The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Measurement of Hepatic Steatosis and Liver Enzymes
2.3. Variables of Interest
2.4. Mortality Follow-Up
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am. J. Gastroenterol. 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Koehler, E.M.; Sanna, D.; Hansen, B.E.; van Rooij, F.J.; Heeringa, J.; Hofman, A.; Tiemeier, H.; Stricker, B.H.; Schouten, J.N.; Janssen, H.L. Serum liver enzymes are associated with all-cause mortality in an elderly population. Liver Int. 2014, 34, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.; Zhong, L.; Peng, W.; Xu, M.; Feng, J.; Tian, Q.; He, Y.; Dowling, R.; Fu, W.; Jiang, H.; et al. Association of the serum transaminase with mortality among the US elderly population. J. Gastroenterol. Hepatol. 2022, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Unalp-Arida, A.; Ruhl, C.E. Noninvasive fatty liver markers predict liver disease mortality in the U.S. population. Hepatology 2016, 63, 1170–1183. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, C.E.; Everhart, J.E. The association of low serum alanine aminotransferase activity with mortality in the US population. Am. J. Epidemiol. 2013, 178, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; De Vincentis, A.; Bandinelli, S.; Ferrucci, L.; Picardi, A.; Antonelli Incalzi, R.; Vespasiani-Gentilucci, U. Combined evaluation of aminotransferases improves risk stratification for overall and cause-specific mortality in older patients. Aging Clin. Exp. Res. 2021, 33, 3321–3331. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 2009, 136, 477–485.e411. [Google Scholar] [CrossRef] [Green Version]
- De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin. Chim. Acta 1957, 2, 70–74. [Google Scholar] [CrossRef]
- Lim, J.S.; Yang, J.H.; Chun, B.Y.; Kam, S.; Jacobs, D.R., Jr.; Lee, D.H. Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic. Biol. Med. 2004, 37, 1018–1023. [Google Scholar] [CrossRef]
- Lee, D.H.; Jacobs, D.R., Jr. Association between serum gamma-glutamyltransferase and C-reactive protein. Atherosclerosis 2005, 178, 327–330. [Google Scholar] [CrossRef]
- Elinav, E.; Ackerman, Z.; Maaravi, Y.; Ben-Dov, I.Z.; Ein-Mor, E.; Stessman, J. Low alanine aminotransferase activity in older people is associated with greater long-term mortality. J. Am. Geriatr. Soc. 2006, 54, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haring, R.; Wallaschofski, H.; Nauck, M.; Dörr, M.; Baumeister, S.E.; Völzke, H. Ultrasonographic hepatic steatosis increases prediction of mortality risk from elevated serum gamma-glutamyl transpeptidase levels. Hepatology 2009, 50, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. Jama 2015, 313, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.R.; Burns, J.M.; Pedersen, R.A.; Watt, K.D.; Heimbach, J.K.; Dierkhising, R.A. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011, 141, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; La Vecchia, C. Liver enzymes and all-cause mortality: Open issues. Liver Int. 2019, 39, 1389–1390. [Google Scholar] [CrossRef] [Green Version]
- Yuwaki, K.; Shimazu, T.; Yamagiwa, Y.; Inoue, M.; Goto, A.; Yamaji, T.; Iwasaki, M.; Sawada, N.; Tsugane, S. Association between serum liver enzymes and all-cause mortality: The Japan Public Health Center-based Prospective Study. Liver Int. 2019, 39, 1566–1576. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M.; Pagano, G. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011, 43, 617–649. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Otgonsuren, M.; Venkatesan, C.; Mishra, A. In patients with non-alcoholic fatty liver disease, metabolically abnormal individuals are at a higher risk for mortality while metabolically normal individuals are not. Metabolism 2013, 62, 352–360. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Tsang, S.W.; Hui, A.Y.; Chan, A.W.; Choi, P.C.; Chim, A.M.; Chu, S.; Chan, F.K.; Sung, J.J.; et al. Metabolic and histological features of non-alcoholic fatty liver disease patients with different serum alanine aminotransferase levels. Aliment. Pharmacol. Ther. 2009, 29, 387–396. [Google Scholar] [CrossRef]
- Mofrad, P.; Contos, M.J.; Haque, M.; Sargeant, C.; Fisher, R.A.; Luketic, V.A.; Sterling, R.K.; Shiffman, M.L.; Stravitz, R.T.; Sanyal, A.J. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 2003, 37, 1286–1292. [Google Scholar] [CrossRef]
- Maximos, M.; Bril, F.; Portillo Sanchez, P.; Lomonaco, R.; Orsak, B.; Biernacki, D.; Suman, A.; Weber, M.; Cusi, K. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 2015, 61, 153–160. [Google Scholar] [CrossRef]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Andreoletti, M.; Colli, A.; Vanni, E.; Bertelli, C.; Fatta, E.; Bignamini, D.; Marchesini, G.; et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: A role for insulin resistance and diabetes. Hepatology 2008, 48, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Statistics, N.C.f.H. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–1994. Series 1: Programs and Collection Procedures. Available online: https://www.cdc.gov/nchs/data/series/sr_01/sr01_032.pdf (accessed on 6 September 2022).
- Tacke, F.; Canbay, A.; Bantel, H.; Bojunga, J.; de Laffolie, J.; Demir, M.; Denzer, U.W.; Geier, A.; Hofmann, W.P.; Hudert, C.; et al. Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS)-April 2022-AWMF Registration No.: 021–025. Z Gastroenterol 2022, 60, e733–e801. [Google Scholar] [CrossRef]
- Statistics, N.C.f.H. National Health and Nutrition Examination Survey (NHANES) III: Hepatic Steatosis Ultrasound Images Assessment Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes3/Hepatic_Steatosis_Ultrasound_Procedures_Manual.pdf (accessed on 6 September 2022).
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/labman.pdf (accessed on 6 September 2022).
- Rohrmann, S.; Crespo, C.J.; Weber, J.R.; Smit, E.; Giovannucci, E.; Platz, E.A. Association of cigarette smoking, alcohol consumption and physical activity with lower urinary tract symptoms in older American men: Findings from the third National Health And Nutrition Examination Survey. BJU Int. 2005, 96, 77–82. [Google Scholar] [CrossRef]
- Phan, H.; Richard, A.; Lazo, M.; Nelson, W.G.; Denmeade, S.R.; Groopman, J.; Kanarek, N.; Platz, E.A.; Rohrmann, S. The association of sex steroid hormone concentrations with non-alcoholic fatty liver disease and liver enzymes in US men. Liver Int. 2021, 41, 300–310. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e261. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Tamura, M.K.; Chertow, G.M. Frailty and chronic kidney disease: The Third National Health and Nutrition Evaluation Survey. Am. J. Med. 2009, 122, 664–671.e662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichholzer, M.; Barbir, A.; Basaria, S.; Dobs, A.S.; Feinleib, M.; Guallar, E.; Menke, A.; Nelson, W.G.; Rifai, N.; Platz, E.A.; et al. Serum sex steroid hormones and frailty in older American men of the Third National Health and Nutrition Examination Survey (NHANES III). Aging Male 2012, 15, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics, N.C.F.H. The Linkage of National Center for Health Statistics Survey Data to the National Death Index–2019 Linked Mortality File (LMF): Linkage Methodology and Analytic Considerations. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-methods.htm (accessed on 7 September 2022).
- Statistics, N.C.F.H. Underlying and Multiple Cause of Death Code. Available online: https://www.cdc.gov/nchs/data-linkage/mortality-restricted.htm (accessed on 7 September 2022).
- Le Couteur, D.G.; Blyth, F.M.; Creasey, H.M.; Handelsman, D.J.; Naganathan, V.; Sambrook, P.N.; Seibel, M.J.; Waite, L.M.; Cumming, R.G. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low Blood ALT Activity and High FRAIL Questionnaire Scores Correlate with Increased Mortality and with Each Other. A Prospective Study in the Internal Medicine Department. J. Clin. Med. 2018, 7, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, R.; Kikuchi, A.; Akase, T.; Ninomiya, D.; Tokumoto, Y.; Kumagi, T. Association between alanine aminotransferase and all-cause mortality rate: Findings from a study on Japanese community-dwelling individuals. J. Clin. Lab. Anal. 2022, 36, e24445. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Maeda, D.; Kagiyama, N.; Jujo, K.; Saito, K.; Kamiya, K.; Saito, H.; Ogasahara, Y.; Maekawa, E.; Konishi, M.; Kitai, T.; et al. Aspartate aminotransferase to alanine aminotransferase ratio is associated with frailty and mortality in older patients with heart failure. Sci. Rep. 2021, 11, 11957. [Google Scholar] [CrossRef]
- Udell, J.A.; Wang, C.S.; Tinmouth, J.; FitzGerald, J.M.; Ayas, N.T.; Simel, D.L.; Schulzer, M.; Mak, E.; Yoshida, E.M. Does this patient with liver disease have cirrhosis? Jama 2012, 307, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Zoppini, G.; Cacciatori, V.; Negri, C.; Stoico, V.; Lippi, G.; Targher, G.; Bonora, E. The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine 2016, 95, e4821. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625.e1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 101133. [Google Scholar] [CrossRef]
AST, ALT, DRR Cohort | GGT Cohort | |||
---|---|---|---|---|
without Hepatic Steatosis | with Hepatic Steatosis | without Hepatic Steatosis | with Hepatic Steatosis | |
n = 8742 | n = 2643 | n = 6804 | n = 2075 | |
Age (years) | 39 (29–52) | 46 (35–60) | 39 (29–52) | 46 (35–58) |
Females | 53 | 45.8 | 52.6 | 45.4 |
Race/Ethnicity | ||||
Non-Hispanic white | 76.3 | 76.2 | 75.6 | 74.6 |
Non-Hispanic black | 10.8 | 8.3 | 11.2 | 9 |
Mexican American | 5 | 7.5 | 4.6 | 7.3 |
Other | 7.9 | 7.9 | 8.6 | 9 |
Education | ||||
<12 years | 21 | 28.8 | 20.8 | 27.6 |
12 years | 34.2 | 36.8 | 33.4 | 37.3 |
>12 years | 44.7 | 34.4 | 45.9 | 35.1 |
No alcohol consumption | 42 | 49.1 | 41.9 | 49.4 |
Smoking | ||||
Never | 47.1 | 42.9 | 48 | 42.8 |
Former | 23.1 | 34 | 22.6 | 34 |
Current | 29.9 | 23.1 | 29.4 | 23.3 |
LTPA | ||||
No LTPA | 12.3 | 16.6 | 12.6 | 16.8 |
Irregular LTPA | 39.2 | 42.2 | 38.8 | 41 |
Regular LTPA | 48.5 | 41.2 | 48.6 | 42.1 |
BMI (kg/m2) | 24.9 (22.3–28.1) | 29.6 (26.3–33.8) | 25 (22.3–28.1) | 29.6 (26.2–33.9) |
Diabetes | 4.4 | 15.5 | 4.3 | 15.3 |
Hypertension | 18.8 | 35.6 | 18.6 | 34.7 |
Frailty | 1.4 | 2.1 | 1.3 | 1.9 |
Serum HDL < 35 mg/dL | 9.4 | 23.9 | 9.4 | 24.9 |
Serum cholesterol | ||||
<200 mg/dL | 52.5 | 39 | 53.1 | 39.8 |
200–239 mg/dL | 30.5 | 35.2 | 30.4 | 34.8 |
≥240 mg/dL | 16.9 | 25.9 | 16.6 | 25.4 |
Serum triglycerides | ||||
<250 mg/dL | 93.2 | 74.9 | 93.3 | 75.8 |
250–500 mg/dL | 6 | 21 | 5.9 | 20.1 |
>500 mg/dL | 0.8 | 4.2 | 0.8 | 4.1 |
AST (U/L) | 18 (16–22) | 21 (18–27) | 18 (16–22) | 21 (18–27) |
ALT (U/L) | 13 (10–19) | 20 (14–29) | 13 (10–19) | 20 (14–29) |
GGT (U/L) | 18 (13–27) | 29 (20–43) | 18 (13–27) | 29 (20–43) |
DRR | 1.4 (1.1–1.7) | 1.1 (0.9–1.4) | 1.4 (1.1–1.7) | 1.1 (0.8–1.4) |
Serum albumin (g/dL) | 4.2 (4–4.4) | 4.2 (4–4.4) | 4.2 (4–4.4) | 4.2 (3.9–4.4) |
Total bilirubin (mg/dL) | 0.5 (0.4–0.7) | 0.5 (0.4–0.7) | 0.5 (0.4–0.7) | 0.6 (0.4–0.7) |
Platelets (G/L) | 264 (226–307.5) | 265.5 (224.5–315) | 262 (223–305) | 261 (221.5–311) |
CRP >0.3 mg/dL | 21.8 | 36.8 | 23.9 | 39.6 |
eGFR < 60 mL/min/1.73 m2 | 8.6 | 13.1 | 8.8 | 12.5 |
without Hepatic Steatosis | with Hepatic Steatosis | |||||||
---|---|---|---|---|---|---|---|---|
Mortality Outcome and Liver Enzyme Decile or DRR Tertile a | No. of Deaths b | Unadjusted Cumulative Mortality c | Age-Adjusted HR d | 95% CI | No. of Deaths b | Unadjusted Cumulative Mortality c | Age-Adjusted HR d | 95% CI |
AST | ||||||||
All-cause | ||||||||
Deciles 1–3 | 925 | 30.4 | 1.54 | 1.37–1.73 | 290 | 42.8 | 1.21 | 1.01–1.46 |
Deciles 4–9 (ref.) | 1675 | 30.2 | 1.00 | - | 695 | 44.7 | 1.00 | - |
Decile 10 | 208 | 35.6 | 1.2 | 0.94–1.54 | 207 | 45.9 | 1.3 | 1.02–1.66 |
Heart disease | ||||||||
Deciles 1–3 | 247 | 7.4 | 1.44 | 1.15–1.81 | 85 | 13.7 | 1.19 | 0.87–1.63 |
Deciles 4–9 (ref.) | 480 | 10.5 | 1.00 | - | 207 | 14.4 | 1.00 | - |
Decile 10 | 58 | 10.7 | 1.15 | 0.79–1.68 | 40 | 12 | 0.87 | 0.55–1.4 |
Cancer | ||||||||
Deciles 1–3 | 275 | 12.2 | 2.2 | 1.7–2.85 | 55 | 11.9 | 1.15 | 0.82–1.6 |
Deciles 4–9 (ref.) | 375 | 7.4 | 1.00 | - | 166 | 12.2 | 1.00 | - |
Decile 10 | 43 | 14 | 1.54 | 0.93–2.56 | 39 | 13 | 1.12 | 0.63–1.98 |
ALT | ||||||||
All-cause | ||||||||
Deciles 1–3 | 1000 | 34.7 | 1.33 | 1.19–1.49 | 227 | 53 | 1.42 | 1.17–1.73 |
Deciles 4–9 (ref.) | 1680 | 29 | 1.00 | - | 775 | 46.4 | 1.00 | - |
Decile 10 | 128 | 23.4 | 1.24 | 0.85–1.81 | 190 | 34 | 1.18 | 0.93–1.5 |
Heart disease | ||||||||
Deciles 1–3 | 283 | 9.6 | 1.26 | 1.01–1.57 | 73 | 21 | 1.63 | 1.16–2.29 |
Deciles 4–9 (ref.) | 475 | 9.6 | 1.00 | - | 219 | 14.5 | 1.00 | - |
Decile 10 | 27 | 4.8 | 0.94 | 0.48–1.85 | 40 | 8.3 | 1.03 | 0.64–1.68 |
Cancer | ||||||||
Deciles 1–3 | 274 | 12.4 | 1.64 | 1.32–2.03 | 48 | 15.3 | 1.39 | 0.84–2.29 |
Deciles 4–9 (ref.) | 386 | 8.2 | 1.00 | - | 171 | 13.3 | 1.00 | - |
Decile 10 | 33 | 7.6 | 1.39 | 0.8–2.43 | 41 | 7.5 | 0.83 | 0.43–1.59 |
GGT | ||||||||
All-cause | ||||||||
Deciles 1–8 (ref.) | 1649 | 25.6 | 1.00 | - | 578 | 37.5 | 1.00 | - |
Deciles 9–10 | 427 | 39.1 | 1.47 | 1.21–1.79 | 306 | 45.6 | 1.42 | 1.17–1.72 |
Heart disease | ||||||||
Deciles 1–8 (ref.) | 441 | 6.9 | 1.00 | - | 166 | 12 | 1.00 | - |
Deciles 9–10 | 123 | 11.3 | 1.46 | 0.91–2.36 | 81 | 12 | 1.17 | 0.78–1.76 |
Cancer | ||||||||
Deciles 1–8 (ref.) | 420 | 7.9 | 1.00 | - | 136 | 9.6 | 1.00 | - |
Deciles 9–10 | 95 | 11.6 | 1.35 | 0.94–1.93 | 63 | 13 | 1.35 | 0.86–2.14 |
DRR | ||||||||
All-cause | ||||||||
Tertile 1 (ref.) | 699 | 25.5 | 1.00 | - | 520 | 38.2 | 1.00 | - |
Tertile 2 | 1019 | 30.3 | 0.95 | 0.81–1.11 | 390 | 53.6 | 1.12 | 0.94–1.33 |
Tertile 3 | 1090 | 35.3 | 1.07 | 0.94–1.21 | 282 | 56.4 | 1.11 | 0.92–1.34 |
Heart disease | ||||||||
Tertile 1 (ref.) | 185 | 8.1 | 1.00 | - | 144 | 9.9 | 1.00 | - |
Tertile 2 | 279 | 8.5 | 0.96 | 0.69–1.33 | 107 | 20 | 1.07 | 0.79–1.44 |
Tertile 3 | 321 | 11.2 | 1.19 | 0.88–1.61 | 81 | 21.3 | 1.15 | 0.8–1.64 |
Cancer | ||||||||
Tertile 1 (ref.) | 176 | 7.1 | 1.00 | - | 119 | 10.1 | 1.00 | - |
Tertile 2 | 252 | 10.3 | 0.99 | 0.74–1.34 | 84 | 15.2 | 1.29 | 0.87–1.9 |
Tertile 3 | 265 | 10.7 | 1.06 | 0.84–1.34 | 57 | 16.6 | 1.15 | 0.69–1.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grob, S.R.; Suter, F.; Katzke, V.; Rohrmann, S. The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients 2023, 15, 3063. https://doi.org/10.3390/nu15133063
Grob SR, Suter F, Katzke V, Rohrmann S. The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients. 2023; 15(13):3063. https://doi.org/10.3390/nu15133063
Chicago/Turabian StyleGrob, Saskia Rita, Flurina Suter, Verena Katzke, and Sabine Rohrmann. 2023. "The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III" Nutrients 15, no. 13: 3063. https://doi.org/10.3390/nu15133063
APA StyleGrob, S. R., Suter, F., Katzke, V., & Rohrmann, S. (2023). The Association between Liver Enzymes and Mortality Stratified by Non-Alcoholic Fatty Liver Disease: An Analysis of NHANES III. Nutrients, 15(13), 3063. https://doi.org/10.3390/nu15133063