Body Composition and Phase Angle: How to Improve Nutritional Evaluation in Juvenile Dermatomyositis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Assessment
2.3. Body Composition Evaluation
2.4. JDM Clinical and Treatment Assessments
2.5. Statistical Analysis
3. Results
3.1. JDM patients vs. Healthy Controls
3.2. JDM Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bingham, A.; Mamyrova, G.; Rother, K.I.; Oral, E.; Cochran, E.; Premkumar, A.; Kleiner, D.; James-Newton, L.; Targoff, I.N.; Pandey, J.P.; et al. Predictors of acquired lipodystrophy in juvenile-onset dermatomyositis and a gradient of severity. Medicine 2008, 87, 70–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rider, L.G.; Lindsley, C.B.; Miller, F.W. Juvenile Dermatomyositis. In Textbook of Pediatric Rheumatology, 7th ed.; Petty, R.E., Laxer, R.M., Lindsley, C.B., Wedderburn, L.R., Eds.; Elsevier: Philadelphia, PA, USA, 2016; pp. 351–383. [Google Scholar]
- Pereira, L.; Previdelli, Á.N.; Rossi, R.G.T.; Rodrigues, W.D.; Fonseca, F.L.A.; Len, C.A.; Terreri, M.T.; Saccardo Sarni, R.O. Anthropometric evaluation and assessment of food intake of parents of pediatric patients with chronic rheumatic diseases. Ann. Nutr. Metab. 2020, 76, 387–395. [Google Scholar] [CrossRef]
- Kozu, K.T.; Silva, C.A.; Bonfá, E.; Sallum, A.M.; Pereira, R.M.; Viana, V.S.; Borba, E.; Campos, L.M. Dyslipidaemia in juvenile dermatomyositis: The role of disease activity. Clin. Exp. Rheumatol. 2013, 31, 638–644. [Google Scholar]
- Kozu, K.T.; Silva, C.A.; Aikawa, N.E.; Pereira, R.M.R.; Sallum, A.M.; Savioli, C.; Borba, E.; Campos, L.M. Juvenile dermatomyositis: Is periodontal disease associated with dyslipidemia? Adv. Rheumatol. 2018, 58, 28. [Google Scholar] [CrossRef] [Green Version]
- Wahezi, D.M.; Liebling, E.J.; Choi, J.; Dionizovik-Dimanovski, M.; Gao, Q.; Parekh, J. Assessment of traditional and non-traditional risk factors for premature atherosclerosis in children with juvenile dermatomyositis and pediatric controls. Pediatr. Rheumatol. Online J. 2020, 18, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, R.A.; Silva, C.A.; Caparbo, V.F.; Sallum, A.M.; Pereira, A.M. Bone mineral apparent density in juvenile dermatomyositis: The role of lean body mass and glucocorticoid use. Scand. J. Rheumatol. 2008, 37, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Solis, M.Y.; de Sá Pinto, A.L.; Silva, C.A.; Sallum, A.M.E.; Roschel, H.; Gualano, B. Physical (in)activity and its influence on disease-related features, physical capacity, and health-related quality of life in a cohort of chronic juvenile dermatomyositis patients. Semin. Arthritis Rheum. 2016, 46, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Caetano, M.C.; Ortiz, T.T.; Terreri, M.T.S.L.R.A.; Sarni, R.O.S.; Silva, S.G.L.; Souza, F.I.S.; Hilário, M.O.E. Inadequate dietary intake of children and adolescents with juvenile idiopathic arthritis and systemic lupus erythematosus. J. Pediatr. (Rio J.) 2009, 85, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Więch, P.; Sałacińska, I.; Bazaliński, D.; Dąbrowski, M. Body composition and phase angle as an indicator of nutritional status in children with juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 2018, 16, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamberlan, P.; Feferbaum, R.; Filho, U.D.; Brunow de Carvalho, W.; Figueiredo Delgado, A. Bioelectrical Impedance Phase Angle and Morbidity and Mortality in Critically Ill Children. Nutr. Clin. Pract. 2019, 34, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Eickemberg, M.; Oliveira, C.C.; Carneiro, R.A.K.; Sampaio, L.R. Bioelectric impedance analysis and its use for nutritional assessments. Rev. Nutr. 2011, 24, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Al-Jawaldeh, A.; Taktouk, M.; Nasreddine, L. Food Consumption Patterns and Nutrient Intakes of Children and Adolescents in the Eastern Mediterranean Region: A Call for Policy Action. Nutrients 2020, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; Bonfá, E.; Pereira, R.M.R.; Silva, C.A. Physical activity or paediatric rheumatic diseases: Standing up against old paradigms. Reviews 2007, 13, 368–379. [Google Scholar] [CrossRef]
- Bohan, A.; Peter, J.B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 1975, 292, 344–347+403–407. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a World Health Organization growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Pugliese, C.; van der Vinne, R.T.; Campos, L.M.; Guardieiro, P.R.; Saviolli, C.; Bonfá, E.; Pereira, R.M.; Viana, V.S.; Borba, E.F.; Silva, C.A. Juvenile idiopathic arthritis activity and function ability: Deleterious effects in periodontal disease? Clin. Rheumatol. 2016, 35, 81–91. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation. Fats and fatty acids in human nutrition. Proceedings of the Joint FAO/WHO Expert Consultation, Geneva, Switzerland, 10–14 November 2008. Ann. Nutr. Metab. 2009, 55, 5–300. [Google Scholar]
- Willians, C.L.; Bollella, M.; Wynder, E.L. A new recommendation for dietary fiber in childhood. Pediatrics 1995, 96, 985–988. [Google Scholar] [CrossRef]
- Frisancho, A.R. Triceps skin fold and upper arm muscle size norms for assessment of nutritional status. Am. J. Clin. Nutr. 1974, 27, 1052–1058. [Google Scholar] [CrossRef]
- Frisancho, A.R. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am. J. Clin. Nutr. 1984, 40, 808–819. [Google Scholar] [CrossRef]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 6, 709–723. [Google Scholar]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age-and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohman, T.G. Advances in Body Composition Assessment. Current Issues in Exercise Science (CIES); Human Kinetics Publishers: Champaign, IL, USA, 1992. [Google Scholar]
- Taylor, R.W.; Jones, I.E.; Williams, S.M.; Goulding, A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am. J. Clin. Nutr. 2000, 72, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Pitanga, F.J.G.; Lessa, I. Waist-to-height ratio as a discriminator of coronary risk in adults. Rev. Assoc. Med. Bras. 2006, 52, 157–161. [Google Scholar]
- Corrêa, M.M.; Facchini, L.A.; Thumé, E.; Oliveira, E.R.A.; Tomasi, E. Habilidade da razão cintura-estatura na identificação de risco à saúde. Rev. Saúde Pública 2019, 53, 66. [Google Scholar] [CrossRef]
- Senior, B.; Gellis, S.S. The syndromes of total lipodystrophy and partial lipodystrophy. Pediatrics 1964, 33, 593–612. [Google Scholar] [CrossRef]
- Huber, A.M.; Feldman, B.M.; Rennebohm, R.M.; Hicks, J.E.; Lindsley, C.B.; Perez, M.D.; Zemel, L.S.; Wallace, C.A.; Ballinger, S.H.; Passo, M.H.; et al. Validation and clinical significance of the Childhood Myositis Assessment Scale for assessment of muscle function in the juvenile idiopathic inflammatory myopathies. Arthritis Rheum. 2004, 50, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, D.; Pistorio, A.; Palmisani, E.; Miettunen, P.; Ravelli, A.; Pilkington, C.; Wulffraat, N.M.; Malattia, C.; Garay, S.M.; Hofer, M.; et al. The PRINTO criteria for clinically inactive disease in juvenile dermatomyositis. Ann. Rheum. Dis. 2013, 72, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Rider, L.G.; Werth, V.P.; Huber, A.M.; Alexanderson, H.; Rao, A.P.; Ruperto, N.; Herbelin, L.; Barohn, R.; Isenberg, D.; Miller, F.W. Measures of adult and juvenile dermatomyositis, polymyositis, and inclusion body myositis: Physician and Patient/Parent Global Activity, Manual Muscle Testing (MMT), Health Assessment Questionnaire (HAQ)/Childhood Health Assessment Questionnaire (CHAQ), Childhood Myositis Assessment Scale (CMAS), Myositis Disease Activity Assessment Tool (MDAAT), Disease Activity Score (DAS), Short Form 36 (SF-36), Child Health Questionnaire (CHQ), physician global damage, Myositis Damage Index (MDI), Quantitative Muscle Testing (QMT), Myositis Functional Index-2 (FI-2), Myositis Activities Profile (MAP), Inclusion Body Myositis Functional Rating Scale (IBMFRS), Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), Cutaneous Assessment Tool (CAT), Dermatomyositis Skin Severity Index (DSSI), Skindex, and Dermatology Life Quality Index (DLQI). Arthritis Care Res. 2011, 63 (Suppl. S11), S118–S157. [Google Scholar]
- Machado, C.S.; Ruperto, N.; Silva, C.H.; Ferriani, V.P.; Roscoe, I.; Campos, L.M.; Oliveira, S.K.; Kiss, M.H.; Bica, B.E.; Sztajnbok, F.; et al. Paediatric Rheumatology International Trials Organization. The Brazilian version of the Childhood Health Assessment Questionnaire (CHAQ) and the Child Health Questionnaire (CHQ). Clin. Exp. Rheumatol. 2001, 19 (Suppl. S23), 25–29. [Google Scholar]
- Klatchoian, D.A.; Len, C.A.; Terreri, M.T.; Silva, M.; Itamoto, C.; Ciconelli, R.M.; Varni, J.W.; Hilário, M.O. Quality of life of children and adolescents from São Paulo: Reliability and validity of the Brazilian version of the Pediatric Quality of Life Inventory version 4.0 Generic Core Scales. J. Pediatr. 2008, 84, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Apaz, M.T.; Saad-Magalhães, C.; Pistorio, A.; Ravelli, A.; de Oliveira Sato, J.; Marcantoni, M.B.; Meiorin, S.; Filocamo, G.; Pilkington, C.; Maillard, S.; et al. Health-Related Quality of Life of Patients with Juvenile Dermatomyositis: Results from the Paediatric Rheumatology International Trials Organization Multinational Quality of Life Cohort Study. Arthritis Rheum. 2009, 61, 509–517. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, CA, USA, 1988. [Google Scholar]
- Bisotto, L.S.; Xavier, R.M.; Machado, S.H.; Bredemeier, M.; Brenol, J.C.T. Impacto da Atividade Inflamatória e Uso de Glicocorticóide nas Variáveis Nutricionais da Artrite Idiopática Juvenil. Rev. Bras. Reumatol. 2005, 45, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Lofthouse, C.M.; Azad, F.; Baildam, E.M.; Akobeng, A.K. Measuring the nutritional status of children with juvenile idiopathic arthritis using the bioelectrical impedance method. Rheumatology 2002, 41, 1172–1177. [Google Scholar] [CrossRef] [Green Version]
- Storz, M.A. The COVID-19 pandemic: An unprecedented tragedy in the battle against childhood obesity. Clin. Exp. Pediatr. 2020, 63, 477–482. [Google Scholar] [CrossRef]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19-Related School Closings and Risk of Weight Gain Among Children. Obesity 2020, 28, 1008–1009. [Google Scholar] [CrossRef]
- Gualano, B.; Pinto, A.L.S.; Perondi, B.; Leite Prado, D.M.; Omori, C.; Almeida, R.T.; Sallum, A.M.; Silva, C.A. Evidence for prescribing exercise as treatment in pediatric rheumatic diseases. Autoimmun. Rev. 2010, 9, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wedderburn, L.R.; McCann, L.J. Juvenile dermatomyositis: Latest advances. Best Pract. Res. Clin. Rheumatol. 2017, 31, 535–557. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Earthman, C.P.; Pichard, C.; Coss-Bu, J.A. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- De Souza, M.A.; de Jesus Alves de Baptista, C.R.; Baranauskas Benedicto, M.M.; Pizzato, T.M.; Mattiello-Sverzut, A.C. Normative data for hand grip strength in healthy children measured with a bulb dynamometer: A cross-sectional study. Physiotherapy 2014, 100, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.S.; Faria, E.R.; Franceschini, S.C.; Priore, S.E. Predictive capacity of different bioelectrical impedance analysis devices, with and without protocol, in the evaluation of adolescents. J. Pediatr. 2013, 89, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.C.; Lima, L.R.A.; Berria, J.; Petroski, E.L.; Silva, A.M.; Silva, D.A.S. Association between phase angle and isolated and grouped physical fitness indicators in adolescents. Physiol. Behav. 2020, 217, 112825. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; Laudisio, D.; de Alteriis, G.; Graziadio, C.; Colao, A.; Savastano, S. Phase Angle as an Easy Diagnostic Tool of Meta-Inflammation for the Nutritionist. Nutrients 2021, 13, 1446. [Google Scholar] [CrossRef]
- US Department of Health and Human Services; National Center for Health Statistics. The Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994); Centers for Disease Control and Prevention: Washington, DC, USA, 1996.
- Leal, G.N.; Silva, K.F.; Lianza, A.C.; Giacomin, M.F.; Andrade, J.L.; Kozu, K.; Bonfá, E.; Silva, C.A. Subclinical left ventricular dysfunction in childhood-onset systemic lupus erythematosus: A two-dimensional speckle-tracking echocardiographic study. Scand. J. Rheumatol. 2016, 45, 202–209. [Google Scholar] [CrossRef]
- Sallum, A.M.; Kiss, M.H.; Sachetti, S.; Resende, M.B.; Moutinho, K.C.; Carvalho, M.d.S.; Silva, C.A.; Marie, S.K. Juvenile dermatomyositis: Clinical, laboratorial, histological, therapeutical and evolutive parameters of 35 patients. Arq. Neuro-Psiquiatr. 2002, 60, 889–899. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.O.; Sallum, A.M.; Ferriani, V.P.; Marini, R.; Sacchetti, S.B.; Okuda, E.M.; Carvalho, J.F.; Pereira, R.M.; Len, C.A.; Terreri, M.T.; et al. Rheumatology Committee of the São Paulo Paediatrics Society. A Brazilian registry of juvenile dermatomyositis: Onset features and classification of 189 cases. Clin. Exp. Rheumatol. 2009, 27, 1031–1038. [Google Scholar]
Parameters | JDM Patients (n = 30) | Healthy Controls (n = 24) | p-Value | Effect Size |
---|---|---|---|---|
Demographic parameters | ||||
Sex, male (%) | 12/30 (40) | 10/24 (41.7) | 0.924 | |
Age (years) | 11.8 ± 4.0 | 10.7 ± 3.1 | 0.249 | |
Anthropometric data/Nutritional status | ||||
Weight (kg) | 42.1 ± 15.9 | 38.9 ± 10.5 | 0.385 | |
Height (cm) | 143.6 ± 17.9 | 142.7 ± 13.6 | 0.836 | |
Z-score Height/age | −0.46 ± 0.8 | 0.35 ± 0.7 | <0.001 | −1.08 |
Body mass index, BMI (kg/m2) | 19.7 ± 4.2 | 18.8 ± 2.7 | 0.369 | |
Z-score BMI/age | 0.45 ± 1.5 | 0.64 ± 1.1 | 0.627 | |
Malnutrition (%) | 2 (6.7) | 0 (0) | 0.496 | |
Eutrophy (%) | 17 (56.7) | 16 (66.7) | 0.576 | |
Overweight/obesity (%) | 11 (36.7) | 8 (33.3) | 1.000 | |
Waist circumference/height > 0.5 | 11 (36.7) | 6 (25) | 0.469 | |
Physical inactivity | ||||
“Once a week”, “rarely” and “never” (%) | 21 (70) | 13 (54.2) | 0.324 | |
Body composition | ||||
Body fat (kg) | 11.6 ± 6.7 | 9.8 ± 3.9 | 0.216 | |
Body fat (BF) (%) | 26.0 ± 8.2 | 24.5 ± 4.4 | 0.377 | |
BF Very low/low (%) | 4 (13.3) | 0 (0) | 0.120 | |
BF Normal (%) | 6 (20) | 2 (8.3) | 0.277 | |
BF High/very high (%) | 20 (66.7) | 22 (91.7) | 0.046 | |
Lean mass (kg) | 30.3 ± 10.3 | 29.1 ± 6.9 | 0.611 | |
Lean mass (%) | 73.9 ± 8.2 | 75.5 ± 4.4 | 0.374 | |
Slaughter equation (BF%) | 26.2 ± 8.2 | 27.9 ± 8.1 | 0.466 | |
Deurenberg equation (BF%) | 21.5 ± 5.4 | 21.1 ± 4.1 | 0.760 | |
Basal metabolic rate (BMR) (kcal/day) | 956.2 ± 321.1 | 907.9 ± 217 | 0.533 | |
Phase angle (PhA) | 5.2 ± 1.3 | 6.1 ± 1.0 | 0.016 | −0.74 |
Food intake | ||||
Energy intake (EI) (Kcal/day) | 1500.4 (1082.8–2723.9) | 1593.7 ± 425.5 | 0.835 | |
Carbohydrate (g) | 204.7 (127–398.3) | 186.8 ± 60.7 | 0.091 | |
Carbohydrate (%EI) | 55.5 ± 9.6 | 47.5 ± 11.9 | 0.014 | 0.74 |
Protein (g) | 59.3 (30.5–163.4) | 72.5 (39.2–179.7) | 0.139 | |
Protein (%EI) | 16.9 ± 6.4 | 20.5 ± 8.1 | 0.073 | |
Fat (g) | 43.1 (17.5–110.7) | 49.4 (27.6–123.1) | 0.251 | |
Fat (%EI) | 27.7 ± 7.1 | 32 ± 7.6 | 0.068 | |
Monounsaturated fat (g) | 12.3 ± 9.8 | 14.5 ± 11.0 | 0.398 | |
Polyunsaturated fat (g) | 6.7 ± 5 | 8.1 ± 8.7 | 0.931 | |
Saturated fat (g) | 17.6 (2.9–56.1) | 19.2 (7.6–36.5) | 0.403 | |
Total Fiber (g) | 17.3 (2.6–40.9) | 11.9 (4.6–25.1) | 0.000 | 0.90 |
Vitamin A (RE) | 254.1 (0.0–988.5) | 286.1 (0.0 –1335.1) | 0.503 | |
Vitamin C (mg) | 27.9 (0.9–1517.2) | 43.1 (2.3–1455.3) | 0.375 | |
Vitamin E (mg) | 3.9 (0.9–221.5) | 6.2 (0.7–25) | 0.862 | |
Zinc (mg) | 6.8 (2.1–32.3) | 6.1 (2.5–17.7) | 0.862 | |
Selenium (mcg) | 28.2 (4.2–108.8) | 49.4 (3–172.5) | 0.144 | |
Calcium (mg) | 372.9 (42.6–1264.3) | 447.4 (53.4–1293.7) | 0.508 | |
Health Related Quality of Life (HRQL) Scores | ||||
CHAQ (0–3) | 0.5 (0.0–1.4) | 0.0 (0.0–0.6) | 0.001 | 1.06 |
Peds Ql parents (0–100) | 65.8 (9.8–100) | 88.0 (47.8–100) | 0.212 | |
Peds Ql patient (0–100) | 66.8 ± 22.8 | 87.2 ± 13.6 | 0.001 | −0.34 |
Parameters | JDM Patients (n = 30) | Healthy Controls (n = 24) | p-Value |
---|---|---|---|
Carbohydrate (%EI) | |||
Within AMDR | 22 (73.3) | 16 (66.7) | 0.765 |
Above AMDR | 2 (6.7) | 0 (0) | 0.497 |
Protein (%EI) | |||
Within AMDR | 27 (90) | 18 (75) | 0.165 |
Above AMDR | 2 (6.7) | 4 (16.7) | 0.389 |
Total Fat (%EI) | |||
Within AMDR | 13 (43.3) | 12 (50) | 0.784 |
Above AMDR | 5 (16.7) | 8 (33.3) | 0.206 |
Saturated fat (%EI) | |||
Above AMDR | 23 (76.7) | 22 (91.7) | 0.270 |
Total Fiber (g/day) | |||
Below recommendation | 16 (53.3) | 17 (70.8) | 0.263 |
Vitamin A (RE) | |||
Within recommendation | 7 (23.3) | 4 (16.7) | 0.736 |
>UL | 1 (3.3) | 0 (0) | >0.999 |
Vitamin C (mg) | |||
Within recommendation | 12 (40) | 11 (45.8) | 0.784 |
>UL | 1 (3.3) | 2 (8.3) | 0.579 |
Vitamin E (mg) | |||
Within recommendation | 6 (20) | 7 (29.2) | 0.528 |
>UL | 0 (0) | 0 (0) | >0.999 |
Zinc (mg) | |||
Within recommendation | 11 (36.7) | 11 (45.8) | 0.582 |
>UL | 0 (0) | 0 (0) | >0.999 |
Selenium (mcg) | |||
Within recommendation | 9 (30) | 15 (62.5) | 0.027 |
>UL | 0 (0) | 0 (0) | >0.999 |
Calcium (mg) | |||
Within recommendation | 3 (10) | 3 (12.5) | >0.999 |
>UL | 0 (0) | 0 (0) | >0.999 |
Parameters | JDM Patients with PhA < 5.5 | JDM Patients with PhA ≥ 5.5 | p-Value | Effect Size |
---|---|---|---|---|
(n = 14) | (n = 16) | |||
Demographic parameters | ||||
Current age (years) | 9.8 ± 3.1 | 14.1 ± 3.9 | 0.003 | −1.19 |
Disease duration (years) | 2.2 (0.2–8.6) | 7.5 (2.7–16.6) | <0.001 | 1.04 |
Anthropometric data/nutritional status | ||||
Weight (kg) | 33.8 ± 11.0 | 49.2 ± 16.4 | 0.005 | −1.09 |
Height (cm) | 134.8 ± 15.8 | 151.2 ± 16.4 | 0.010 | −1.01 |
Z-score height/age | −0.38 ± 0.9 | −0.57 ± 0.7 | 0.547 | |
Body mass index, BMI (kg/m2) | 18.2 ± 3.9 | 20.9 ± 4.1 | 0.074 | |
Z-score BMI/age | 0.36 ± 2.0 | 0.47 ± 1.2 | 0.859 | |
Malnutrition (%) | 2 (14.3) | 0 (0) | 0.209 | |
Eutrophy (%) | 7 (50) | 10 (62.5) | 0.713 | |
Overweight/Obesity (%) | 5 (35.7) | 6 (37.5) | 1.000 | |
Waist circumference (cm) | 66.3 ± 9.8 | 74.7 ± 11.6 | 0.042 | −0.77 |
Waist circumference/height | 0.42 ± 0.27 | 0.49 ± 0.06 | 0.377 | |
Arm circumference (cm) | 20.7 ± 4.2 | 24.4 ± 4.8 | 0.033 | −0.79 |
Arm muscle circumference (cm) | 15.6 ± 3.0 | 19.3 ± 4.1 | 0.010 | −0.98 |
Arm muscle area (cm2) | 20.7 (7.3–40.4) | 27.1 (16.4–70.3) | 0.017 | −0.90 |
Body composition | ||||
Body fat, BF (kg) | 9.3 ± 5.5 | 13.7 ± 7.2 | 0.066 | |
Lean mass, LM (kg) | 24.3 ± 6.1 | 35.5 ± 10.5 | 0.001 | −1.28 |
Bioelectrical impedance (LM%) | 74.3 ± 8.8 | 73.7 ± 7.9 | 0.851 | |
Bioelectrical impedance (BF%) | 25.7 ± 8.8 | 26.3 ± 7.9 | 0.851 | |
Slaughter equation (BF%) | 24.9 ± 8.6 | 27.4 ± 8.0 | 0.414 | |
Deurenberg equation (BF%) | 20.5 ± 4.6 | 22.2 ± 6.1 | 0.382 | |
Basal metabolic rate, (BMR) (kcal/day) | 768.4 ± 194.1 | 1108.7 ± 327.0 | 0.002 | −1.23 |
Lipodystrophy (%) | 1 (7.1) | 1 (6.2) | 1.000 | |
Physical inactivity | ||||
“Once a week”, “rarely” or “never” (%) | 9 (64.3) | 12 (75) | 0.694 | |
HRQL and JDM scores | ||||
Peds QL parents 4.0 (0–100) | 66.6 ± 20.2 | 67.1 ± 25.6 | 0.956 | |
Peds QL patients 4.0 (0–100) | 76.4 ± 17.0 | 75.4 ± 13.9 | 0.863 | |
CHAQ (0–3) | 0.68 ± 0.47 | 0.35 ± 0.44 | 0.061 | |
DAS total score | 2 (0–15) | 0.5 (0–3) | 0.015 | 0.52 |
DAS skin | 1 (0–7) | 0.5 (0–3) | 0.031 | 0.35 |
DAS muscle | 1 (0–8) | 0 (0–0) | 0.014 | 0.57 |
Cumulative drug therapy | ||||
Corticosteroid (g) | 9.1 ± 8.3 | 14.9 ± 11.0 | 0.110 | |
Duration of prednisone use (days) | 554.5 (0–1210) | 842.5 (0–3358) | 0.092 | |
Methotrexate, MTX (g) | 1.5 (0.1–7.8) | 3.2 (0–13.3) | 0.168 | |
Duration of MTX use (days) | 731.5 (56–1210) | 1105.5 (0–3891) | 0.058 | |
Azathioprine (g) | 0 (0–41.4) | 0 (0–184.8) | 0.188 | |
Duration of azathioprine use (days) | 0 (0–528) | 0 (0–1762) | 0.188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, C.; Delgado, A.F.; Kozu, K.T.; Campos, L.M.d.A.; Aikawa, N.E.; Silva, C.A.; Maluf Elias, A. Body Composition and Phase Angle: How to Improve Nutritional Evaluation in Juvenile Dermatomyositis Patients. Nutrients 2023, 15, 3057. https://doi.org/10.3390/nu15133057
Pugliese C, Delgado AF, Kozu KT, Campos LMdA, Aikawa NE, Silva CA, Maluf Elias A. Body Composition and Phase Angle: How to Improve Nutritional Evaluation in Juvenile Dermatomyositis Patients. Nutrients. 2023; 15(13):3057. https://doi.org/10.3390/nu15133057
Chicago/Turabian StylePugliese, Camila, Artur Figueiredo Delgado, Katia Tomie Kozu, Lucia Maria de Arruda Campos, Nadia Emi Aikawa, Clovis Artur Silva, and Adriana Maluf Elias. 2023. "Body Composition and Phase Angle: How to Improve Nutritional Evaluation in Juvenile Dermatomyositis Patients" Nutrients 15, no. 13: 3057. https://doi.org/10.3390/nu15133057
APA StylePugliese, C., Delgado, A. F., Kozu, K. T., Campos, L. M. d. A., Aikawa, N. E., Silva, C. A., & Maluf Elias, A. (2023). Body Composition and Phase Angle: How to Improve Nutritional Evaluation in Juvenile Dermatomyositis Patients. Nutrients, 15(13), 3057. https://doi.org/10.3390/nu15133057