Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Extraction
2.3. HPTLC Analyses
2.3.1. Sample Preparation
2.3.2. Instrumentation
2.3.3. Method Development
2.3.4. Method Validation
2.4. Cell Culture and Treatment
2.5. Cell Viability Assay
2.6. Lipid Staining
2.7. Analysis of Basal and Stimulated Lipolysis
2.8. Statistical Analysis
3. Results
3.1. HPTLC Analysis
3.1.1. Method Development
3.1.2. Method Validation
Linearity
Accuracy
Precision
Detection Limit (DL) and Quantitation Limit (QL)
Robustness
3.2. Effect of RCE, 20E, PA, and TU on Cell Viability
3.3. Effect of RCE, 20E, PA, and TU on Adipogenesis in Human Adipocytes
3.4. Effect of RCE, 20E, PA, and TU on Basal and Isoproterenol-Stimulated Lipolysis in Human Adipocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gamboa-Gómez, C.I.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Vázquez-Cabral, B.D.; González-Laredo, R.F. Plants with Potential Use on Obesity and Its Complications. EXCLI J. 2015, 14, 809–831. [Google Scholar] [CrossRef] [PubMed]
- Dakanalis, A.; Mentzelou, M.; Papadopoulou, S.K.; Papandreou, D.; Spanoudaki, M.; Vasios, G.K.; Pavlidou, E.; Mantzorou, M.; Giaginis, C. The Association of Emotional Eating with Overweight/Obesity, Depression, Anxiety/Stress, and Dietary Patterns: A Review of the Current Clinical Evidence. Nutrients 2023, 15, 1173. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, D.D.; Brader, L.; Bruun, J.M. Association between Food, Beverages and Overweight/Obesity in Children and Adolescents-A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2023, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Effects of Microalgae on Metabolic Syndrome. Antioxidants 2023, 12, 449. [Google Scholar] [CrossRef]
- World Health Organisation. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 March 2023).
- Pronk, N.P.; Eneli, I.; Economos, C.D.; Bradley, D.; Fassbender, J.; Calancie, L.; Patawaran, W.; Hovmand, P.S. Using Systems Science for Strategic Planning of Obesity Prevention and Treatment: The Roundtable on Obesity Solutions Experience. Curr. Prob. Cardiol. 2022, 48, 101240. [Google Scholar] [CrossRef]
- Ahn, J.; Suh, Y.; Lee, K. Chordin-like 1, a Novel Adipokine, Markedly Promotes Adipogenesis and Lipid Accumulation. Cells 2023, 12, 624. [Google Scholar] [CrossRef]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-Based Diet as a Strategy for Weight Control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef]
- Calcaterra, V.; Rossi, V.; Mari, A.; Casini, F.; Bergamaschi, F.; Zuccotti, G.V.; Fabiano, V. Medical Treatment of Weight Loss in Children and Adolescents with Obesity. Pharmacol. Res. 2022, 185, 106471. [Google Scholar] [CrossRef]
- Kushner, R.F. Weight Loss Strategies for Treatment of Obesity. Prog. Cardiovasc. Dis. 2014, 56, 465–472. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Tschöp, M.H.; Wilding, J.P.H. Anti-Obesity Drugs: Past, Present and Future. Dis. Model. Mech. 2012, 5, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Derosa, G.; Maffioli, P. Anti-Obesity Drugs: A Review about Their Effects and Their Safety. Expert Opin. Drug Saf. 2012, 11, 459–471. [Google Scholar] [CrossRef]
- Aaseth, J.; Ellefsen, S.; Alehagen, U.; Sundfør, T.M.; Alexander, J. Diets and Drugs for Weight Loss and Health in Obesity—An Update. Biomed. Pharmacother. 2021, 140, 111789. [Google Scholar] [CrossRef]
- Hainer, V. Overview of New Antiobesity Drugs. Expert Opin. Pharmacother. 2014, 15, 1975–1978. [Google Scholar] [CrossRef] [Green Version]
- Borah, A.K.; Sharma, P.; Singh, A.; Kalita, K.J.; Saha, S.; Chandra Borah, J. Adipose and Non-Adipose Perspectives of Plant Derived Natural Compounds for Mitigation of Obesity. J. Ethnopharmacol. 2021, 280, 114410. [Google Scholar] [CrossRef]
- Wang, H.-N.; Xiang, J.-Z.; Qi, Z.; Du, M. Plant Extracts in Prevention of Obesity. Crit. Rev. Food Sci. Nutr. 2022, 62, 2221–2234. [Google Scholar] [CrossRef]
- Shang, A.; Gan, R.-Y.; Xu, X.-Y.; Mao, Q.-Q.; Zhang, P.-Z.; Li, H.-B. Effects and Mechanisms of Edible and Medicinal Plants on Obesity: An Updated Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2061–2077. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G.A. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016, 21, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savova, M.S.; Vasileva, L.V.; Mladenova, S.G.; Amirova, K.M.; Ferrante, C.; Orlando, G.; Wabitsch, M.; Georgiev, M.I. Ziziphus Jujuba Mill. Leaf Extract Restrains Adipogenesis by Targeting PI3K/AKT Signaling Pathway. Biomed. Pharmacother. 2021, 141, 111934. [Google Scholar] [CrossRef]
- González-Castejón, M.; Rodriguez-Casado, A. Dietary Phytochemicals and Their Potential Effects on Obesity: A Review. Pharmacol. Res. 2011, 64, 438–455. [Google Scholar] [CrossRef]
- Noratto, G.D.; Murphy, K.; Chew, B.P. Quinoa Intake Reduces Plasma and Liver Cholesterol, Lessens Obesity-Associated Inflammation, and Helps to Prevent Hepatic Steatosis in Obese Db/Db Mouse. Food Chem. 2019, 287, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Kokoska, L.; Janovska, D. Chemistry and Pharmacology of Rhaponticum Carthamoides: A Review. Phytochemistry 2009, 70, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Skała, E.; Sitarek, P.; Różalski, M.; Krajewska, U.; Szemraj, J.; Wysokińska, H.; Śliwiński, T. Antioxidant and DNA Repair Stimulating Effect of Extracts from Transformed and Normal Roots of Rhaponticum Carthamoides against Induced Oxidative Stress and DNA Damage in CHO Cells. Oxid. Med. Cell Longev. 2016, 2016, 5753139. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The Phytochemical, Biological, and Medicinal Attributes of Phytoecdysteroids: An Updated Review. Acta Pharm. Sin. B 2021, 11, 1740–1766. [Google Scholar] [CrossRef] [PubMed]
- Kosović, E.; Lino, K.; Kuchař, M. HPLC-MS Methodology for R. Carthamoides Extract Quality Evaluation: A Simultaneous Determination of Eight Bioactive Compounds. Diversity 2022, 14, 880. [Google Scholar] [CrossRef]
- Buděšínský, M.; Vokáč, K.; Harmatha, J.; Cvačka, J. Additional Minor Ecdysteroid Components of Leuzea Carthamoides. Steroids 2008, 73, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, R.G.; Veskina, N.A.; Odinokov, V.N.; Benkovskaya, G.V.; Parfenova, L.V. Ecdysteroids: Isolation, Chemical Transformations, and Biological Activity. Phytochem. Rev. 2022, 21, 1445–1486. [Google Scholar] [CrossRef]
- Tóth, N.; Szabó, A.; Kacsala, P.; Héger, J.; Zádor, E. 20-Hydroxyecdysone Increases Fiber Size in a Muscle-Specific Fashion in Rat. Phytomedicine 2008, 15, 691–698. [Google Scholar] [CrossRef]
- Bathori, M.; Toth, N.; Hunyadi, A.; Marki, A.; Zador, E. Phytoecdysteroids and Anabolic-Androgenic Steroids—Structure and Effects on Humans. CMC 2008, 15, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Niu, C.; Zhang, X.; Dong, M. β-Ecdysterone Protects SH-SY5Y Cells against β-Amyloid-Induced Apoptosis via c-Jun N-Terminal Kinase- and Akt-Associated Complementary Pathways. Lab. Investig. 2018, 98, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Romaniuk-Drapała, A.; Lisiak, N.; Totoń, E.; Matysiak, A.; Nawrot, J.; Nowak, G.; Kaczmarek, M.; Rybczyńska, M.; Rubiś, B. Proapoptotic and Proautophagic Activity of 20-Hydroxyecdysone in Breast Cancer Cells in Vitro. Chem. Biol. Interact. 2021, 342, 109479. [Google Scholar] [CrossRef]
- Isenmann, E.; Ambrosio, G.; Joseph, J.F.; Mazzarino, M.; de la Torre, X.; Zimmer, P.; Kazlauskas, R.; Goebel, C.; Botrè, F.; Diel, P.; et al. Ecdysteroids as Non-Conventional Anabolic Agent: Performance Enhancement by Ecdysterone Supplementation in Humans. Arch. Toxicol. 2019, 93, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, S.; Huang, M.; Ma, X.; Yang, J.; Deng, S.; Huang, Y.; Wen, Y.; Yang, X. β-Ecdysterone from Cyanotis Arachnoidea Exerts Hypoglycemic Effects through Activating IRS-1/Akt/GLUT4 and IRS-1/Akt/GLUT2 Signal Pathways in KK-Ay Mice. JFF 2017, 39, 123–132. [Google Scholar] [CrossRef]
- Catalán, R.E.; Martinez, A.M.; Aragones, M.D.; Miguel, B.G.; Robles, A.; Godoy, J.E. Alterations in Rat Lipid Metabolism Following Ecdysterone Treatment. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1985, 81, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Little, A.; Murphy, K.; Solverson, P. Quinoa’s Potential to Enhance Dietary Management of Obesity and Type-2 Diabetes: A Review of the Current Evidence. Diabetology 2021, 2, 77–94. [Google Scholar] [CrossRef]
- Kizelsztein, P.; Govorko, D.; Komarnytsky, S.; Evans, A.; Wang, Z.; Cefalu, W.T.; Raskin, I. 20-Hydroxyecdysone Decreases Weight and Hyperglycemia in a Diet-Induced Obesity Mice Model. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E433–E439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA. ICH Q2(R2) Validation of Analytical Procedures—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 7 December 2022).
- Vasileva, L.V.; Savova, M.S.; Amirova, K.M.; Balcheva-Sivenova, Z.; Ferrante, C.; Orlando, G.; Wabitsch, M.; Georgiev, M.I. Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. Int. J. Mol. Sci. 2020, 21, 9740. [Google Scholar] [CrossRef]
- Wabitsch, M.; Brenner, R.E.; Melzner, I.; Braun, M.; Möller, P.; Heinze, E.; Debatin, K.-M.; Hauner, H. Characterization of a Human Preadipocyte Cell Strain with High Capacity for Adipose Differentiation. Int. J. Obes. 2001, 25, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Vasileva, L.V.; Savova, M.S.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Rosmarinic Acid Attenuates Obesity and Obesity-Related Inflammation in Human Adipocytes. FCT 2021, 149, 112002. [Google Scholar] [CrossRef]
- Lasa, A.; Schweiger, M.; Kotzbeck, P.; Churruca, I.; Simón, E.; Zechner, R.; Portillo, M.d.P. Resveratrol Regulates Lipolysis via Adipose Triglyceride Lipase. J. Nutr. Biochem. 2012, 23, 379–384. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Karcheva-Bahchevanska, D.; Ivanova, S. Development and Validation of High-Performance Liquid Chromatography for Identification and Quantification of Phytoecdysteroids Ecdysterone and Turkesterone in Dietary Supplements. Processes 2023, 11, 1786. [Google Scholar] [CrossRef]
- Pasdaran, A.; Hamedi, A.; Shiehzadeh, S.; Hamedi, A. A Review of Citrus Plants as Functional Foods and Dietary Supplements for Human Health, with an Emphasis on Meta-Analyses, Clinical Trials, and Their Chemical Composition. Clin. Nutr. ESPEN 2023, 54, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Petroczi, A.; Taylor, G.; Naughton, D.P. Mission Impossible? Regulatory and Enforcement Issues to Ensure Safety of Dietary Supplements. FCT 2011, 49, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, Y.S.; Shipelin, V.A.; Petrov, N.A.; Zorin, S.N.; Mazo, V.K. Adaptogenic Properties of a Phytoecdysteroid-Rich Extract from the Leaves of Spinacia Oleracea L. Plants 2021, 10, 2555. [Google Scholar] [CrossRef] [PubMed]
- Claude, E.; Tower, M.; Lafont, R.; Wilson, I.D.; Plumb, R.S. High Performance Thin-Layer Chromatography of Plant Ecdysteroids Coupled with Desorption Electrospray Ionisation–Ion Mobility–Time of Flight High Resolution Mass Spectrometry (HPTLC/DESI/IM/ToFMS). Chromatographia 2020, 83, 1029–1035. [Google Scholar] [CrossRef]
- Claude, E.; Lafont, R.; Plumb, R.S.; Wilson, I.D. High Performance Reversed-Phase Thin-Layer Chromatography-Desorption Electrospray Ionisation—Time of Flight High Resolution Mass Spectrometric Detection and Imaging (HPTLC/DESI/ToFMS) of Phytoecdysteroids. J. Chromatogr. B 2022, 1200, 123265. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.N.; Rumalla, C.S.; Avula, B.; Khan, I.A. HPTLC Method for Determination of 20-Hydroxyecdysone in Sida Rhombifolia L. and Dietary Supplements. Chroma 2007, 66, 797–800. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Böhmdorfer, S.; Zengin, G.; Bacher, M.; Potthast, A.; Akramov, D.K.; Janibekov, A.; Rosenau, T. Phytochemical and Biological Activities of Silene Viridiflora Extractives. Development and Validation of a HPTLC Method for Quantification of 20-Hydroxyecdysone. Ind. Crops Prod. 2019, 129, 542–548. [Google Scholar] [CrossRef]
- Lozano, R.; Thompson, M.J.; Svoboda, J.A.; Lusby, W.R. Isolation of Acidic and Conjugated Ecdysteroid Fractions from Manduca Sexta Pupae. Insect Biochem. 1988, 18, 163–168. [Google Scholar] [CrossRef]
- Ivanova, S.; Todorova, V.; Dyankov, S.; Ivanov, K. High-Performance Thin-Layer Chromatography (HPTLC) Method for Identification of Meloxicam and Piroxicam. Processes 2022, 10, 394. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Chapter 9—High-Performance Thin-Layer Chromatography (HPTLC) for Analysis of Herbal Drugs. In Quality Control and Evaluation of Herbal Drugs; Mukherjee, P.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 377–420. ISBN 978-0-12-813374-3. [Google Scholar]
- Skała, E.; Sitarek, P.; Toma, M.; Szemraj, J.; Radek, M.; Nieborowska-Skorska, M.; Skorski, T.; Wysokińska, H.; Śliwiński, T. Inhibition of Human Glioma Cell Proliferation by Altered Bax/Bcl-2-P53 Expression and Apoptosis Induction by Rhaponticum Carthamoides Extracts from Transformed and Normal Roots. J. Pharm. Pharmacol. 2016, 68, 1454–1464. [Google Scholar] [CrossRef]
- Gaube, F.; Wölfl, S.; Pusch, L.; Werner, U.; Kroll, T.C.; Schrenk, D.; Hartmann, R.W.; Hamburger, M. Effects of Leuzea Carthamoides on Human Breast Adenocarcinoma MCF-7 Cells Determined by Gene Expression Profiling and Functional Assays. Planta Med. 2008, 74, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xian, Y.; Jin, Z.; Yao, F.; Liu, Y.; Deng, Y.; Wang, B.; Chen, D.; Yang, J.; Ren, L.; et al. Rhaponticum Carthamoides Improved Energy Metabolism and Oxidative Stress through the SIRT6/Nrf2 Pathway to Ameliorate Myocardial Injury. Phytomedicine 2022, 105, 154197. [Google Scholar] [CrossRef] [PubMed]
- Roumanille, R.; Vernus, B.; Brioche, T.; Descossy, V.; Van Ba, C.T.; Campredon, S.; Philippe, A.G.; Delobel, P.; Bertrand-Gaday, C.; Chopard, A.; et al. Acute and Chronic Effects of Rhaponticum Carthamoides and Rhodiola Rosea Extracts Supplementation Coupled to Resistance Exercise on Muscle Protein Synthesis and Mechanical Power in Rats. J. Int. Soc. Sports Nutr. 2020, 17, 58. [Google Scholar] [CrossRef]
- Dushkin, M.; Khrapova, M.; Kovshik, G.; Chasovskikh, M.; Menshchikova, E.; Trufakin, V.; Shurlygina, A.; Vereschagin, E. Effects of Rhaponticum Carthamoides versus Glycyrrhiza Glabra and Punica Granatum Extracts on Metabolic Syndrome Signs in Rats. BMC Complement. Altern. Med. 2014, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Shuvalov, O.; Fedorova, O.; Tananykina, E.; Gnennaya, Y.; Daks, A.; Petukhov, A.; Barlev, N.A. An Arthropod Hormone, Ecdysterone, Inhibits the Growth of Breast Cancer Cells via Different Mechanisms. Front. Pharmacol. 2020, 11, 561537. [Google Scholar] [CrossRef] [PubMed]
- Baev, A.Y.; Charyshnikova, O.S.; Khasanov, F.A.; Nebesnaya, K.S.; Makhmudov, A.R.; Rahmedova, M.T.; Khushbaktova, Z.A.; Syrov, V.N.; Levitskaya, Y.V. Ecdysterone Prevents Negative Effect of Acute Immobilization Stress on Energy Metabolism of Rat Liver Mitochondria. J. Steroid Biochem. Mol. Biol. 2022, 219, 106066. [Google Scholar] [CrossRef]
- Shakhmurova, G.A.; Syrov, V.N.; Khushbaktova, Z.A. Immunomodulating and Antistress Activity of Ecdysterone and Turkesterone Under Immobilization-Induced Stress Conditions in Mice. Pharm. Chem. J. 2010, 44, 7–9. [Google Scholar] [CrossRef]
- Yang, L.; Pan, J. Therapeutic Effect of Ecdysterone Combine Paeonol Oral Cavity Direct Administered on Radiation-Induced Oral Mucositis in Rats. IJMS 2019, 20, 3800. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, P.; Komaki, A.; Ramezani, M.; Parsa, H. Effects of the Combination of High-Intensity Interval Training and Ecdysterone on Learning and Memory Abilities, Antioxidant Enzyme Activities, and Neuronal Population in an Amyloid-Beta-Induced Rat Model of Alzheimer’s Disease. Physiol. Behav. 2022, 251, 113817. [Google Scholar] [CrossRef]
- Wu, J.; Gao, L.; Shang, L.; Wang, G.; Wei, N.; Chu, T.; Chen, S.; Zhang, Y.; Huang, J.; Wang, J.; et al. Ecdysterones from Rhaponticum Carthamoides (Willd.) Iljin Reduce Hippocampal Excitotoxic Cell Loss and Upregulate MTOR Signaling in Rats. Fitoterapia 2017, 119, 158–167. [Google Scholar] [CrossRef]
- Hung, T.-J.; Chen, W.-M.; Liu, S.-F.; Liao, T.-N.; Lee, T.-C.; Chuang, L.-Y.; Guh, J.-Y.; Hung, C.-Y.; Hung, Y.-J.; Chen, P.; et al. 20-Hydroxyecdysone Attenuates TGF-Β1-Induced Renal Cellular Fibrosis in Proximal Tubule Cells. JDC 2012, 26, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Omanakuttan, A.; Bose, C.; Pandurangan, N.; Kumar, G.B.; Banerji, A.; Nair, B.G. Nitric Oxide and ERK Mediates Regulation of Cellular Processes by Ecdysterone. Exp. Cell Res. 2016, 346, 167–175. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, B.; Ren, L.; Yang, J.; Zheng, Z.; Yao, F.; Ding, R.; Wang, J.; He, J.; Wang, W.; et al. 20-Hydroxyecdysone Inhibits Inflammation via SIRT6-Mediated NF-ΚB Signaling in Endothelial Cells. Biochim. Biophys. Acta Mol. Cell Res. 2023, 1870, 119460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Xu, T.; Qin, S. β-Ecdysterone Suppresses Interleukin-1β-Induced Apoptosis and Inflammation in Rat Chondrocytes via Inhibition of NF-ΚB Signaling Pathway. Drug Dev. Res. 2014, 75, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Foucault, A.-S.; Mathe, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tome, D.; Huneau, J.-F.; Hermier, D.; Quignard-Boulange, A. Quinoa Extract Enriched in 20-Hydroxyecdysone Protects Mice From Diet-Induced Obesity and Modulates Adipokines Expression. Obesity 2012, 20, 270–277. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, Y.; Qiu, Z. Effect of Ecdysterone on Glucose Metabolism in Vitro. Life Sci. 2006, 78, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhang, Q.; Liu, R.; Wang, Z.; Tang, N.; Liu, F.; Huang, G.; Jiang, X.; Gui, G.; Wang, L.; et al. Effects of 20-Hydroxyecdysone on Improving Memory Deficits in Streptozotocin-Induced Type 1 Diabetes Mellitus in Rat. Eur. J. Pharmacol. 2014, 740, 45–52. [Google Scholar] [CrossRef]
- Kapur, P.; Wuttke, W.; Jarry, H.; Seidlova-Wuttke, D. Beneficial Effects of β-Ecdysone on the Joint, Epiphyseal Cartilage Tissue and Trabecular Bone in Ovariectomized Rats. Phytomedicine 2010, 17, 350–355. [Google Scholar] [CrossRef]
- Tang, Y.-H.; Yue, Z.-S.; Li, G.-S.; Zeng, L.-R.; Xin, D.-W.; Hu, Z.-Q.; Xu, C.-D. Effect of Β-ecdysterone on Glucocorticoid-induced Apoptosis and Autophagy in Osteoblasts. Mol. Med. Rep. 2018, 17, 158–164. [Google Scholar] [CrossRef] [Green Version]
- You, W.-L.; Xu, Z.-L. β-Ecdysone Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. J. Genet. Med. 2020, 22, e3207. [Google Scholar] [CrossRef]
- Bai, N.; Lu, X.; Jin, L.; Alimujiang, M.; Ma, J.; Hu, F.; Xu, Y.; Sun, J.; Xu, J.; Zhang, R.; et al. CLSTN3 Gene Variant Associates with Obesity Risk and Contributes to Dysfunction in White Adipose Tissue. Mol. Metab. 2022, 63, 101531. [Google Scholar] [CrossRef] [PubMed]
- Kongthitilerd, P.; Suantawee, T.; Cheng, H.; Thilavech, T.; Marnpae, M.; Adisakwattana, S. Anthocyanin-Enriched Riceberry Rice Extract Inhibits Cell Proliferation and Adipogenesis in 3T3-L1 Preadipocytes by Downregulating Adipogenic Transcription Factors and Their Targeting Genes. Nutrients 2020, 12, 2480. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.E.; Cano-Sancho, G.; La Merrill, M.A. Disruption of Normal Adipocyte Development and Function by Methyl- and Propyl- Paraben Exposure. Toxicol. Lett. 2020, 334, 27–35. [Google Scholar] [CrossRef] [PubMed]
Parameter | 20-Hydroxyecdysterone | Ponasterone A | Turkesterone |
---|---|---|---|
Range | 0.5–1.5 μg·band−1 | 0.5–1.5 μg·band−1 | 0.5–1.5 μg·band−1 |
Regression line | y = 0.0027x + 0.0002 | y = 0.0042x + 0.0003 | y = 0.004x + 0.0008 |
R2 | 0.9988 | 0.9986 | 0.997 |
LD | 0.11 μg·band−1 | 0.13 μg·band−1 | 0.04 μg·band−1 |
LQ | 0.35 μg·band−1 | 0.39 μg·band−1 | 0.12 μg·band−1 |
Concentration (μg·band−1) | Mean (μg.band−1) ± SD | Recovery % | CV% |
---|---|---|---|
20-hydroxyecdysone | |||
1.25 | 1.24 ± 0.010 | 99.06 | 0.82 |
1 | 0.99 ± 0.008 | 99.07 | 0.84 |
0.75 | 0.76 ± 0.008 | 100.90 | 1.10 |
Ponasterone A | |||
1.25 | 1.25 ± 0.006 | 99.62 | 0.49 |
1 | 0.99 ± 0.009 | 98.65 | 0.89 |
0.75 | 0.76 ± 0.007 | 100.95 | 0.93 |
Turkesterone | |||
1.25 | 1.26 ± 0.014 | 100.97 | 1.12 |
1 | 0.99 ± 0.010 | 99.21 | 1.01 |
0.75 | 0.74 ± 0.012 | 98.83 | 1.70 |
Concentration (μg·band−1) | Intraday Precision | Interday Precision | ||||
---|---|---|---|---|---|---|
Mean (μg·band−1) ± SD | SE | CV% | Mean (μg·band−1) ± SD | SE | CV% | |
20-hydroxyecdysone | ||||||
1.25 | 1.24 ± 0.011 | 0.004 | 0.86 | 1.24 ± 0.011 | 0.003 | 0.95 |
1 | 1.00 ± 0.009 | 0.004 | 0.86 | 0.99 ± 0.009 | 0.004 | 0.96 |
0.75 | 0.75 ± 0.008 | 0.003 | 1.02 | 0.75 ± 0.010 | 0.004 | 1.27 |
Ponasterone A | ||||||
1.25 | 1.25 ± 0.008 | 0.003 | 0.62 | 1.25 ± 0.007 | 0.003 | 0.53 |
1 | 0.99 ± 0.008 | 0.003 | 0.85 | 0.99 ± 0.008 | 0.003 | 0.77 |
0.75 | 0.75 ± 0.010 | 0.004 | 1.37 | 0.75 ± 0.009 | 0.004 | 1.16 |
Turkesterone | ||||||
1.25 | 1.25 ± 0.010 | 0.004 | 0.79 | 1.24 ± 0.010 | 0.004 | 0.82 |
1 | 0.99 ± 0.017 | 0.007 | 1.66 | 0.99 ± 0.013 | 0.005 | 1.31 |
0.75 | 0.74 ± 0.008 | 0.003 | 1.06 | 0.74 ± 0.010 | 0.004 | 1.29 |
Purpose | Chromatographic Conditions | LD/LQ | Ref. |
---|---|---|---|
Ecdysteroids (20E, ponasterone A, and others) characterization of some Silane species | RP-HPTLC plates, mobile phase: chloroform: ethanol 4:1 (v/v), visualized under 254 nm. | - | [46] |
Ecdysteroids (20E, ponasterone A, turkesterone, and others) characterization of some Silane species | RP-HPTLC plates, ethanol: water 3:2 (v/v) and acetone: water 3:2 (v/v), visualized under 254 nm. | - | [47] |
Determination and quantitation of 20E in Sida rhombifolia L. and dietary supplements | HPTLC plates were prewashed with methanol and dried in an oven at 120 °C for three minutes, mobile phase: chloroform: methanol 8:2 (v/v), distance 60 mm, visualized under 250 nm. | LD 60 ng·spot−1 LQ 200 ng·spot−1 | [48] |
Development and validation of an HPTLC method for the quantification of 20E | HPTLC plates, mobile phase: THF: toluene: 1 mM TFA in methanol: water 16:8:2:1 (v/v/v/v), a distance of 70 mm, visualized under 250 nm. | Lower limits of quantitation—70–100 μg·mL−1 Upper limits of quantitation—815 μg·mL−1 above 1000 μg·mL−1. | [49] |
Monitoring of ecdysteroids isolated from Manduca sexta pupae | HPTLC plates, mobile phase: chloroform: ethanol (65:35, v/v), chloroform: methanol: 10-N-ammonium hydroxide 28:20:2 (v/v/v) for ecdysteroid acids and 15:35:3.5 (v/v/v) for ecdysteroid conjugates, visualized under UV light and sprayed with 50% sulfuric acid solution. | - | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorova, V.; Savova, M.S.; Ivanova, S.; Ivanov, K.; Georgiev, M.I. Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites. Nutrients 2023, 15, 3061. https://doi.org/10.3390/nu15133061
Todorova V, Savova MS, Ivanova S, Ivanov K, Georgiev MI. Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites. Nutrients. 2023; 15(13):3061. https://doi.org/10.3390/nu15133061
Chicago/Turabian StyleTodorova, Velislava, Martina S. Savova, Stanislava Ivanova, Kalin Ivanov, and Milen I. Georgiev. 2023. "Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites" Nutrients 15, no. 13: 3061. https://doi.org/10.3390/nu15133061
APA StyleTodorova, V., Savova, M. S., Ivanova, S., Ivanov, K., & Georgiev, M. I. (2023). Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites. Nutrients, 15(13), 3061. https://doi.org/10.3390/nu15133061