] [CrossRef]
- Ni, J.; Fang, Y.; Zhang, J.; Chen, X. Predicting Prognosis of Heart Failure Using Common Malnutrition Assessment Tools: A Systematic Review and Meta-Analysis. Scott. Med. J. 2022, 67, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-W.; Luo, J.-J.; Baldinger, B. The Controlling Nutritional Status Score and Clinical Outcomes in Patients with Heart Failure: Pool Analysis of Observational Studies. Front. Cardiovasc. Med. 2022, 9, 961141. [Google Scholar] [CrossRef] [PubMed]
- Habaybeh, D.; de Moraes, M.B.; Slee, A.; Avgerinou, C. Nutritional Interventions for Heart Failure Patients Who Are Malnourished or at Risk of Malnutrition or Cachexia: A Systematic Review and Meta-Analysis. Heart Fail. Rev. 2021, 26, 1103–1118. [Google Scholar] [CrossRef] [Green Version]
- Al Saadi, T.; Assaf, Y.; Farwati, M.; Turkmani, K.; Al-Mouakeh, A.; Shebli, B.; Khoja, M.; Essali, A.; Madmani, M.E. Coenzyme Q10 for Heart Failure. Cochrane Database Syst. Rev. 2021, 2, CD008684. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, F.; Fonarow, G.C.; Sreenivasan, J.; Greene, S.J.; Khan, S.U.; Usman, M.S.; Vaduganathan, M.; Fudim, M.; Anker, S.D.; et al. Dietary Interventions and Nutritional Supplements for Heart Failure: A Systematic Appraisal and Evidence Map. Eur. J. Heart Fail. 2021, 23, 1468–1476. [Google Scholar] [CrossRef]
- Bernasconi, A.A.; Wiest, M.M.; Lavie, C.J.; Milani, R.V.; Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of Interventional Trials. Mayo Clin. Proc. 2021, 96, 304–313. [Google Scholar] [CrossRef]
- Bianchi, V.E. Nutrition in Chronic Heart Failure Patients: A Systematic Review. Heart Fail. Rev. 2020, 25, 1017–1026. [Google Scholar] [CrossRef]
- Rahimlu, M.; Shab-Bidar, S.; Djafarian, K. Body Mass Index and All-Cause Mortality in Chronic Kidney Disease: A Dose-Response Meta-Analysis of Observational Studies. J. Ren. Nutr. 2017, 27, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.; Wang, M.; Zhang, Y.; Nie, L.; He, T.; Wang, Y.; Huang, Y.; Feng, B.; Zhang, J.; Zhao, J. Association of Geriatric Nutritional Risk Index with Mortality in Hemodialysis Patients: A Meta-Analysis of Cohort Studies. Kidney Blood Press. Res. 2018, 43, 1878–1889. [Google Scholar] [CrossRef]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-Analysis of Contemporary Observational Studies from the International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef]
- Mihaescu, A.; Masood, E.; Zafran, M.; Khokhar, H.T.; Augustine, A.M.; Filippo, A.; Van Biesen, W.; Farrigton, K.; Carrero, J.J.; Covic, A.; et al. Nutritional Status Improvement in Elderly CKD Patients: A Systematic Review. Int. Urol. Nephrol. 2021, 53, 1603–1621. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Lee, D.H.; Min, J.; Jeon, J.Y. Handgrip Strength as a Predictor of All-Cause Mortality in Patients with Chronic Kidney Disease Undergoing Dialysis: A Meta-Analysis of Prospective Cohort Studies. J. Ren. Nutr. 2019, 29, 471–479. [Google Scholar] [CrossRef]
- Santana Gomes, T.; do Espirito Santo Silva, D.; Xavier Junior, G.F.; de Farias Costa, P.R.; Gusmão Sena, M.H.L.; Barreto Medeiros, J.M. Sarcopenia and Mortality in Patients with Chronic Non-Dialytic Renal Disease: Systematic Review and Meta-Analysis. J. Ren. Nutr. 2022, 32, 135–143. [Google Scholar] [CrossRef]
- Kojima, G. Prevalence of Frailty in End-Stage Renal Disease: A Systematic Review and Meta-Analysis. Int. Urol. Nephrol. 2017, 49, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Wei-Jie, Y. Effects of Soy Protein Containing Isoflavones in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clin. Nutr. 2016, 35, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.J.; Ma, F.; Wang, Q.Y.; He, S.L. The Effects of Oral Nutritional Supplements in Patients with Maintenance Dialysis Therapy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. PLoS ONE 2018, 13, e0203706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mah, J.Y.; Choy, S.W.; Roberts, M.A.; Desai, A.M.; Corken, M.; Gwini, S.M.; McMahon, L.P. Oral Protein-Based Supplements versus Placebo or No Treatment for People with Chronic Kidney Disease Requiring Dialysis. Cochrane Database Syst. Rev. 2020, 5, CD012616. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Yang, L.; Li, Z.; Qin, W. Effect of Restricted Protein Diet Supplemented with Keto Analogues in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Int. Urol. Nephrol. 2016, 48, 409–418. [Google Scholar] [CrossRef]
- Rhee, C.M.; Ahmadi, S.-F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-Protein Diet for Conservative Management of Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Controlled Trials. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of Diet Protein Restriction on Progression of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef] [Green Version]
- Chewcharat, A.; Takkavatakarn, K.; Wongrattanagorn, S.; Panrong, K.; Kittiskulnam, P.; Eiam-Ong, S.; Susantitaphong, P. The Effects of Restricted Protein Diet Supplemented with Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and Chronic Kidney Disease-Mineral and Bone Disorder in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2020, 30, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Tang, Y.; Yang, L.; Mi, X.; Qin, W. Effect of Restricted Protein Diet Supplemented with Keto Analogues in End-Stage Renal Disease: A Systematic Review and Meta-Analysis. Int. Urol. Nephrol. 2018, 50, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low Protein Diets for Non-Diabetic Adults with Chronic Kidney Disease. Cochrane Database Syst. Rev. 2018, 10, CD001892, reprinted in Cochrane Database Syst. Rev. 2020, 10, CD001892. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fang, J.; Li, W. Protein Restriction for Diabetic Kidney Disease. Cochrane Database Syst. Rev. 2023, 1, CD014906. [Google Scholar] [CrossRef] [PubMed]
- Goto, N.A.; Weststrate, A.C.G.; Oosterlaan, F.M.; Verhaar, M.C.; Willems, H.C.; Emmelot-Vonk, M.H.; Hamaker, M.E. The Association between Chronic Kidney Disease, Falls, and Fractures: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2020, 31, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.-C.; Lu, C.-L.; Lu, K.-C. Mineral Bone Disorders in Chronic Kidney Disease. Nephrology 2018, 23, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-Y.; Chen, L.-R.; Chen, K.-H. Osteoporosis in Patients with Chronic Kidney Diseases: A Systemic Review. Int. J. Mol. Sci. 2020, 21, 6846. [Google Scholar] [CrossRef]
- Banerjee, D.; Chitalia, N.; Ster, I.C.; Appelbaum, E.; Thadhani, R.; Kaski, J.C.; Goldsmith, D. Impact of Vitamin D on Cardiac Structure and Function in Chronic Kidney Disease Patients with Hypovitaminosis D: A Randomized Controlled Trial and Meta-Analysis. Eur. Heart J. Cardiovasc. Pharm. 2021, 7, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, M.; Aspray, T.J.; Schoenmakers, I. Vitamin D Supplementation for Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analyses of Trials Investigating the Response to Supplementation and an Overview of Guidelines. Calcif. Tissue Int. 2021, 109, 157–178. [Google Scholar] [CrossRef]
- Karimi, E.; Bitarafan, S.; Mousavi, S.M.; Zargarzadeh, N.; Mokhtari, P.; Hawkins, J.; Meysamie, A.; Koohdani, F. The Effect of Vitamin D Supplementation on Fibroblast Growth Factor-23 in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Phytother. Res. 2021, 35, 5339–5351. [Google Scholar] [CrossRef]
- Milajerdi, A.; Ostadmohammadi, V.; Amirjani, S.; Kolahdooz, F.; Asemi, Z. The Effects of Vitamin D Treatment on Glycemic Control, Serum Lipid Profiles, and C-Reactive Protein in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. Urol. Nephrol. 2019, 51, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Mirrahimi, A.; Sievenpiper, J.L.; Jenkins, D.J.A.; Darling, P.B. Dietary Fiber Effects in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Eur. J. Clin. Nutr. 2015, 69, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarlane, C.; Ramos, C.I.; Johnson, D.W.; Campbell, K.L. Prebiotic, Probiotic, and Synbiotic Supplementation in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2019, 29, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Sanz-París, A.; Gómez-Candela, C.; Martín-Palmero, Á.; García-Almeida, J.M.; Burgos-Pelaez, R.; Matía-Martin, P.; Arbones-Mainar, J.M.; Study VIDA group. Application of the New ESPEN Definition of Malnutrition in Geriatric Diabetic Patients during Hospitalization: A Multicentric Study. Clin. Nutr. 2016, 35, 1564–1567. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, D.; Marco, E.; Ronquillo-Moreno, N.; Miralles, R.; Vázquez-Ibar, O.; Escalada, F.; Muniesa, J.M. Prevalence of Malnutrition and Sarcopenia in a Post-Acute Care Geriatric Unit: Applying the New ESPEN Definition and EWGSOP Criteria. Clin. Nutr. 2017, 36, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Sanz-París, A.; Martín-Palmero, A.; Gomez-Candela, C.; García-Almeida, J.M.; Burgos-Pelaez, R.; Sanz-Arque, A.; Espina, S.; Arbones-Mainar, J.M. Study VIDA group GLIM Criteria at Hospital Admission Predict 8-Year All-Cause Mortality in Elderly Patients with Type 2 Diabetes Mellitus: Results From VIDA Study. JPEN J. Parenter. Enteral. Nutr. 2020, 44, 1492–1500. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.; Xu, J. Association between the Geriatric Nutritional Risk Index, Bone Mineral Density and Osteoporosis in Type 2 Diabetes Patients. J. Diabetes Investig. 2020, 11, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, G.; Ganidağlı, S.; Efendioğlu, E.M.; Öztürk, E.; Öztürk, Z.A. Do Long-Term Complications of Type 2 Diabetes Increase Susceptibility to Geriatric Syndromes in Older Adults? Medicina 2021, 57, 968. [Google Scholar] [CrossRef]
- Takahashi, F.; Hashimoto, Y.; Kaji, A.; Sakai, R.; Kawate, Y.; Okamura, T.; Kitagawa, N.; Okada, H.; Nakanishi, N.; Majima, S.; et al. Association between Geriatric Nutrition Risk Index and The Presence of Sarcopenia in People with Type 2 Diabetes Mellitus: A Cross-Sectional Study. Nutrients 2021, 13, 3729. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Gutiérrez-Lora, C.; Izaola-Jauregui, O.; Primo-Martín, D.; Gómez-Hoyos, E.; Jiménez-Sahagún, R.; De Luis-Román, D.A. Real World Practice Study of the Effect of a Specific Oral Nutritional Supplement for Diabetes Mellitus on the Morphofunctional Assessment and Protein Energy Requirements. Nutrients 2022, 14, 4802. [Google Scholar] [CrossRef]
- Matsuura, S.; Shibazaki, K.; Uchida, R.; Imai, Y.; Mukoyama, T.; Shibata, S.; Morita, H. Sarcopenia Is Associated with the Geriatric Nutritional Risk Index in Elderly Patients with Poorly Controlled Type 2 Diabetes Mellitus. J. Diabetes Investig. 2022, 13, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, Y.; Shi, Y.; Wang, X.; Liao, Z.; Wei, P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front. Endocrinol. 2020, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Sasdelli, A.S.; Caraceni, P.; Marchesini, G.; Ravaioli, F. Nutrition in Patients with Type 2 Diabetes: Present Knowledge and Remaining Challenges. Nutrients 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.; Massimino, E.; Riccardi, G.; Della Pepa, G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients 2021, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Alva, M.C.; Irigoyen-Camacho, M.E.; Zepeda-Zepeda, M.A.; Lazarevich, I.; Arrieta-Cruz, I.; D’Hyver, C. Sarcopenia, Nutritional Status and Type 2 Diabetes Mellitus: A Cross-Sectional Study in a Group of Mexican Women Residing in a Nursing Home. Nutr. Diet. 2020, 77, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, K.; Tanabe, H.; Takiguchi, Y.; Yamaguchi, M.; Sato, M.; Saito, H.; Tanaka, K.; Masuzaki, H.; Kazama, J.J.; Shimabukuro, M. A Nutritional Assessment Tool, GNRI, Predicts Sarcopenia and Its Components in Type 2 Diabetes Mellitus: A Japanese Cross-Sectional Study. Front. Nutr. 2023, 10, 1087471. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Shu, D.; Meng, F.; Chen, Y.; Wang, J.; Liu, X.; Xiao, X.; Guo, W.; Chen, F. Higher Risk of Sarcopenia in Older Adults with Type 2 Diabetes: NHANES 1999–2018. Obes. Facts 2023, 16, 237–248. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Zheng, W.; Fang, X.; Chen, L.; Rink, L.; Min, J.; Wang, F. Zinc Supplementation Improves Glycemic Control for Diabetes Prevention and Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2019, 110, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ronsmans, C.; Woolf, B. Triangulating Evidence for the Causal Impact of Single-Intervention Zinc Supplement on Glycaemic Control for Type 2 Diabetes: Systematic Review and Meta-Analysis of Randomised Controlled Trial and Two-Sample Mendelian Randomisation. Br. J. Nutr. 2023, 129, 1929–1944. [Google Scholar] [CrossRef]
- Asbaghi, O.; Nazarian, B.; Yousefi, M.; Anjom-Shoae, J.; Rasekhi, H.; Sadeghi, O. Effect of Vitamin E Intake on Glycemic Control and Insulin Resistance in Diabetic Patients: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. J. 2023, 22, 10. [Google Scholar] [CrossRef]
- Lind, M.V.; Lauritzen, L.; Kristensen, M.; Ross, A.B.; Eriksen, J.N. Effect of Folate Supplementation on Insulin Sensitivity and Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2019, 109, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Yousefi Rad, E.; Nazarian, B.; Saboori, S.; Falahi, E.; Hekmatdoost, A. Effects of L-Arginine Supplementation on Glycemic Profile: Evidence from a Systematic Review and Meta-Analysis of Clinical Trials. J. Integr. Med. 2020, 18, 284–291. [Google Scholar] [CrossRef]
- Karimi, E.; Hatami, E.; Ghavami, A.; Hadi, A.; Darand, M.; Askari, G. Effects of L-Arginine Supplementation on Biomarkers of Glycemic Control: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. Arch. Physiol. Biochem. 2023, 129, 700–710. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary Fibre and Whole Grains in Diabetes Management: Systematic Review and Meta-Analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A Journey into a Mediterranean Diet and Type 2 Diabetes: A Systematic Review with Meta-Analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean Diet, Cardiovascular Disease and Mortality in Diabetes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies and Randomized Clinical Trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1207–1227. [Google Scholar] [CrossRef]
- Zimorovat, A.; Mohammadi, M.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. The Healthy Nordic Diet for Blood Glucose Control: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Acta. Diabetol. 2020, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Massara, P.; Zurbau, A.; Glenn, A.J.; Chiavaroli, L.; Khan, T.A.; Viguiliouk, E.; Mejia, S.B.; Comelli, E.M.; Chen, V.; Schwab, U.; et al. Nordic Dietary Patterns and Cardiometabolic Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies and Randomised Controlled Trials. Diabetologia 2022, 65, 2011–2031. [Google Scholar] [CrossRef]
- Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD). Evidence-Based European Recommendations for the Dietary Management of Diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
- Lauwers, P.; Dirinck, E.; Van Bouwel, S.; Verrijken, A.; Van Dessel, K.; Van Gils, C.; Sels, M.; Peiffer, F.; Van Schil, P.; De Block, C.; et al. Malnutrition and Its Relation with Diabetic Foot Ulcer Severity and Outcome: A Review. Acta Clin. Belg. 2022, 77, 79–85. [Google Scholar] [CrossRef]
- Bechara, N.; Gunton, J.E.; Flood, V.; Hng, T.-M.; McGloin, C. Associations between Nutrients and Foot Ulceration in Diabetes: A Systematic Review. Nutrients 2021, 13, 2576. [Google Scholar] [CrossRef]
- Strazzullo, P.; D’Elia, L.; Cairella, G.; Garbagnati, F.; Cappuccio, F.P.; Scalfi, L. Excess Body Weight and Incidence of Stroke: Meta-Analysis of Prospective Studies with 2 Million Participants. Stroke 2010, 41, e418–e426. [Google Scholar] [CrossRef] [Green Version]
- Forlivesi, S.; Cappellari, M.; Bonetti, B. Obesity Paradox and Stroke: A Narrative Review. Eat Weight. Disord. 2021, 26, 417–423. [Google Scholar] [CrossRef]
- Shi, H.; Chen, H.; Zhang, Y.; Li, J.; Fu, K.; Xue, W.; Teng, W.; Tian, L. 25-Hydroxyvitamin D Level, Vitamin D Intake, and Risk of Stroke: A Dose-Response Meta-Analysis. Clin. Nutr. 2020, 39, 2025–2034. [Google Scholar] [CrossRef] [PubMed]
- Vergatti, A.; Abate, V.; Zarrella, A.F.; Manganelli, F.; Tozza, S.; Iodice, R.; De Filippo, G.; D’Elia, L.; Strazzullo, P.; Rendina, D. 25-Hydroxy-Vitamin D and Risk of Recurrent Stroke: A Dose Response Meta-Analysis. Nutrients 2023, 15, 512. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, Q.; Fang, X.; Wang, X.; Min, J.; Wang, F. Dietary Intake of Homocysteine Metabolism-Related B-Vitamins and the Risk of Stroke: A Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2020, 11, 1510–1528. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Q.; Chen, Q.; Li, Q.; Guo, C.; Tian, G.; Qie, R.; Han, M.; Huang, S.; Li, Y.; et al. Association of Homocysteine Level with Risk of Stroke: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1861–1869. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, L.; Ning, S.; Liu, Z.; Lin, H.; Chen, S.; Zhu, J. Vitamin E Intake and Risk of Stroke: A Meta-Analysis. Br. J. Nutr. 2018, 120, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.-Z.; Xu, J.-Y.; Chen, G.-C.; Ma, Y.-X.; Qin, L.-Q. Effects of Fatty and Lean Fish Intake on Stroke Risk: A Meta-Analysis of Prospective Cohort Studies. Lipids Health Dis. 2018, 17, 264. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Tang, H.; Yang, X.; Luo, X.; Wang, X.; Shao, C.; He, J. Fish Consumption and Stroke Risk: A Meta-Analysis of Prospective Cohort Studies. J. Stroke Cerebrovasc. Dis. 2019, 28, 604–611. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, W.S.; Jiang, C.Q.; Zhu, F.; Jin, Y.L.; Cheng, K.K.; Lam, T.H.; Xu, L. Low-Carbohydrate Diet Score and the Risk of Stroke in Older People: Guangzhou Biobank Cohort Study and Meta-Analysis of Cohort Studies. Nutrition 2023, 105, 111844. [Google Scholar] [CrossRef]
- Balcerak, P.; Corbiere, S.; Zubal, R.; Kägi, G. Post-Stroke Dysphagia: Prognosis and Treatment-A Systematic Review of RCT on Interventional Treatments for Dysphagia Following Subacute Stroke. Front. Neurol. 2022, 13, 823189. [Google Scholar] [CrossRef]
- Liu, C.H.; Huo, M.; Qin, H.H.; Zhao, B.L. Critical Prognostic Factors for Poststroke Dysphagia: A Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 610–622. [Google Scholar] [CrossRef] [PubMed]
- D’Netto, P.; Rumbach, A.; Dunn, K.; Finch, E. Clinical Predictors of Dysphagia Recovery after Stroke: A Systematic Review. Dysphagia 2023, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, V.; Guida, S.; Holdoway, A.; Strilciuc, S.; Baijens, L.; Schols, J.M.G.A.; van Helvoort, A.; Lansink, M.; Muresanu, D.F. Impaired Nutritional Condition after Stroke from the Hyperacute to the Chronic Phase: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 780080. [Google Scholar] [CrossRef]
- Hu, J.; Chen, T.; Wang, Z.; Chen, X.; Lin, K.; Zhang, G.; Wu, J. Geriatric Nutritional Risk Index and the Prognosis of Patients with Stroke: A Meta-Analysis. Horm. Metab. Res. 2022, 54, 736–746. [Google Scholar] [CrossRef]
- Mehta, A.; De Paola, L.; Pana, T.A.; Carter, B.; Soiza, R.L.; Kafri, M.W.; Potter, J.F.; Mamas, M.A.; Myint, P.K. The Relationship between Nutritional Status at the Time of Stroke on Adverse Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutr. Rev. 2022, 80, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, J.; Guo, J. The Effects of Nutrition Supplement on Rehabilitation for Patients with Stroke: Analysis Based on 16 Randomized Controlled Trials. Medicine 2022, 101, e29651. [Google Scholar] [CrossRef]
- Sakai, K.; Kinoshita, S.; Tsuboi, M.; Fukui, R.; Momosaki, R.; Wakabayashi, H. Effects of Nutrition Therapy in Older Stroke Patients Undergoing Rehabilitation: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2019, 23, 21–26. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Chu, J.; Zheng, J.; Cheng, X.; Li, X.; Long, J. Effect of Probiotics on the Nutritional Status of Severe Stroke Patients with Nasal Feeding That Receive Enteral Nutrition: A Protocol for Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine 2021, 100, e25657. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Yuan, X.; Yang, J.; Li, K. Effect of Early Enteral Nutrition Combined with Probiotics in Patients with Stroke: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2022, 76, 592–603. [Google Scholar] [CrossRef]
- Su, Y.; Yuki, M.; Otsuki, M. Prevalence of Stroke-Related Sarcopenia: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105092. [Google Scholar] [CrossRef] [PubMed]
- Beckwée, D.; Cuypers, L.; Lefeber, N.; De Keersmaecker, E.; Scheys, E.; Van Hees, W.; Perkisas, S.; De Raedt, S.; Kerckhofs, E.; Bautmans, I.; et al. Skeletal Muscle Changes in the First Three Months of Stroke Recovery: A Systematic Review. J. Rehabil. Med. 2022, 54, jrm00308. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Woodward, M.; Batty, G.D.; Beiser, A.S.; Bell, S.; Berr, C.; Bjertness, E.; Chalmers, J.; Clarke, R.; Dartigues, J.-F.; et al. Association of Anthropometry and Weight Change with Risk of Dementia and Its Major Subtypes: A Meta-Analysis Consisting 2.8 Million Adults with 57 294 Cases of Dementia. Obes. Rev. 2020, 21, e12989. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhao, W.; Lu, M.; Zhang, X.; Zhang, P.; Xin, Z.; Sun, R.; Tian, W.; Cardoso, M.A.; Yang, J.; et al. Relationship between Central Obesity and the Incidence of Cognitive Impairment and Dementia from Cohort Studies Involving 5,060,687 Participants. Neurosci. Biobehav. Rev. 2021, 130, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Gao, F.; Wu, R.; Dong, T.; Gu, C.; Lin, Q.; Zhang, Y. Vitamin D Deficiency as a Risk Factor for Dementia and Alzheimer’s Disease: An Updated Meta-Analysis. BMC Neurol. 2019, 19, 284. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Rashidy-Pour, A.; Shab-Bidar, S. Vitamin D Status and Risk of Dementia and Alzheimer’s Disease: A Meta-Analysis of Dose-Response. Nutr. Neurosci. 2019, 22, 750–759. [Google Scholar] [CrossRef]
- Kalra, A.; Teixeira, A.L.; Diniz, B.S. Association of Vitamin D Levels with Incident All-Cause Dementia in Longitudinal Observational Studies: A Systematic Review and Meta-Analysis. J. Prev. Alzheimer’s Dis. 2020, 7, 14–20. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yuan, C.; Ding, D. Vitamin B12, B6, or Folate and Cognitive Function in Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2020, 77, 781–794. [Google Scholar] [CrossRef]
- Gil Martínez, V.; Avedillo Salas, A.; Santander Ballestín, S. Vitamin Supplementation and Dementia: A Systematic Review. Nutrients 2022, 14, 1033. [Google Scholar] [CrossRef]
- Kim, E.; Je, Y. Fish Consumption and the Risk of Dementia: Systematic Review and Meta-Analysis of Prospective Studies. Psychiatry Res. 2022, 317, 114889. [Google Scholar] [CrossRef]
- Buckinx, F.; Aubertin-Leheudre, M. Nutrition to Prevent or Treat Cognitive Impairment in Older Adults: A GRADE Recommendation. J. Prev. Alzheimer’s Dis. 2021, 8, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tan, L.-J.; Lee, J.E.; Shin, S. Association between the Mediterranean Diet and Cognitive Health among Healthy Adults: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 946361. [Google Scholar] [CrossRef]
- Patch, C.S.; Hill-Yardin, E.L.; Ryan, L.; Daly, E.; Pearce, A.J. Long Chain Omega-3 Fatty Acid Intervention in Ageing Adults at Risk of Dementia Following Repeated Head Trauma. Low-Level Support or an Opportunity for an Unanswered Question? J. Prev. Alzheimer’s Dis. 2021, 8, 29–32. [Google Scholar] [CrossRef] [PubMed]
- McGrattan, A.; van Aller, C.; Narytnyk, A.; Reidpath, D.; Keage, H.; Mohan, D.; Su, T.T.; Stephan, B.; Robinson, L.; Siervo, M.; et al. Nutritional Interventions for the Prevention of Cognitive Impairment and Dementia in Developing Economies in East-Asia: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1838–1855. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, F.; Sun, Y.; Wang, Z.; Li, Q.; Wang, H.; Lu, Y. N-3 Polyunsaturated Fatty Acids in Elderly with Mild Cognitive Impairment: A Systemic Review and Meta-Analysis. J. Alzheimer’s Dis. 2023, 1–15. [Google Scholar] [CrossRef]
- Burckhardt, M.; Watzke, S.; Wienke, A.; Langer, G.; Fink, A. Souvenaid for Alzheimer’s Disease. Cochrane Database Syst. Rev. 2020, 12, CD011679. [Google Scholar] [CrossRef]
- Alam, J. Vitamins: A Nutritional Intervention to Modulate the Alzheimer’s Disease Progression. Nutr. Neurosci. 2022, 25, 945–962. [Google Scholar] [CrossRef]
- Liu, T.; Li, N.; Hou, Z.; Liu, L.; Gao, L.; Wang, L.; Tan, J. Nutrition and Exercise Interventions Could Ameliorate Age-Related Cognitive Decline: A Meta-Analysis of Randomized Controlled Trials. Aging Clin. Exp. Res. 2021, 33, 1799–1809. [Google Scholar] [CrossRef]
- Porter, J.; Thompson, H.; Tjahyo, A.S. Understanding Total Energy Expenditure in People with Dementia: A Systematic Review with Directions for Future Research. Australas. J. Ageing 2021, 40, 243–251. [Google Scholar] [CrossRef]
- Doorduijn, A.S.; van de Rest, O.; van der Flier, W.M.; Visser, M.; de van der Schueren, M.A.E. Energy and Protein Intake of Alzheimer’s Disease Patients Compared to Cognitively Normal Controls: Systematic Review. J. Am. Med. Dir. Assoc. 2019, 20, 14–21. [Google Scholar] [CrossRef]
- Fetherstonhaugh, D.; Haesler, E.; Bauer, M. Promoting Mealtime Function in People with Dementia: A Systematic Review of Studies Undertaken in Residential Aged Care. Int. J. Nurs. Stud. 2019, 96, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Borders, J.C.; Blanke, S.; Johnson, S.; Gilmore-Bykovskyi, A.; Rogus-Pulia, N. Efficacy of Mealtime Interventions for Malnutrition and Oral Intake in Persons with Dementia: A Systematic Review. Alzheimer’s Dis. Assoc. Disord. 2020, 34, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Tangvik, R.J.; Bruvik, F.K.; Drageset, J.; Kyte, K.; Hunskår, I. Effects of Oral Nutrition Supplements in Persons with Dementia: A Systematic Review. Geriatr. Nurs. 2021, 42, 117–123. [Google Scholar] [CrossRef]
- Liu, W.; Galik, E.; Boltz, M.; Nahm, E.-S.; Resnick, B. Optimizing Eating Performance for Older Adults with Dementia Living in Long-Term Care: A Systematic Review. Worldviews Evid.-Based Nurs. 2015, 12, 228–235. [Google Scholar] [CrossRef]
- Leah, V. Supporting People with Dementia to Eat. Nurs. Older People 2016, 28, 33–39. [Google Scholar] [CrossRef]
- Mole, L.; Kent, B.; Abbott, R.; Wood, C.; Hickson, M. The Nutritional Care of People Living with Dementia at Home: A Scoping Review. Health Soc. Care Community 2018, 26, e485–e496. [Google Scholar] [CrossRef] [Green Version]
- Davies, N.; Barrado-Martín, Y.; Vickerstaff, V.; Rait, G.; Fukui, A.; Candy, B.; Smith, C.H.; Manthorpe, J.; Moore, K.J.; Sampson, E.L. Enteral Tube Feeding for People with Severe Dementia. Cochrane Database Syst. Rev. 2021, 8, CD013503. [Google Scholar] [CrossRef] [PubMed]
- Anantapong, K.; Bruun, A.; Walford, A.; Smith, C.H.; Manthorpe, J.; Sampson, E.L.; Davies, N. Co-Design Development of a Decision Guide on Eating and Drinking for People with Severe Dementia during Acute Hospital Admissions. Health Expect. 2023, 26, 613–629. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Zhao, L.; Wang, J. Osteoporosis in COPD Patients: Risk Factors and Pulmonary Rehabilitation. Clin. Respir. J. 2022, 16, 487–496. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary Protein and Bone Health: A Systematic Review and Meta-Analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zittermann, A.; Schmidt, A.; Haardt, J.; Kalotai, N.; Lehmann, A.; Egert, S.; Ellinger, S.; Kroke, A.; Lorkowski, S.; Louis, S.; et al. Protein Intake and Bone Health: An Umbrella Review of Systematic Reviews for the Evidence-Based Guideline of the German Nutrition Society. Osteoporos. Int. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; McKenzie, J.E.; McDonald, S.; Baram, L.; Page, M.J.; Allman-Farinelli, M.; Raubenheimer, D.; Bero, L.A. Assessment of the Methods Used to Develop Vitamin D and Calcium Recommendations-A Systematic Review of Bone Health Guidelines. Nutrients 2021, 13, 2423. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e2138911. [Google Scholar] [CrossRef]
- Bertoldo, F.; Cianferotti, L.; Di Monaco, M.; Falchetti, A.; Fassio, A.; Gatti, D.; Gennari, L.; Giannini, S.; Girasole, G.; Gonnelli, S.; et al. Definition, Assessment, and Management of Vitamin D Inadequacy: Suggestions, Recommendations, and Warnings from the Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Nutrients 2022, 14, 4148. [Google Scholar] [CrossRef]
- Kazemian, E.; Pourali, A.; Sedaghat, F.; Karimi, M.; Basirat, V.; Sajadi Hezaveh, Z.; Davoodi, S.H.; Holick, M.F. Effect of Supplemental Vitamin D3 on Bone Mineral Density: A Systematic Review and Meta-Analysis. Nutr. Rev. 2023, 81, 511–530. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, S.; Niu, X.; Dai, S. Meta-Analysis of Effects of Nutritional Intervention Combined with Calcium Carbonate D3 Tablets on Bone Mineral Density, Bone Metabolism, and Curative Effect in Patients with Osteoporosis. Contrast Media Mol. Imaging 2022, 2022, 3670007. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.-L.; Ma, Z.-J.; He, Y.-L.; Sun, H.; Yang, B.; Ruan, B.-J.; Zhan, W.; Li, S.-X.; Dong, H.; Wang, Y.-X. Efficacy of Vitamin K2 in the Prevention and Treatment of Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Public Health 2022, 10, 979649. [Google Scholar] [CrossRef]
- Denova-Gutiérrez, E.; Méndez-Sánchez, L.; Muñoz-Aguirre, P.; Tucker, K.L.; Clark, P. Dietary Patterns, Bone Mineral Density, and Risk of Fractures: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1922. [Google Scholar] [CrossRef] [Green Version]
- Panahande, B.; Sadeghi, A.; Parohan, M. Alternative Healthy Eating Index and Risk of Hip Fracture: A Systematic Review and Dose-Response Meta-Analysis. J. Hum. Nutr. Diet. 2019, 32, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Rycroft, C.E.; Greenwood, D.C.; Cade, J.E. Dietary Risk Factors for Hip Fracture in Adults: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. PLoS ONE 2021, 16, e0259144. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Wu, F.; Makin, J.K.; Oddy, W.H.; Wills, K.; Jones, G.; Winzenberg, T. Associations of Dietary Patterns with Bone Density and Fractures in Adults: A Systematic Review and Meta-Analysis. Aust. J. Gen. Pract. 2021, 50, 394–401. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Laukkanen, J.A.; Whitehouse, M.R.; Blom, A.W. Adherence to a Mediterranean-Style Diet and Incident Fractures: Pooled Analysis of Observational Evidence. Eur. J. Nutr. 2018, 57, 1687–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmir, H.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Adherence to Mediterranean Diet in Relation to Bone Mineral Density and Risk of Fracture: A Systematic Review and Meta-Analysis of Observational Studies. Eur. J. Nutr. 2018, 57, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Hu, J.; Zhang, K.; Wang, Y.; Yu, M.; Ma, J. Dairy Product Consumption and Risk of Hip Fracture: A Systematic Review and Meta-Analysis. BMC Public Health 2018, 18, 165. [Google Scholar] [CrossRef] [Green Version]
- Matía-Martín, P.; Torrego-Ellacuría, M.; Larrad-Sainz, A.; Fernández-Pérez, C.; Cuesta-Triana, F.; Rubio-Herrera, M.Á. Effects of Milk and Dairy Products on the Prevention of Osteoporosis and Osteoporotic Fractures in Europeans and Non-Hispanic Whites from North America: A Systematic Review and Updated Meta-Analysis. Adv. Nutr. 2019, 10, S120–S143. [Google Scholar] [CrossRef]
- Hidayat, K.; Du, X.; Shi, B.-M.; Qin, L.-Q. Systematic Review and Meta-Analysis of the Association between Dairy Consumption and the Risk of Hip Fracture: Critical Interpretation of the Currently Available Evidence. Osteoporos. Int. 2020, 31, 1411–1425. [Google Scholar] [CrossRef]
- Malmir, H.; Larijani, B.; Esmaillzadeh, A. Consumption of Milk and Dairy Products and Risk of Osteoporosis and Hip Fracture: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1722–1737. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Moore, J.B.; Wang, Y.; Yan, H.; Wu, Y.; Tan, A.; Fu, J.; Shen, Z.; Qin, G.; et al. The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies. Int. J. Environ. Res. Public Health 2017, 14, 1043. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, C.; Bo, Y.; You, J.; Zhu, Y.; Duan, D.; Cui, H.; Lu, Q. Dietary Vitamin C Intake and the Risk of Hip Fracture: A Dose-Response Meta-Analysis. Osteoporos. Int. 2018, 29, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Malmir, H.; Shab-Bidar, S.; Djafarian, K. Vitamin C Intake in Relation to Bone Mineral Density and Risk of Hip Fracture and Osteoporosis: A Systematic Review and Meta-Analysis of Observational Studies. Br. J. Nutr. 2018, 119, 847–858. [Google Scholar] [CrossRef]
- Feng, Y.; Cheng, G.; Wang, H.; Chen, B. The Associations between Serum 25-Hydroxyvitamin D Level and the Risk of Total Fracture and Hip Fracture. Osteoporos. Int. 2017, 28, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, Y.; Ji, J.; Chang, J.; Yu, S.; Yu, B. The Relationship between Serum Vitamin D and Fracture Risk in the Elderly: A Meta-Analysis. J. Orthop. Surg. Res. 2020, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Habibi Ghahfarrokhi, S.; Mohammadian-Hafshejani, A.; Sherwin, C.M.T.; Heidari-Soureshjani, S. Relationship between Serum Vitamin D and Hip Fracture in the Elderly: A Systematic Review and Meta-Analysis. J. Bone Miner. Metab. 2022, 40, 541–553. [Google Scholar] [CrossRef]
- Weaver, C.M.; Alexander, D.D.; Boushey, C.J.; Dawson-Hughes, B.; Lappe, J.M.; LeBoff, M.S.; Liu, S.; Looker, A.C.; Wallace, T.C.; Wang, D.D. Calcium plus Vitamin D Supplementation and Risk of Fractures: An Updated Meta-Analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, S.H.; Jang, H.N.; Kim, J.H.; Kim, S.W.; Shin, C.S. Effect of Vitamin D Supplementation on Risk of Fractures and Falls According to Dosage and Interval: A Meta-Analysis. Endocrinol. Metab. 2022, 37, 344–358. [Google Scholar] [CrossRef]
- Manoj, P.; Derwin, R.; George, S. What Is the Impact of Daily Oral Supplementation of Vitamin D3 (Cholecalciferol) plus Calcium on the Incidence of Hip Fracture in Older People? A Systematic Review and Meta-Analysis. Int. J. Older People Nurs. 2023, 18, e12492. [Google Scholar] [CrossRef]
- Mozaffari, H.; Djafarian, K.; Mofrad, M.D.; Shab-Bidar, S. Dietary Fat, Saturated Fatty Acid, and Monounsaturated Fatty Acid Intakes and Risk of Bone Fracture: A Systematic Review and Meta-Analysis of Observational Studies. Osteoporos. Int. 2018, 29, 1949–1961. [Google Scholar] [CrossRef]
- Harvey, N.C.; Orwoll, E.; Kwok, T.; Karlsson, M.K.; Rosengren, B.E.; Ribom, E.; Cauley, J.A.; Cawthon, P.M.; Ensrud, K.; Liu, E.; et al. Sarcopenia Definitions as Predictors of Fracture Risk Independent of FRAX®, Falls, and BMD in the Osteoporotic Fractures in Men (MrOS) Study: A Meta-Analysis. J. Bone Miner. Res. 2021, 36, 1235–1244. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Voutilainen, A.; Blom, A.W.; Laukkanen, J.A. Handgrip Strength-a Risk Indicator for Future Fractures in the General Population: Findings from a Prospective Study and Meta-Analysis of 19 Prospective Cohort Studies. Geroscience 2021, 43, 869–880. [Google Scholar] [CrossRef]
- Sadeghi, O.; Saneei, P.; Nasiri, M.; Larijani, B.; Esmaillzadeh, A. Abdominal Obesity and Risk of Hip Fracture: A Systematic Review and Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 728–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahedi, H.; Atayie, F.; Samii Kondrud, F.; Balali, A.; Beyene, J.; Tahery, N.; Asadi, M.; Sadeghi, O. Associations of Abdominal Obesity with Different Types of Bone Fractures in Adults: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Crit. Rev. Food Sci. Nutr. 2023, 21, 6456. [Google Scholar] [CrossRef] [PubMed]
- Gandham, A.; Mesinovic, J.; Jansons, P.; Zengin, A.; Bonham, M.P.; Ebeling, P.R.; Scott, D. Falls, Fractures, and Areal Bone Mineral Density in Older Adults with Sarcopenic Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2021, 22, e13187. [Google Scholar] [CrossRef] [PubMed]
- Vilaca, T.; Schini, M.; Harnan, S.; Sutton, A.; Poku, E.; Allen, I.E.; Cummings, S.R.; Eastell, R. The Risk of Hip and Non-Vertebral Fractures in Type 1 and Type 2 Diabetes: A Systematic Review and Meta-Analysis Update. Bone 2020, 137, 115457. [Google Scholar] [CrossRef]
- Hidayat, K.; Fang, Q.-L.; Shi, B.-M.; Qin, L.-Q. Influence of Glycemic Control and Hypoglycemia on the Risk of Fracture in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis of Observational Studies. Osteoporos. Int. 2021, 32, 1693–1704. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Zheng, H.; Wang, X.; Liu, Z.; Sun, T. Prognostic Role of Serum Albumin, Total Lymphocyte Count, and Mini Nutritional Assessment on Outcomes after Geriatric Hip Fracture Surgery: A Meta-Analysis and Systematic Review. J. Arthroplast. 2019, 34, 1287–1296. [Google Scholar] [CrossRef]
- Foo, M.X.E.; Wong, G.J.Y.; Lew, C.C.H. A Systematic Review of the Malnutrition Prevalence in Hospitalized Hip Fracture Patients and Its Associated Outcomes. JPEN J. Parenter. Enteral. Nutr. 2021, 45, 1141–1152. [Google Scholar] [CrossRef]
- Liu, N.; Lv, L.; Jiao, J.; Zhang, Y.; Zuo, X.-L. Association between Nutritional Indices and Mortality after Hip Fracture: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2297–2304. [Google Scholar] [CrossRef]
- Liu, M.; Yang, J.; Yu, X.; Huang, X.; Vaidya, S.; Huang, F.; Xiang, Z. The Role of Perioperative Oral Nutritional Supplementation in Elderly Patients after Hip Surgery. Clin. Interv. Aging 2015, 10, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Peeters, C.M.M.; Visser, E.; Van de Ree, C.L.P.; Gosens, T.; Den Oudsten, B.L.; De Vries, J. Quality of Life after Hip Fracture in the Elderly: A Systematic Literature Review. Injury 2016, 47, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Ernst, A.; Wilson, J.M.; Ahn, J.; Shapiro, M.; Schenker, M.L. Malnutrition and the Orthopaedic Trauma Patient: A Systematic Review of the Literature. J. Orthop. Trauma 2018, 32, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Momosaki, R.; Yasufuku, Y.; Nakamura, N.; Maeda, K. Nutritional Therapy in Older Patients with Hip Fractures Undergoing Rehabilitation: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1364–1364.e6. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-Y.; Chiu, Y.-C.; Lu, K.-C.; Huang, I.-T.; Tsai, P.-S.; Huang, C.-J. Beneficial Effects of Preoperative Oral Nutrition Supplements on Postoperative Outcomes in Geriatric Hip Fracture Patients: A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Studies. Medicine 2021, 100, e27755. [Google Scholar] [CrossRef]
- Szklarzewska, S.; Mottale, R.; Engelman, E.; De Breucker, S.; Preiser, J.-C. Nutritional Rehabilitation after Acute Illness among Older Patients: A Systematic Review and Meta-Analysis. Clin. Nutr. 2023, 42, 309–336. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [Green Version]
- De Gennaro Colonna, V.; Bianchi, M.; Pascale, V.; Ferrario, P.; Morelli, F.; Pascale, W.; Tomasoni, L.; Turiel, M. Asymmetric Dimethylarginine (ADMA): An Endogenous Inhibitor of Nitric Oxide Synthase and a Novel Cardiovascular Risk Molecule. Med. Sci. Monit. 2009, 15, RA91–RA101. [Google Scholar]
- Liu, J.; Li, C.; Chen, W.; He, K.; Ma, H.; Ma, B.; Zhao, P.; Tian, L. Relationship between Serum Asymmetric Dimethylarginine Level and Microvascular Complications in Diabetes Mellitus: A Meta-Analysis. Biomed. Res. Int. 2019, 2019, 2941861. [Google Scholar] [CrossRef] [Green Version]
- Sener, A.; Lebrun, P.; Blachier, F.; Malaisse, W.J. Stimulus-Secretion Coupling of Arginine-Induced Insulin Release: Insulinotropic Action of Agmatine. Biochem. Pharmacol. 1989, 38, 327–330. [Google Scholar] [CrossRef]
- Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.; Huxley, R.; Jackson, C.; et al. Body-Mass Index and All-Cause Mortality: Individual-Participant-Data Meta-Analysis of 239 Prospective Studies in Four Continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Csige, I.; Ujvárosy, D.; Szabó, Z.; Lőrincz, I.; Paragh, G.; Harangi, M.; Somodi, S. The Impact of Obesity on the Cardiovascular System. J. Diabetes Res. 2018, 2018, 3407306. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, M.J.; Bauer, J.M.; Rämsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.S.; Charlton, K.E.; Maggio, M.; et al. Frequency of Malnutrition in Older Adults: A Multinational Perspective Using the Mini Nutritional Assessment. J. Am. Geriatr. Soc. 2010, 58, 1734–1738. [Google Scholar] [CrossRef]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; de van der Schueren, M.; Marshall, S. A Systematic Review, Meta-Analysis and Meta-Regression of the Prevalence of Protein-Energy Malnutrition: Associations with Geographical Region and Sex. Age Ageing 2019, 48, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Villars, H.; Abellan, G.; Soto, M.E.; Rolland, Y.; Guigoz, Y.; Morley, J.E.; Chumlea, W.; Salva, A.; Rubenstein, L.Z.; et al. Overview of the MNA—Its History and Challenges. J. Nutr. Health Aging 2006, 10, 456–463, discussion 463–465. [Google Scholar] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment Short-Form (MNA-SF): A Practical Tool for Identification of Nutritional Status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Barazzoni, R.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for Assessment of the Muscle Mass Phenotypic Criterion for the Global Leadership Initiative on Malnutrition (GLIM) Diagnosis of Malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef]
- Compher, C.; Cederholm, T.; Correia, M.I.T.D.; Gonzalez, M.C.; Higashiguch, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for Assessment of the Muscle Mass Phenotypic Criterion for the Global Leadership Initiative on Malnutrition Diagnosis of Malnutrition. JPEN J. Parenter. Enteral. Nutr. 2022, 46, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef]
- Huda, M.N.; Kim, M.; Bennett, B.J. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front. Endocrinol. 2021, 12, 632335. [Google Scholar] [CrossRef] [PubMed]
- Voroneanu, L.; Burlacu, A.; Brinza, C.; Covic, A.; Balan, G.G.; Nistor, I.; Popa, C.; Hogas, S.; Covic, A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J. Clin. Med. 2023, 12, 1948. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Chen, X.; Kwan, T.K.; Loh, Y.W.; Singer, J.; Liu, Y.; Ma, J.; Tan, J.; Macia, L.; Mackay, C.R.; et al. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020, 31, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
Query | Number of Articles |
---|---|
#1 sarcopenia and (malnutrition or undernutrition or nutrition) and (ENGLISH[LA] and 2015:2023[DP] | 4926 |
#1 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1721 |
#1 and systematic review[PT] | 201 |
#1 and meta-analysis[PT] | 119 |
#1 and randomized controlled trial | 396 |
#1 and cohort study | 1179 |
#1 and Cochrane Database Syst Rev | 0 |
#1 and guideline | 56 |
#2 frailty and (malnutrition or undernutrition or nutrition) and (ENGLISH[LA] and 2015:2023[DP] | 3134 |
#2 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1279 |
#2 and systematic review[PT] | 130 |
#2 and meta-analysis[PT] | 77 |
#2 and randomized controlled trial | 246 |
#2 and cohort study | 943 |
#2 and Cochrane Database Syst Rev | 0 |
#2 and guideline | 48 |
#3 heart failure and (malnutrition or undernutrition or nutrition) and (ENGLISH[LA] and 2015:2023[DP] | 3609 |
#3 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1427 |
#3 and systematic review[PT] | 110 |
#3 and meta-analysis[PT] | 104 |
#3 and randomized controlled trial | 240 |
#3 and cohort study | 1090 |
#3 and Cochrane Database Syst Rev | 7 |
#3 and guideline | 115 |
#4 chronic kidney disease and (malnutrition or undernutrition or nutrition) and (ENGLISH[LA] and 2015:2023[DP] | 6080 |
#4 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 2221 |
#4 and systematic review[PT] | 163 |
#4 and meta-analysis[PT] | 138 |
#4 and randomized controlled trial | 425 |
#4 and cohort study | 1633 |
#4 and Cochrane Database Syst Rev | 16 |
#4 and guideline | 185 |
#5 diabetes and (malnutrition or undernutrition or nutrition) and (ENGLISH[LA] and 2015:2023[DP] | 46,363 |
#5 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 14,932 |
#5 and systematic review[PT] | 1605 |
#5 and meta-analysis[PT] | 1411 |
#5 and randomized controlled trial | 4285 |
#5 and cohort study | 9561 |
#5 and Cochrane Database Syst Rev | 38 |
#5 and guideline | 838 |
#6 stroke and (malnutrition or undernutrition or nutrition) and ENGLISH[LA] and 2015:2023[DP] | 5356 |
#6 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 2132 |
#6 and systematic review[PT] | 265 |
#6 and meta-analysis[PT] | 283 |
#6 and randomized controlled trial | 428 |
#6 and cohort study | 1807 |
#6 and Cochrane Database Syst Rev | 18 |
#6 and guideline | 145 |
#7 dementia and (malnutrition or undernutrition or nutrition) and ENGLISH[LA] and 2015:2023[DP] | 4348 |
#7 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1396 |
#7 and systematic review[PT] | 184 |
#7 and meta-analysis[PT] | 149 |
#7 and randomized controlled trial | 285 |
#7 and cohort study | 975 |
#7 and Cochrane Database Syst Rev | 13 |
#7 and guideline | 48 |
#8 osteoporosis and (malnutrition or undernutrition or nutrition) and ENGLISH[LA] and 2015:2023[DP] | 3802 |
#8 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1056 |
#8 and systematic review[PT] | 118 |
#8 and meta-analysis[PT] | 92 |
#8 and randomized controlled trial | 223 |
#8 and cohort study | 723 |
#8 and Cochrane Database Syst Rev | 4 |
#8 and guideline | 91 |
#9 fracture and (malnutrition or undernutrition or nutrition) and ENGLISH[LA] and 2015:2023[DP] | 3616 |
#9 and (systematic review[PT] or meta-analysis[PT] or randomized controlled trial or cohort study or guideline) | 1362 |
#9 and systematic review[PT] | 154 |
#9 and meta-analysis[PT] | 125 |
#9 and randomized controlled trial | 232 |
#9 and cohort study | 1021 |
#9 and Cochrane Database Syst Rev | 8 |
#9 and guideline | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Shiraishi, R.; Nakayama, Y.; Taira, Y. Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society? Nutrients 2023, 15, 2991. https://doi.org/10.3390/nu15132991
Yoshida S, Shiraishi R, Nakayama Y, Taira Y. Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society? Nutrients. 2023; 15(13):2991. https://doi.org/10.3390/nu15132991
Chicago/Turabian StyleYoshida, Sadao, Ryo Shiraishi, Yuki Nakayama, and Yasuko Taira. 2023. "Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society?" Nutrients 15, no. 13: 2991. https://doi.org/10.3390/nu15132991
APA StyleYoshida, S., Shiraishi, R., Nakayama, Y., & Taira, Y. (2023). Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society? Nutrients, 15(13), 2991. https://doi.org/10.3390/nu15132991