Dietary Acid Load Is Not Associated with Serum Testosterone in Men: Insights from the NHANES
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Assessment of Testosterone, Estradiol and Sex Hormone-Binding Globulin
2.3. Dietary Acid Load Markers and Nutrient Intake
intake (mg/d)) − (0.021 × potassium intake (mg/d)) − (0.026 × magnesium
intake (mg/d)) − (0.013 × calcium intake (mg/d))
2.4. Other Potential Confounders and Covariates
2.5. Inclusion and Exclusion Criteria
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lokeshwar, S.D.; Patel, P.; Fantus, R.J.; Halpern, J.; Chang, C.; Kargi, A.Y.; Ramasamy, R. Decline in Serum Testosterone Levels Among Adolescent and Young Adult Men in the USA. Eur. Urol. Focus 2021, 7, 886–889. [Google Scholar] [CrossRef]
- Travison, T.G.; Araujo, A.B.; O’donnell, A.B.; Kupelian, V.; McKinlay, J.B. A Population-Level Decline in Serum Testosterone Levels in American Men. J. Clin. Endocrinol. Metab. 2007, 92, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Jiang, F.; Zhang, M.; Luo, D.; Shao, S.; Zhao, J.; Gao, L.; Zuo, C.; Guan, Q. HC diet inhibited testosterone synthesis by activating endoplasmic reticulum stress in testicular Leydig cells. J. Cell. Mol. Med. 2019, 23, 3140–3150. [Google Scholar] [CrossRef]
- Araujo, A.B.; Wittert, G.A. Endocrinology of the aging male. Best Pr. Res. Clin. Endocrinol. Metab. 2011, 25, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Travison, T.G.; Araujo, A.B.; Kupelian, V.; O’donnell, A.B.; McKinlay, J.B. The Relative Contributions of Aging, Health, and Lifestyle Factors to Serum Testosterone Decline in Men. J. Clin. Endocrinol. Metab. 2007, 92, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, U.; Shiff, B.; Patel, P. Reasons for worldwide decline in male fertility. Curr. Opin. Urol. 2020, 30, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pestoni, G.; McGlynn, K.A.; Platz, E.A.; Rohrmann, S. Cross-sectional associations between healthy eating index and sex steroid hormones in men—National Health and Nutrition Examination Survey 1999–2002. Andrology 2020, 8, 154–159. [Google Scholar] [CrossRef]
- Adlercreutz, H. Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Investig. Suppl. 1990, 201, 3–23. [Google Scholar] [CrossRef]
- Pillerová, M.; Borbélyová, V.; Hodosy, J.; Riljak, V.; Renczés, E.; Frick, K.M.; Tóthová, Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front. Neuroendocr. 2021, 62, 100926. [Google Scholar] [CrossRef] [PubMed]
- Diver, M. Analytical and physiological factors affecting the interpretation of serum testosterone concentration in men. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2006, 43, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Xie, Y.-M.; Pei, J.-H.; Kuang, J.; Chen, H.-M.; Chen, Z.; Li, Z.-W.; Fu, X.-Y.; Wang, L.; Lai, S.-Q.; et al. Sugar-sweetened beverage intake and serum testosterone levels in adult males 20-39 years old in the United States. Reprod. Biol. Endocrinol. 2018, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Kuchakulla, M.; Nackeeran, S.; Blachman-Braun, R.; Ramasamy, R. The association between plant-based content in diet and testosterone levels in US adults. World J. Urol. 2021, 39, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bian, H.; Chen, Z.; Tian, B.; Wang, H.; Tu, X.; Cai, B.; Jin, K.; Zheng, X.; Yang, L.; et al. The Association between Dietary Inflammatory Index and Sex Hormones among Men in the United States. J. Urol. 2021, 206, 97–103. [Google Scholar] [CrossRef]
- Haß, U.; Schütte, O.; Franz, K.; Norman, K. Dietary Inflammatory Index (DII)—Nützlicher Wegweiser in der praktischen Beratung oder rein theoretisches Modell in der Ernährungsforschung? Aktuelle Ernährungsmedizin 2021, 46, 174–185. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, N.; Liao, R.; Jiang, L.; Su, B. The Association Between Dietary Inflammatory Potential and Sex Hormones in Male Children and Adolescents Aged 6–19 Years. Front. Endocrinol. 2021, 12, 722941. [Google Scholar] [CrossRef] [PubMed]
- Overview & Background of Healthy Eating Index (HEI)|EGRP/DCCPS/NCI/NIH. Available online: https://epi.grants.cancer.gov/hei/ (accessed on 3 July 2023).
- Lu, Y.; Tian, J.; Wang, S.; Wang, X.; Song, Y.; Liu, K.; Zhou, K.; Yang, Y.; Liu, X. The association between plant-based diet and erectile function in Chinese young healthy men: A population-based study. Andrologia 2021, 53, e14038. [Google Scholar] [CrossRef]
- Storz, M.A.; Ronco, A.L. Carbohydrate Intake and Its Association with Dietary Acid Load in U.S. Adults: Results From a Cross-Sectional Study. Am. J. Lifestyle Med. 2022, 15598276221133296. [Google Scholar] [CrossRef]
- Betz, M.V.; Penniston, K.L. Primary Contributors to Dietary Acid Load in Patients with Urolithiasis. J. Ren. Nutr. 2023, 33, 53–58. [Google Scholar] [CrossRef]
- Arisawa, K.; Katsuura-Kamano, S.; Uemura, H.; Van, T.N.; Hishida, A.; Tamura, T.; Kubo, Y.; Tsukamoto, M.; Tanaka, K.; Hara, M.; et al. Association of Dietary Acid Load with the Prevalence of Metabolic Syndrome among Participants in Baseline Survey of the Japan Multi-Institutional Collaborative Cohort Study. Nutrients 2020, 12, 1605. [Google Scholar] [CrossRef]
- Iwase, H.; Tanaka, M.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Kido, Y.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Hasegawa, G.; et al. Lower vegetable protein intake and higher dietary acid load associated with lower carbohydrate intake are risk factors for metabolic syndrome in patients with type 2 diabetes: Post-hoc analysis of a cross-sectional study. J. Diabetes Investig. 2015, 6, 465–472. [Google Scholar] [CrossRef]
- Ronco, A.L.; Storz, M.A.; Martínez-López, W.; Calderón, J.M.; Golomar, W. High dietary acid load is associated with prostate cancer risk: An epidemiological study. World Cancer Res. J. 2021, 8, e2119. [Google Scholar] [CrossRef]
- NHANES—1. NHANES—About the National Health and Nutrition Examination Survey. Published 21 December 2022. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 22 April 2023).
- National Center for Health Statistics—National Health and Nutrition Examination Survey, 2013–2014. Overview. 2022. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/2013-14_overview_brochure.pdf (accessed on 22 April 2023).
- Glover, F.E.; Caudle, W.M.; Del Giudice, F.; Belladelli, F.; Mulloy, E.; Lawal, E.; Eisenberg, M.L. The association between caffeine intake and testosterone: NHANES 2013–2014. Nutr. J. 2022, 21, 33. [Google Scholar] [CrossRef]
- NHANES—NCHS Research Ethics Review Board Approval. 2022. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 22 April 2023).
- NHANES—Sex Steroid Hormone. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/TST_I.htm (accessed on 22 April 2023).
- Zhou, H.; Wang, Y.; Gatcombe, M.; Farris, J.; Botelho, J.C.; Caudill, S.P.; Vesper, H.W. Simultaneous measurement of total estradiol and testosterone in human serum by isotope dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 5943–5954. [Google Scholar] [CrossRef] [Green Version]
- NHANES 2015-16. Laboratory Procedure Manual: Total Estradiol and Total Testosterone. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/TST_I_MET_TST_EST.pdf (accessed on 22 January 2023).
- NHANES 2015-16. Laboratory Procedure Manual: Sex Hormone-Binding Globulin. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/TST_I_MET_SHBG.pdf (accessed on 22 January 2023).
- Kapoor, P.; Luttrell, B.; Williams, D. The Free Androgen Index is not valid for adult males. J. Steroid Biochem. Mol. Biol. 1993, 45, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Scopacasa, F.; Horowitz, M.; Wishart, J.M.; Morris, H.A.; Chatterton, B.E.; Need, A.G. The relation between bone density, free androgen index, and estradiol in men 60 to 70 years old. Bone 2000, 27, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Ronco, A.L.; Hannibal, L. Observational and clinical evidence that plant-based nutrition reduces dietary acid load. J. Nutr. Sci. 2022, 11, e93. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [Green Version]
- NHANES—Dietary Interview—Total Nutrient Intakes, First Day. 2022. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT_I.htm (accessed on 22 January 2023).
- Fantus, R.J.; Halpern, J.A.; Chang, C.; Keeter, M.K.; Bennett, N.E.; Helfand, B.; Brannigan, R.E. The Association between Popular Diets and Serum Testosterone among Men in the United States. J. Urol. 2020, 203, 398–404. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. Int. Rev. J. 2016, 7, 121–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s Dietary Intake Data System. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Steinfeldt, L.C.; Martin, C.L.; Clemens, J.C.; Moshfegh, A.J. Comparing Two Days of Dietary Intake in What We Eat in America (WWEIA), NHANES, 2013–2016. Nutrients 2021, 13, 2621. [Google Scholar] [CrossRef] [PubMed]
- Giannos, P.; Prokopidis, K.; Church, D.D.; Ben Kirk, B.; Morgan, P.T.; Ni Lochlainn, M.; Macpherson, H.; Woods, D.R.; Ispoglou, T. Associations of Bioavailable Serum Testosterone with Cognitive Function in Older Men: Results From the National Health and Nutrition Examination Survey. J. Gerontol. Ser. A 2022, 78, 151–157. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Rippe, J.M. Physical Activity and Lifestyle Medicine. Am. J. Lifestyle Med. 2020, 15, 212–213. [Google Scholar] [CrossRef]
- Heeringa, G.; West, B.T.; West, P.A. Applied Survey Data Analysis, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Parker, J.D.T.M.; Talih, M.; Malec, D.J.; Beresovsky, V.; Carroll, M.D.; Gonzalez, J.F.; Hamilton, B.E.; Ingram, D.D.; Kochanek, K.D.; McCarty, F.; et al. National Center for Health Statistics Data Presentation Standards for Proportions. Vital Health Stat. 2017, 175, 1–22. [Google Scholar]
- Ward, B.W. kg_nchs: A command for Korn–Graubard confidence intervals and National Center for Health Statistics’ Data Presentation Standards for Proportions. Stata J. 2019, 19, 510–522. [Google Scholar] [CrossRef]
- Sribney, B. FAQ: Estimating Correlations with Survey Data. Available online: https://www.stata.com/support/faqs/statistics/estimate-correlations-with-survey-data/ (accessed on 22 January 2023).
- Perheentupa, A.; Mäkinen, J.; Laatikainen, T.; Vierula, M.; E Skakkebaek, N.; Andersson, A.-M.; Toppari, J. A cohort effect on serum testosterone levels in Finnish men. Eur. J. Endocrinol. 2013, 168, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.M.; Vermeulen, A. The Decline of Androgen Levels in Elderly Men and Its Clinical and Therapeutic Implications. Endocr. Rev. 2005, 26, 833–876. [Google Scholar] [CrossRef]
- Yeap, B.B.; Araujo, A.B.; Wittert, G.A. Do low testosterone levels contribute to ill-health during male ageing? Crit. Rev. Clin. Lab. Sci. 2012, 49, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, G.A.; Barrett-Connor, E.; Bergstrom, J. Low Serum Testosterone and Mortality in Older Men. J. Clin. Endocrinol. Metab. 2008, 93, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Watts, E.L.; Perez-Cornago, A.; Fensom, G.K.; Smith-Byrne, K.; Noor, U.; Andrews, C.D.; Gunter, M.J.; Holmes, M.V.; Martin, R.M.; Tsilidis, K.K.; et al. Circulating free testosterone and risk of aggressive prostate cancer: Prospective and Mendelian randomisation analyses in international consortia. Int. J. Cancer 2022, 151, 1033–1046. [Google Scholar] [CrossRef]
- Zapatero, A.; Álvarez, A.; Guerrero, A.; Maldonado, X.; Segundo, C.G.S.; Cabeza, M.A.; de Vidales, C.M.; Solé, J.M.; Olivé, A.P.; Casas, F.; et al. Prognostic value of testosterone castration levels following androgen deprivation and high-dose radiotherapy in localized prostate cancer: Results from a phase III trial. Radiother. Oncol. 2021, 160, 115–119. [Google Scholar] [CrossRef]
- Storz, M.A.; Ronco, A.L. How Well Do Low-PRAL Diets Fare in Comparison to the 2020–2025 Dietary Guidelines for Americans? Healthcare 2023, 11, 180. [Google Scholar] [CrossRef]
- Study Finds Plant-Based Diets Do Not Impact Testosterone Levels. Endocrinology Network. 2020. Available online: https://www.endocrinologynetwork.com/view/study-finds-plant-based-diets-do-not-impact-testosterone-levels (accessed on 22 January 2023).
- DiNicolantonio, J.J.; O’Keefe, J. Low-grade metabolic acidosis as a driver of chronic disease: A 21st century public health crisis. Open Heart 2021, 8, e001730. [Google Scholar] [CrossRef]
- Carnauba, R.A.; Baptistella, A.B.; Paschoal, V.; Hübscher, G.H. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients 2017, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, S.K.; Bahadoran, Z.; Mirmiran, P.; Tohidi, M.; Azizi, F. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study. Prev. Nutr. Food Sci. 2016, 21, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Kiefte-de Jong, J.C.; Li, Y.; Chen, M.; Curhan, G.C.; Mattei, J.; Malik, V.S.; Forman, J.P.; Franco, O.H.; Hu, F.B. Diet-dependent acid load and type 2 diabetes: Pooled results from three prospective cohort studies. Diabetologia 2017, 60, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, S.; Kurotani, K.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sawada, N.; Tsugane, S. High Dietary Acid Load Score Is Associated with Increased Risk of Type 2 Diabetes in Japanese Men: The Japan Public Health Center–based Prospective Study. J. Nutr. 2016, 146, 1076–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatahi, S.; Qorbani, M.; Surkan, P.J.; Azadbakht, L. Associations between dietary acid load and obesity among Iranian women. J. Cardiovasc. Thorac. Res. 2021, 13, 285–297. [Google Scholar] [CrossRef]
- Luis, D.; Huang, X.; Riserus, U.; Sjögren, P.; Lindholm, B.; Arnlöv, J.; Cederholm, T.; Carrero, J.J. Estimated Dietary Acid Load Is Not Associated with Blood Pressure or Hypertension Incidence in Men Who Are Approximately 70 Years Old. J. Nutr. 2015, 145, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharska, A.; Szostak-Węgierek, D.; Waśkiewicz, A.; Piotrowski, W.; Stepaniak, U.; Pająk, A.; Kozakiewicz, K.; Tykarski, A.; Rutkowski, M.; Bielecki, W.; et al. Dietary acid load and cardiometabolic risk in the Polish adult population. Adv. Clin. Exp. Med. 2018, 27, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Esche, J.; Shi, L.; Sánchez-Guijo, A.; Hartmann, M.F.; Wudy, S.A.; Remer, T. Higher diet-dependent renal acid load associates with higher glucocorticoid secretion and potentially bioactive free glucocorticoids in healthy children. Kidney Int. 2016, 90, 325–333. [Google Scholar] [CrossRef] [PubMed]
Total Sample (n = 377) | Low Testosterone Level (n = 101) | Normal Testosterone Level (n = 276) | p-Value | |
---|---|---|---|---|
Age (years) | 49.50 (1.53) | 51.27 (2.29) | 48.88 (01.58) | |
Race/Ethnicity | 0.277 b | |||
Mexican American | 6.59% (1.90) * | 4.50% (1.64) * | 7.33% (2.21) * | |
Other Hispanic | 5.97% (1.77) * | 7.71% (2.42) * | 5.35% (1.66) * | |
Non-Hispanic White | 73.35% (3.73) | 76.01% (5.35) | 72.41% (3.84) | |
Non-Hispanic Black | 7.27% (1.21) | 6.48% (1.94) * | 7.55% (1.45) | |
Other Race a | 6.82% (1.53) | 5.31% (1.90) * | 7.36% (1.65) | |
Marital status | 0.650 b | |||
Married/Living with partner | 72.33% (2.98) | 76.07% (6.34) | 71.01% (3.44) | |
Widowed/Divorced/Separated | 11.36% (2.52) | 11.70% (5.18) * | 11.23% (2.12) | |
Never married | 16.31% (2.22) | 12.23% (4.68) * | 17.75% (3.09) | |
Education Level | 0.219 b | |||
Less than 9th grade | 2.01% (0.72) | 1.82% (1.08) * | 2.07% (0.91) | |
9–11th grade | 7.76% (1.08) | 8.14% (2.61) * | 7.62% (1.59) | |
High school graduate/GED d | 23.62% (3.91) | 15.17% (5.80) * | 26.60% (4.81) | |
Some college or AA degree | 34.71% (2.05) | 46.96% (7.90) * | 30.3% (3.46) | |
College graduate or above | 31.90% (4.79) | 27.91% (5.66) | 33.31% (5.08) | |
BMI | <0.001 b | |||
<18.50 | 0.36% (0.25) | 0% * | 0.49% (0.34) | |
≥18.50 & <25.00 | 21.34% (3.34) | 7.07% (2.67) * | 26.37% (4.33) c | |
≥25.00 & <30.00 | 43.48% (3.68) | 36.21% (4.98) | 46.05% (4.08) | |
≥30 | 34.82% (4.33) | 56.72% (5.67) | 27.10% (4.93) c | |
Physical activity | 0.303 b | |||
<150 min per week | 50.34% (2.36) | 55.17% (5.78) | 48.64% (2.34) | |
≥150 min per week | 49.66% (2.36) | 44.83% (5.78) * | 51.36% (2.34) | |
Alcohol Intake | 0.076 b | |||
Low | 66.21% (3.66) | 79.77% (6.91) * | 61.43% (3.39) c | |
Moderate | 9.66% (2.06) | 3.91% (2.87) * | 11.68% (2.58) | |
High | 24.13% (3.96) | 16.32% (6.37) * | 26.89% (4.02) | |
Hours of sleep | 0.243 b | |||
<7 h per day | 23.46% (2.26) | 17.13% (5.42) * | 25.69% (2.57) | |
≥7 h per day | 76.54% (2.26) | 82.87% (5.42) * | 74.31% (2.57) | |
Current smoking status | 0.067 b | |||
Smoker | 31.76% (3.07) | 21.02% (4.98) | 35.55% (3.91) | |
Non-smoker | 68.24% (3.07) | 78.98% (4.98) | 64.45% (3.91) |
Total Sample (n = 377) | Low Testosterone Level (n = 101) | Normal Testosterone Level (n = 276) | p-Value | |
---|---|---|---|---|
Energy intake (kcal/d) | 2512.86 (58.82) | 2390.29 (92.72) | 2556.08 (68.65) | 0.137 |
Protein intake (g/d) | 96.20 (1.79) | 90.05 (3.95) | 98.37 (2.80) | 0.171 |
Phosphorus intake (mg/d) | 1619.62 (34.70) | 1503.54 (68.46) | 1660.55 (45.14) | 0.091 |
Magnesium intake (mg/d) | 356.78 (13.33) | 320.31 (17.90) | 369.64 (19.13) | 0.103 |
Potassium intake (mg/d) | 3055.88 (86.83) | 2977.89 (160.80) | 3083.38 (118.40) | 0.639 |
Calcium intake (mg/d) | 1137.75 (38.10) | 1097.45 (69.85) | 1151.97 (40.47) | 0.458 |
Total Sample (n = 377) | Low Testosterone Level (n = 101) | Normal Testosterone Level (n = 276) | p-Value | |
---|---|---|---|---|
PRALR (mEq/d) | 18.82 (1.82) | 14.63 (2.90) | 20.30 (2.16) | 0.141 |
NEAPR (mEq/d) | 67.45 (1.87) | 65.48 (2.89) | 68.17 (2.39) | 0.507 |
NEAPF (mEq/d) | 60.11 (2.18) | 59.04 (3.72) | 60.49 (2.18) | 0.688 |
Mean (SE) | Serum Testosterone | Sex Hormone-Binding Globulin | Free Androgen Index | ||||
---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | ||
PRALR | 18.82 (1.82) mEq/d | 0.004 | 0.511 | −0.109 | 0.145 | 0.151 | 0.034 |
NEAPR | 67.45 (1.87) mEq/d | −0.028 | 0.680 | −0.162 | 0.042 | 0.14 | 0.054 |
NEAPF | 60.11 (2.18) mEq/d | 0.004 | 0.965 | −0.12 | 0.125 | 0.113 | 0.241 |
Independent Variables | β | SE | p | β | SE | p | β | SE | p |
---|---|---|---|---|---|---|---|---|---|
Model I | Model II | Model III | |||||||
PRALR | 0.374 | 0.44 | 0.411 | 0.35 | 0.33 | 0.300 | 0.42 | 0.43 | 0.344 |
Age | −1.29 | 0.71 | 0.087 | −4.72 | 0.57 | <0.001 | −4.95 | 0.48 | <0.001 |
Ethnicity | |||||||||
Mexican American | −12.90 | 19.92 | 0.527 | −4.26 | 15.06 | 0.781 | −4.08 | 16.51 | 0.808 |
Other Hispanic | −57.07 | 20.43 | 0.014 | −13.05 | 15.62 | 0.417 | −12.70 | 15.59 | 0.428 |
Non-Hispanic Black | 45.46 | 39.81 | 0.271 | 32.94 | 32.39 | 0.325 | 38.33 | 30.52 | 0.228 |
Other Race a | 0.18 | 36.18 | 0.996 | −14.24 | 31.44 | 0.657 | −17.06 | 29.83 | 0.576 |
Body mass index | −12.66 | 2.16 | <0.001 | −7.90 | 1.57 | <0.001 | −8.04 | 1.50 | <0.001 |
SBGH | 5.51 | 0.29 | <0.001 | 5.58 | 0.29 | <0.001 | |||
Smoking status | |||||||||
Current smoker | −17.03 | 18.97 | 0.384 | ||||||
Physical activity | |||||||||
≥150 min per week | −7.52 | 15.78 | 0.653 | ||||||
Alcohol intake | |||||||||
Moderate | −18.98 | 21.40 | 0.389 | ||||||
High | −14.62 | 29.85 | 0.631 | ||||||
Energy intake | |||||||||
kcal/day | 0.0011 | 0.0126 | 0.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storz, M.A.; Ronco, A.L. Dietary Acid Load Is Not Associated with Serum Testosterone in Men: Insights from the NHANES. Nutrients 2023, 15, 3075. https://doi.org/10.3390/nu15133075
Storz MA, Ronco AL. Dietary Acid Load Is Not Associated with Serum Testosterone in Men: Insights from the NHANES. Nutrients. 2023; 15(13):3075. https://doi.org/10.3390/nu15133075
Chicago/Turabian StyleStorz, Maximilian Andreas, and Alvaro Luis Ronco. 2023. "Dietary Acid Load Is Not Associated with Serum Testosterone in Men: Insights from the NHANES" Nutrients 15, no. 13: 3075. https://doi.org/10.3390/nu15133075
APA StyleStorz, M. A., & Ronco, A. L. (2023). Dietary Acid Load Is Not Associated with Serum Testosterone in Men: Insights from the NHANES. Nutrients, 15(13), 3075. https://doi.org/10.3390/nu15133075