Looking for the Ideal Probiotic Healing Regime
Abstract
:1. Introduction
2. “Healing” Mechanisms of Probiotics
2.1. Lactiplantibacillus plantarum
2.2. Lacticaseibacillus rhamnosus (Formerly Lactobacillus rhamnosus)
2.3. Lactobacillus acidophilus
2.4. Levilactobacillus brevis (Formerly Lactobacillus brevis)
2.5. Lacticaseibacillus casei (Formerly Lactobacillus casei)
2.6. Limosilactobacillus reuteri (Formerly Lactobacillus reuteri)
2.7. Limosilactobacillus fermentum (Formerly Lactobacillus fermentum)
2.8. Saccharomyces boulardi
2.9. Bifidobacterium longum
2.10. Streptococcus thermophilus
2.11. Lacticaseibacillus paracasei (Formerly Lactobacillus paracasei)
3. Discussion
4. Review Criteria
5. Conclusions
- Almost all lactobacilli, but most significantly L. plantarum, exert a high pro-inflammatory action at first, resulting in the rapid debridement of the wounded area by neutrophils followed by monocytes/macrophages;
- L. plantarum and others (L. acidophilus, Streptococcus thermophilus) also exert antioxidant properties;
- L. plantarum then switches the earlier macrophages phenotype from M1, pro-inflammatory, to M2, anti-inflammatory, promoting angiogenesis, migration, and proliferation of keratinocytes and fibroblasts;
- L. plantarum, L. reuteri, L. acidophilus, and L. paracasei increase MMP-1 expression in the early stage and then reduce it to achieve better wound scarring;
- L. plantarum, L. paracasei, and Streptococcus thermophilus exert an inhibitory effect on α-SMA production, thus preventing excessive fibrosis;
- L. plantarum, Streptococcus thermophilus, and, to a lesser extent, B. longum, through TGF-β, initiate earlier collagen III synthesis and deposition, then replace the immature collagen III with the type I. L. plantarum controls both the quality and quantity of collagen deposition to alleviate excessive scarring;
- Almost all lactobacilli accelerate keratinocyte migration and proliferation to a different degree, and some support only proliferation or migration;
- B. longum and, to a lesser degree, L. rhamnosus and L. plantarum significantly increase blood vessel density by up-regulating VEGF and/or EGF expression. However, Saccharomyces boulardi inhibits VEGF-induced angiogenesis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Poret, A.J.; Hashemi, D.; Eseonu, A.; Yu, S.H.; D’Gama, J.; Neel, V.A.; Lieberman, T.D. Cutaneous Surgical Wounds Have Distinct Microbiomes from Intact Skin. Microbiol. Spectr. 2023, 11, e0330022. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.; Gómez, B.I.; McIntyre, M.K.; Dubick, M.A.; Christy, R.J.; Nicholson, S.E.; Burmeister, D.M. The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. Int. J. Mol. Sci. 2018, 19, 2699. [Google Scholar] [CrossRef] [Green Version]
- Kotzampassi, K.; Kolios, G.; Manousou, P.; Kazamias, P.; Paramythiotis, D.; Papavramidis, T.S.; Heliadis, S.; Kouroumalis, E.; Eleftheriadis, E. Oxidative stress due to anesthesia and surgical trauma: Importance of early enteral nutrition. Mol. Nutr. Food Res. 2009, 53, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Munley, J.A.; Kelly, L.S.; Park, G.; Gillies, G.S.; Pons, E.E.; Kannan, K.B.; Whitley, E.M.; Bible, L.E.; Efron, P.A.; Nagpal, R.; et al. Multicompartmental traumatic injury induces sex-specific alterations in the gut microbiome. J. Trauma Acute Care Surg. 2023, 95, 30–38. [Google Scholar] [CrossRef]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Knackstedt, R.; Knackstedt, T.; Gatherwright, J. The role of topical probiotics on wound healing: A review of animal and human studies. Int. Wound J. 2020, 17, 1687–1694. [Google Scholar] [CrossRef]
- Leonard, J.M.; Pascual, J.L.; Kaplan, L.J. Dysbiome and Its Role in Surgically Relevant Medical Disease. Surg. Infect. 2023, 24, 226–231. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A step beyond pre-and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S.; Frauwallner, A.; Langerholc, T.; Krebs, B.; Ter Haar Née Younes, J.A.; Heschl, A.; Mičetić Turk, D.; Rogelj, I. Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. Biomed Res. Int. 2019, 2019, 7585486. [Google Scholar] [CrossRef] [Green Version]
- Satish, L.; Gallo, P.H.; Johnson, S.; Yates, C.C.; Kathju, S. Local Probiotic Therapy with Lactobacillus plantarum Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surg. Infect. 2017, 18, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Tavaria, F.K. Topical use of probiotics: The natural balance. Porto Biomed. J. 2017, 2, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Tzikos, G.; Tsalkatidou, D.; Stavrou, G.; Thoma, G.; Chorti, A.; Tsilika, M.; Michalopoulos, A.; Papavramidis, T.; Giamarellos-Bourboulis, E.J.; Kotzampassi, K. A Four-Probiotic Regime to Reduce Surgical Site Infections in Multi-Trauma Patients. Nutrients 2022, 14, 2620. [Google Scholar] [CrossRef]
- Kotzampassi, K. What Surgeon Should Know about Probiotics. Nutrients 2022, 14, 4374. [Google Scholar] [CrossRef] [PubMed]
- Shavandi, A.; Saeedi, P.; Gérard, P.; Jalalvandi, E.; Cannella, D.; Bekhit, A.E. The role of microbiota in tissue repair and regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 539–555. [Google Scholar] [CrossRef] [Green Version]
- Moysidis, M.; Stavrou, G.; Cheva, A.; Abba Deka, I.; Tsetis, J.K.; Birba, V.; Kapoukranidou, D.; Ioannidis, A.; Tsaousi, G.; Kotzampassi, K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury 2022, 53, 1385–1393. [Google Scholar] [CrossRef]
- Panagiotou, D.; Filidou, E.; Gaitanidou, M.; Tarapatzi, G.; Spathakis, M.; Kandilogiannakis, L.; Stavrou, G.; Arvanitidis, K.; Tsetis, J.K.; Gionga, P.; et al. Role of Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 in the Wound Healing Process of the Excisional Skin. Nutrients 2023, 15, 1822. [Google Scholar] [CrossRef]
- Tarapatzi, G.; Filidou, E.; Kandilogiannakis, L.; Spathakis, M.; Gaitanidou, M.; Arvanitidis, K.; Drygiannakis, I.; Valatas, V.; Kotzampassi, K.; Manolopoulos, V.G.; et al. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals 2022, 15, 1293. [Google Scholar] [CrossRef]
- McFarland, L.V. Efficacy of single-strain probiotics versus multi-strain mixtures: Systematic review of strain and disease specificity. Dig. Dis. Sci. 2021, 66, 694–704. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Koning, C.J.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. Monostrain, multistrain and multispecies probiotics--A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Mileti, E.; Matteoli, G.; Iliev, I.D.; Rescigno, M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: Prediction for in vivo efficacy. PLoS ONE 2009, 4, e7056. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.M.; Gibson, G.R.; Rowland, I. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 2012, 18, 405–413. [Google Scholar] [CrossRef]
- Fredua-Agyeman, M.; Stapleton, P.; Basit, A.W.; Gaisford, S. Microcalorimetric evaluation of a multi-strain probiotic: Interspecies inhibition between probiotic strains. J. Funct. Foods 2017, 36, 357–361. [Google Scholar] [CrossRef]
- Forssten, S.D.; Ouwehand, A.C. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products. Microb. Ecol. Health Dis. 2017, 28, 1378061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Nordström, E.A.; Teixeira, C.; Montelius, C.; Jeppsson, B.; Larsson, N. Lactiplantibacillus plantarum 299v (LP299V(®)): Three decades of research. Benef. Microbes 2021, 12, 441–465. [Google Scholar] [CrossRef]
- Aboutalebi, H.; Heydari Nasrabadi, M.; Tajabadi Ebrahimi, M.; Shabani, M.; Zahedi, F. The Healing Effect of Lactobacillus plantarum Isolated from Iranian Traditional Cheese on Acetic Acid Induced Gastric Ulcer in Rats. Razi J. Med. Sci. 2010, 17, 7–16. [Google Scholar]
- Zahedi, F.; Nasrabadi, M.H.; Ebrahimi, M.T.; Aboutalebi, H. Comparison of the effects of Lactobacillus brevis and Lactobacillus plantarum on cutaneous wound healing in rats. Afr. J. Microbiol. Res. 2011, 5, 4226–4233. [Google Scholar] [CrossRef]
- Heydari Nasrabadi, M.; Tajabadi Ebrahimi, M.; Dehghan Banadaki, S. Study of cutaneous wound healing in rats treated with Lactobacillus plantarum on days 1, 3, 7, 14 and 21. Afr. J. Pharm. Pharmacol. 2011, 5, 2395–2401. [Google Scholar] [CrossRef]
- Moghadam, S.S.; Mohammad, N.; Ghooshchian, M.; FathiZadeh, S.; Khodaii, Z.; Faramarzi, M.; Aghmiyuni, Z.F.; Roudbari, M.; Pazouki, A.; Shabestari, T.M. Comparison of the effects of Lactobacillus plantarum versus imipenem on infected burn wound healing. Med. J. Islam. Repub. Iran 2020, 34, 660–664. [Google Scholar]
- Ong, J.S.; Taylor, T.D.; Yong, C.C.; Khoo, B.Y.; Sasidharan, S.; Choi, S.B.; Ohno, H.; Liong, M.T. Lactobacillus plantarum USM8613 aids in wound healing and suppresses Staphylococcus aureus infection at wound sites. Probiotics Antimicrob. Proteins 2020, 12, 125–137. [Google Scholar] [CrossRef]
- Mohtashami, M.; Mohamadi, M.; Azimi-Nezhad, M.; Saeidi, J.; Nia, F.F.; Ghasemi, A. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors. Biotechnol. Appl. Biochem. 2021, 68, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Argañaraz Aybar, J.N.; Ortiz Mayor, S.; Olea, L.; Garcia, J.J.; Nisoria, S.; Kolling, Y.; Melian, C.; Rachid, M.; Torres Dimani, R.; Werenitzky, C. Topical administration of Lactiplantibacillus plantarum accelerates the healing of chronic diabetic foot ulcers through modifications of infection, angiogenesis, macrophage Phenotype and neutrophil response. Microorganisms 2022, 10, 634. [Google Scholar] [CrossRef]
- Gudadappanavar, A.M.; Hombal, P.R.; Timashetti, S.S.; Javali, S. Influence of Lactobacillus acidophilus and Lactobacillus plantarum on wound healing in male Wistar rats—An experimental study. Int. J. Appl. Basic Med. Res. 2017, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Rocha, N.D.; de Jesus, L.C.L.; Barroso, F.A.L.; da Silva, T.F.; Ferreira, E.; Gonçalves, J.E.; dos Santos Martins, F.; de Oliveira Carvalho, R.D.; Barh, D.; Azevedo, V.A.d.C. Evaluation of probiotic properties of novel Brazilian Lactiplantibacillus plantarum strains. Probiotics Antimicrob. Proteins 2023, 15, 160–174. [Google Scholar] [CrossRef]
- Brandi, J.; Cheri, S.; Manfredi, M.; Di Carlo, C.; Vita Vanella, V.; Federici, F.; Bombiero, E.; Bazaj, A.; Rizzi, E.; Manna, L.; et al. Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Sci. Rep. 2020, 10, 11572. [Google Scholar] [CrossRef]
- Lombardi, F.; Palumbo, P.; Mattei, A.; Augello, F.R.; Cifone, M.G.; Giuliani, M.; Cinque, B. Soluble fraction from lysates of selected probiotic strains differently influences re-epithelialization of HaCaT scratched monolayer through a mechanism involving nitric oxide synthase 2. Biomolecules 2019, 9, 756. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.-H.; Chou, C.-H.; Huang, T.-Y.; Wang, H.-L.; Chien, P.-J.; Chang, W.-W.; Lee, H.-T. Heat-Killed Lactobacilli Preparations Promote Healing in the Experimental Cutaneous Wounds. Cells 2021, 10, 3264. [Google Scholar] [CrossRef]
- Dubey, A.K.; Podia, M.; Raut, S.; Singh, S.; Pinnaka, A.K.; Khatri, N. Insight Into the Beneficial Role of Lactiplantibacillus plantarum Supernatant Against Bacterial Infections, Oxidative Stress, and Wound Healing in A549 Cells and BALB/c Mice. Front. Pharmacol. 2021, 12, 728614. [Google Scholar] [CrossRef]
- Tao, Y.; Drabik, K.A.; Waypa, T.S.; Musch, M.W.; Alverdy, J.C.; Schneewind, O.; Chang, E.B.; Petrof, E.O. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 2006, 290, C1018–C1030. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.F.; Cassini-Vieira, P.; Canesso, M.C.C.; Felipetto, M.; Ranfley, H.; Teixeira, M.M.; Nicoli, J.R.; Martins, F.S.; Barcelos, L.S. Lactobacillus rhamnosus CGMCC 1.3724 (LPR) improves skin wound healing and reduces scar formation in mice. Probiotics Antimicrob. Proteins 2021, 13, 709–719. [Google Scholar] [CrossRef]
- Prince, T.; McBain, A.J.; O’Neill, C.A. Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus-induced cell death by competitive exclusion. Appl. Environ. Microbiol. 2012, 78, 5119–5126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammedsaeed, W.; Cruickshank, S.; McBain, A.J.; O’Neill, C.A. Lactobacillus rhamnosus GG lysate increases re-epithelialization of keratinocyte scratch assays by promoting migration. Sci. Rep. 2015, 5, 16147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale, G.C.; Mota, B.I.S.; Ando-Suguimoto, E.S.; Mayer, M.P.A. Effect of probiotics Lactobacillus acidophilus and Lacticaseibacillus rhamnosus on antibacterial response gene transcription of human peripheral monocytes. Probiot. Antimicrob. Proteins 2021, 15, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, F.; Nasrabadi, H.; Ebrahimi, T.; Shabani, M.; Aboutalebi, H. The effect of Lactobacillus brevis isolated from Iranian traditional cheese on cutaneous wound healing in rats. J. Cell Anim. Biol. 2011, 5, 265–270. [Google Scholar]
- Albuquerque-Souza, E.; Ishikawa, K.H.; Amado, P.P.; Nicoli, J.R.; Holzhausen, M.; Mayer, M.P. Probiotics improve re-epithelialization of scratches infected by Porphyromonas gingivalis through up-regulating CXCL8-CXCR1/CXCR2 axis. Anaerobe 2021, 72, 102458. [Google Scholar] [CrossRef]
- Kusumaningsih, T.; Irmawati, A.; Ernawati, D.S.; Prahasanti, C.; Aljunaid, M.; Amelia, S. The differences in the number of fibroblasts and blood vessels after the topical and systemic administration of Lactobacillus casei Shirota probiotics for the treatment of traumatic ulcers in Wistar rats (Rattus norvegicus). Vet. World 2021, 14, 1279. [Google Scholar] [CrossRef] [PubMed]
- Khodaii, Z.; Afrasiabi, S.; Hashemi, S.A.; Ardeshirylajimi, A.; Natanzi, M.M. Accelerated wound healing process in rat by probiotic Lactobacillus reuteri derived ointment. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 20180150. [Google Scholar] [CrossRef]
- Han, N.; Jia, L.; Su, Y.; Du, J.; Guo, L.; Luo, Z.; Liu, Y. Lactobacillus reuteri extracts promoted wound healing via PI3K/AKT/β-catenin/TGFβ1 pathway. Stem Cell Res. Ther. 2019, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Mohammedsaeed, W.; McBain, A.J.; Cruickshank, S.M.; O’Neill, C.A. Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes. Appl. Environ. Microbiol. 2014, 80, 5773–5781. [Google Scholar] [CrossRef] [Green Version]
- Fordjour, L.; D’Souza, A.; Cai, C.; Ahmad, A.; Valencia, G.; Kumar, D.; Aranda, J.V.; Beharry, K.D. Comparative effects of probiotics, prebiotics, and synbiotics on growth factors in the large bowel in a rat model of formula-induced bowel inflammation. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, G.; Song, J.-H.; Xu, H.; Li, D.; Goldsmith, J.; Zeng, H.; Parsons-Wingerter, P.A.; Reinecker, H.-C.; Kelly, C.P. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS ONE 2013, 8, e64227. [Google Scholar] [CrossRef] [Green Version]
- Guéniche, A.; Bastien, P.; Ovigne, J.M.; Kermici, M.; Courchay, G.; Chevalier, V.; Breton, L.; Castiel-Higounenc, I. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol. 2010, 19, e1–e8. [Google Scholar] [CrossRef]
- Lombardi, F.; Augello, F.R.; Artone, S.; Bahiti, B.; Sheldon, J.M.; Giuliani, M.; Cifone, M.G.; Palumbo, P.; Cinque, B. Efficacy of probiotic Streptococcus thermophilus in counteracting TGF-β1-induced fibrotic response in normal human dermal fibroblasts. J. Inflamm. 2022, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Balachander, N. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol. 2023, 68, 337–353. [Google Scholar] [CrossRef]
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin acute wound healing: A comprehensive review. Int. J. Inflamm. 2019, 2019, 3706315. [Google Scholar] [CrossRef]
- Ridiandries, A.; Tan, J.T.; Bursill, C.A. The role of chemokines in wound healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [Green Version]
- Qing, C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol. 2017, 20, 189–193. [Google Scholar] [PubMed]
- Lokmic, Z.; Musyoka, J.; Hewitson, T.D.; Darby, I.A. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol. 2012, 296, 139–185. [Google Scholar]
- Lam, A.; Fleischer, B.; Alverdy, J. The Biology of Anastomotic Healing—The Unknown Overwhelms the Known. J. Gastrointest. Surg. 2020, 24, 2160–2166. [Google Scholar] [CrossRef]
- Banerjee, K.; Madhyastha, R.; Nakajima, Y.; Maruyama, M.; Madhyastha, H. Nanoceutical adjuvants as wound healing material: Precepts and prospects. Int. J. Mol. Sci. 2021, 22, 4748. [Google Scholar] [CrossRef]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Yussof, S.J.M.; Omar, E.; Pai, D.R.; Sood, S. Cellular events and biomarkers of wound healing. Indian J. Plast. Surg. 2012, 45, 220–228. [Google Scholar] [CrossRef]
- Meenakshi, S.; Santhanakumar, R. The role of probiotics as wound healers: An overall view. J. Wound Care 2023, 32, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Garg, R. PROBIOTICS. Indian J. Med. Microbiol. 2009, 27, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Knackstedt, R.; Gatherwright, J. The role of thermal injury on intestinal bacterial translocation and the mitigating role of probiotics: A review of animal and human studies. Burns 2020, 46, 1005–1012. [Google Scholar] [CrossRef]
Strain | Type | In Vitro/In Vivo/Clinical Studies | Effect | Study |
---|---|---|---|---|
L. plantarum | Probiotic | gastric ulcers (rats) | ↑ healing ↓ inflammation | [29] |
L. plantarum | Probiotic | excisional skin wounds (rats) | ↑ healing ↓ inflammation | [30] |
L. plantarum | Probiotic | excisional skin wounds (rats) | ↑ healing ↓ inflammation | [31] |
L. plantarum 299v | Probiotic and postbiotic | skin burns (rats) | ↑ healing ↓ infection | [32] |
L. plantarum | Probiotic | skin burns (rabbits) | ↓ scarring ↓ infection | [13] |
L. plantarum | Postbiotic | porcine skin model | ↑ healing ↓ infection | [33] |
L. plantarum | Probiotic | diabetic wounds (rats) | ↑ healing Regulation of inflammation | [34] |
L. plantarum | Probiotic | diabetic foot (human) | ↑ healing ↓ infection | [35] |
L. plantarum | Probiotic | excisional skin wounds (rats) | No significant effect | [36] |
L. plantarum | Probiotic | Caco-2 cell culture and 5-FU mucocitis (mice) | ↓ inflammation ↓ infection | [37] |
L. plantarum UBLP-40 | Probiotic | excisional skin wounds (rats) | ↓ inflammation | [19] |
L. plantarum UBLP-40 | Probiotic | excisional skin wounds (rats) | ↑ healing ↓ inflammation | [18] |
L. plantarum SGL07 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration ↓ inflammation ↓ infection | [38] |
L. plantarum Lp-115 | Parabiotic | HaCaT monolayer culture | ↑re-epithelization | [39] |
L. plantarum GMNL-6 | Parabiotic | Hs68 fibroblast cell culture and excisional skin wounds (rats) | ↑ healing ↓ scarring | [40] |
L. plantarum MTCC 2621 | Postbiotic | A549 cell culture and excisional skin wounds (mice) | ↑ healing ↓ infection | [41] |
L. plantarum UBLP 40 | Probiotic | intestinal myofibroblast culture | Regulation of inflammation ↑ migration | [20] |
L. rhamnosus GG ATC 53103 | Postbiotic | intestinal epithelial cell culture | Protection from oxidant stress | [42] |
L. rhamnosus CGMCC1.3724 LPR | Probiotic | excisional skin wounds (mice) | ↑ healing ↑ angiogenesis ↓ scarring ↓inflammation | [43] |
L. rhamnosus GGATCC53103 | Probiotic | keratinocytes culture | ↓ infection | [44] |
L. rhamnosus GG | Probiotic & Parabiotic | keratinocytes culture | ↓ infection | [52] |
L. rhamnosus UBLR-58 | Probiotic | excisional skin wounds (rats) | ↑ healing ↑ angiogenesis | [19] |
L. rhamnosus GGATCC53103 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration | [45] |
L. rhamnosus LR-32 | Probiotic | CD14 + monocytes culture | Possible antibacterial effect | [46] |
L. reuteri ATCC55730 | Parabiotic | keratinocytes culture | ↑ proliferation | [45] |
L. reuteri DSM 17938 | Probiotic | keratinocytes culture | ↑ healing | [50] |
L. reuteri ATCC 11284 | Parabiotic | mesenchymal stem cells culture | ↑ proliferation ↑ migration | [51] |
L. reuteri ATCC55730 | Probiotic | keratinocytes culture | ↓ infection | [44] |
L. acidophilus | Probiotic | excisional skin wounds (rats) | ↑ healing | [36] |
L. acidophilus | Parabiotic | HaCaT monolayer culture | ↑re- epithelization | [39] |
L. acidophilus LA-5 | Probiotic | CD14 + monocytes culture | Possible antibacterial effect | [46] |
L. acidophilus LA-5 | Probiotic | intestinal myofibroblast cell culture | Regulation of inflammation | [20] |
L. casei 324 m | Probiotic | gingival epithelial cells culture | ↑ proliferation ↓ infection | [48] |
L. casei SGL 15 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration ↓ inflammation ↓ infection | [38] |
L. casei shirota | Probiotic | excisional skin wounds (mice) | ↑ healing ↑ angiogenesis | [49] |
L. brevis GQ423768 | Probiotic | excisional skin wounds (rats) | ↑ healing ↓ inflammation | [47] |
L. brevis SGL 12 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration ↓inflammation ↓ infection | [38] |
L. fermentum | Parabiotic | keratinocytes culture | ↓ re- epithelization | [45] |
L. fermentum SGL 10 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration ↓inflammation ↓ infection | [38] |
B. longum reuter | Parabiotic | dermal skin explant (human) nerve cell culture | ↓ skin sensitivity | [55] |
B. longum BL-04 | Parabiotic | HaCaT monolayer culture | ↓re-epithelization | [39] |
B. longum UBBL-64 | Probiotic | excisional skin wounds (rats) | ↑ healing ↑ angiogenesis | [19] |
S. boulardi | Probiotic | gut ulcer model (rats) | ↓inflammation | [53] |
S. boulardi | Probiotic | human umbilical vein endothelial cells culture | ↑ healing ↑ angiogenesis ↓inflammation | [54] |
S. boulardi | Probiotic | intestinal myofibroblast cell culture | Regulation of inflammation ↑ migration | [20] |
L. paracasei GMNL-653 | Parabiotic | Hs68 fibroblast cell culture and excisional skin wounds (mice) | ↑ healing ↓ scarring | [40] |
L. paracasei SGL 04 | Parabiotic | keratinocytes culture | ↑ proliferation ↑ migration ↓inflammation ↓ infection | [38] |
S. thermophilus | Parabiotic | HaCaT monolayer culture | ↑re- epithelization | [39] |
S. thermophilus DSM 24731 | Parabiotic | dermal fibroblast cell culture | ↓ fibrosis | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menni, A.; Moysidis, M.; Tzikos, G.; Stavrou, G.; Tsetis, J.K.; Shrewsbury, A.D.; Filidou, E.; Kotzampassi, K. Looking for the Ideal Probiotic Healing Regime. Nutrients 2023, 15, 3055. https://doi.org/10.3390/nu15133055
Menni A, Moysidis M, Tzikos G, Stavrou G, Tsetis JK, Shrewsbury AD, Filidou E, Kotzampassi K. Looking for the Ideal Probiotic Healing Regime. Nutrients. 2023; 15(13):3055. https://doi.org/10.3390/nu15133055
Chicago/Turabian StyleMenni, Alexandra, Moysis Moysidis, Georgios Tzikos, George Stavrou, Joulia K. Tsetis, Anne D. Shrewsbury, Eirini Filidou, and Katerina Kotzampassi. 2023. "Looking for the Ideal Probiotic Healing Regime" Nutrients 15, no. 13: 3055. https://doi.org/10.3390/nu15133055
APA StyleMenni, A., Moysidis, M., Tzikos, G., Stavrou, G., Tsetis, J. K., Shrewsbury, A. D., Filidou, E., & Kotzampassi, K. (2023). Looking for the Ideal Probiotic Healing Regime. Nutrients, 15(13), 3055. https://doi.org/10.3390/nu15133055