The Mediating Effects of Nutritional Status on the Relationship between Number of Residual Teeth and Cognitive Function among Older Adults: A Cross-Sectional Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Zhao, S.; Cheng, G.; Yang, J.; Li, B.; Xu, K.; Xiao, P.; Li, W.; Rong, S. The Prevalence of Mild Cognitive Impairment among Chinese People: A Meta-Analysis. Neuroepidemiology 2021, 55, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ren, Y.; Wang, Y.; Hou, T.; Dong, Y.; Han, X.; Yin, L.; Zhang, Q.; Feng, J.; Wang, L.; et al. Mild Cognitive Impairment among Rural-Dwelling Older Adults in China: A Community-Based Study. Alzheimer’s Dement. 2023, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Li, J.; Liang, J.; Chen, S. The Prevalence of Mild Cognitive Impairment in China: A Systematic Review. Aging Dis. 2018, 9, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. The Humanistic and Economic Burden of Alzheimer’s Disease. Neurol. Ther. 2022, 11, 525–551. [Google Scholar] [CrossRef]
- Kamer, A.R.; Craig, R.G.; Dasanayake, A.P.; Brys, M.; Glodzik-Sobanska, L.; de Leon, M.J. Inflammation and Alzheimer’s Disease: Possible Role of Periodontal Diseases. Alzheimer’s Dement. 2008, 4, 242–250. [Google Scholar] [CrossRef]
- Shen, T.; Lv, J.; Wang, L.; Wang, W.; Zhang, D. Association between Tooth Loss and Dementia among Older People: A Meta-Analysis. Int. J. Geriatr. Psychiatry 2016, 31, 953–955. [Google Scholar] [CrossRef]
- Oh, B.; Han, D.-H.; Han, K.-T.; Liu, X.; Ukken, J.; Chang, C.; Dounis, K.; Yoo, J.W. Association between Residual Teeth Number in Later Life and Incidence of Dementia: A Systematic Review and Meta-Analysis. BMC Geriatr. 2018, 18, 48. [Google Scholar] [CrossRef] [Green Version]
- Dibello, V.; Zupo, R.; Sardone, R.; Lozupone, M.; Castellana, F.; Dibello, A.; Daniele, A.; De Pergola, G.; Bortone, I.; Lampignano, L.; et al. Oral Frailty and Its Determinants in Older Age: A Systematic Review. Lancet Healthy Longev. 2021, 2, e507–e520. [Google Scholar] [CrossRef]
- Avlund, K.; Schultz-Larsen, K.; Christiansen, N.; Holm-Pedersen, P. Number of Teeth and Fatigue in Older Adults: Teeth and Fatigue. J. Am. Geriatr. Soc. 2011, 59, 1459–1464. [Google Scholar] [CrossRef]
- Hung, H.-C.; Willett, W.; Ascherio, A.; Rosner, B.A.; Rimm, E.; Joshipura, K.J. Tooth Loss and Dietary Intake. J. Am. Dent. Assoc. 2003, 134, 1185–1192. [Google Scholar] [CrossRef]
- Katsas, K.; Mamalaki, E.; Kontogianni, M.D.; Anastasiou, C.A.; Kosmidis, M.H.; Varlamis, I.; Hadjigeorgiou, G.M.; Dardiotis, E.; Sakka, P.; Scarmeas, N.; et al. Malnutrition in Older Adults: Correlations with Social, Diet-Related, and Neuropsychological Factors. Nutrition 2020, 71, 110640. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and Prevention of Cognitive Impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Lu, Z.; He, R.; Zhang, Y.; Li, B.; Li, F.; Fu, Y.; Rong, S. Relationship between Whole-Blood Magnesium and Cognitive Performance among Chinese Adults. Nutrients 2023, 15, 2706. [Google Scholar] [CrossRef]
- Suma, S.; Furuta, M.; Takeuchi, K.; Tomioka, M.; Iwasa, Y.; Yamashita, Y. Number of Teeth, Denture Wearing and Cognitive Function in Relation to Nutritional Status in Residents of Nursing Homes. Gerodontology 2022, 39, 197–203. [Google Scholar] [CrossRef]
- Hou, L.; Liu, X.; Zhang, Y.; Zhao, W.; Xia, X.; Chen, X.; Lin, X.; Yue, J.; Ge, N.; Dong, B. Cohort Profile: West China Health and Aging Trend (WCHAT). J. Nutr. Health Aging 2021, 25, 302–310. [Google Scholar] [CrossRef]
- Pfeiffer, E. A Short Portable Mental Status Questionnaire for the Assessment of Organic Brain Deficit in Elderly Patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment Short-Form (MNA®-SF): A Practical Tool for Identification of Nutritional Status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Zhuang, L.; Yang, Y.; Gao, J. Cognitive Assessment Tools for Mild Cognitive Impairment Screening. J. Neurol. 2021, 268, 1615–1622. [Google Scholar] [CrossRef]
- Shen, J.; Qian, S.; Huang, L.; Tao, Y.; Chen, H.; Deng, K.; Yang, F.; Zong, G.; Zheng, Y.; Wang, X.; et al. Association of the Number of Natural Teeth with Dietary Diversity and Nutritional Status in Older Adults: A Cross-Sectional Study in China. J. Clin. Periodontol. 2023, 50, 242–251. [Google Scholar] [CrossRef]
- Komagamine, Y.; Kanazawa, M.; Iwaki, M.; Jo, A.; Suzuki, H.; Amagai, N.; Minakuchi, S. Combined Effect of New Complete Dentures and Simple Dietary Advice on Nutritional Status in Edentulous Patients: Study Protocol for a Randomized Controlled Trial. Trials 2016, 17, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, A.; Watanabe, R.; Nishimuta, M.; Hanada, N.; Miyazaki, H. The Relationship between Dietary Intake and the Number of Teeth in Elderly Japanese Subjects. Gerodontology 2005, 22, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Gao, X.; Na, M.; Kris-Etherton, P.M.; Mitchell, D.C.; Jensen, G.L. Dietary Pattern, Diet Quality, and Dementia: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Alzheimer’s Dis. 2020, 78, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, A.; Fondell, E.; Ascherio, A.; Yuan, C.; Grodstein, F.; Willett, W. Adherence to Mediterranean Diet and Subjective Cognitive Function in Men. Eur. J. Epidemiol. 2018, 33, 223–234. [Google Scholar] [CrossRef]
- Badaeva, A.V.; Danilov, A.B.; Clayton, P.; Moskalev, A.A.; Karasev, A.V.; Tarasevich, A.F.; Vorobyeva, Y.D.; Novikov, V.N. Perspectives on Neuronutrition in Prevention and Treatment of Neurological Disorders. Nutrients 2023, 15, 2505. [Google Scholar] [CrossRef]
- Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S.; et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022, 14, e30091. [Google Scholar] [CrossRef]
- Morales-Suárez-Varela, M.; Amezcua-Prieto, C.; Llopis-Gonzalez, A.; Ayan Perez, C.; Mateos-Campos, R.; Hernández-Segura, N.; Ortiz-Moncada, R.; Almaraz, A.; Alguacil, J.; Delgado Rodríguez, M.; et al. Prevalence of Depression and Fish Consumption among First Year Spanish University Students: UniHcos Project. Nutrients 2023, 15, 2757. [Google Scholar] [CrossRef]
- Baelum, V.; Luan, W.-M.; Chen, X.; Fejerskov, O. Predictors of Tooth Loss over 10 Years in Adult and Elderly Chinese. Community Dent. Oral Epidemiol. 1997, 25, 204–210. [Google Scholar] [CrossRef]
- Savoca, M.R.; Arcury, T.A.; Leng, X.; Chen, H.; Bell, R.A.; Anderson, A.M.; Kohrman, T.; Frazier, R.J.; Gilbert, G.H.; Quandt, S.A. Severe Tooth Loss in Older Adults as a Key Indicator of Compromised Dietary Quality. Public Health Nutr. 2010, 13, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Dioguardi, M.; Di Gioia, G.; Caloro, G.A.; Capocasale, G.; Zhurakivska, K.; Troiano, G.; Lo Russo, L.; Lo Muzio, L. The Association between Tooth Loss and Alzheimer’s Disease: A Systematic Review with Meta-Analysis of Case Control Studies. Dent. J. 2019, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, Y. Time-Varying Exposure Analysis of the Relationship between Sustained Natural Dentition and Cognitive Decline. J. Clin. Periodontol. 2023, 50, 727–735. [Google Scholar] [CrossRef]
- Khalaf, K.; Brook, A.H.; Smith, R.N. Genetic, Epigenetic and Environmental Factors Influence the Phenotype of Tooth Number, Size and Shape: Anterior Maxillary Supernumeraries and the Morphology of Mandibular Incisors. Genes 2022, 13, 2232. [Google Scholar] [CrossRef]
- Aimone, J.B.; Li, Y.; Lee, S.W.; Clemenson, G.D.; Deng, W.; Gage, F.H. Regulation and Function of Adult Neurogenesis: From Genes to Cognition. Physiol. Rev. 2014, 94, 991–1026. [Google Scholar] [CrossRef] [Green Version]
- Hirano, H.; Ezura, Y.; Ishiyama, N.; Yamaguchi, M.; Nasu, I.; Yoshida, H.; Suzuki, T.; Hosoi, T.; Emi, M. Association of Natural Tooth Loss with Genetic Variation at the Human Matrix Gla Protein Locus in Elderly Women. J. Hum. Genet. 2003, 48, 288–292. [Google Scholar] [CrossRef]
- Kozioł-Kozakowska, A.; Maresz, K. The Impact of Vitamin K2 (Menaquionones) in Children’s Health and Diseases: A Review of the Literature. Children 2022, 9, 78. [Google Scholar] [CrossRef]
- Shea, M.K.; Wang, J.; Barger, K.; Weiner, D.E.; Booth, S.L.; Seliger, S.L.; Anderson, A.H.; Deo, R.; Feldman, H.I.; Go, A.S.; et al. Vitamin K Status and Cognitive Function in Adults with Chronic Kidney Disease: The Chronic Renal Insufficiency Cohort. Curr. Dev. Nutr. 2022, 6, nzac111. [Google Scholar] [CrossRef]
- Tan, J.; Peng, Q.; Li, J.; Guan, Y.; Zhang, L.; Jiao, Y.; Yang, Y.; Wang, S.; Jin, L. Characteristics of Dental Morphology in the Xinjiang Uyghurs and Correlation with the EDARV370A Variant. Sci. China Life Sci. 2014, 57, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Wang, J.; Xiao, S.; Jin, X.; Xiong, M.; Peng, J.; Xu, T. Inadequate Nutrition and Associated Factors in Children Aged 6 to 24 Months—4 Counties, Liangshan Yi Autonomous Prefecture, China, 2018. China CDC Wkly. 2020, 2, 873–877. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, C.; Xu, Y.; Sun, G.; Li, X.; Piao, J.; Yang, X. The dietary patterns and nutritional status of adult Yi people in Liangshan autonomous region. Wei Sheng Yan Jiu 2003, 32, 246–248. [Google Scholar]
Characters | All n = 6634 | Normal n = 5614 | Mild Cognitive Impairment n = 733 | Moderate to Severe Cognitive Impairment n = 287 | p Value |
---|---|---|---|---|---|
Age, mean (SD) abc | 62.39 (8.26) | 61.95 (8.05) | 64.13 (8.75) | 66.47 (9.37) | <0.001 |
Age group, n (%) abc | <0.001 | ||||
50–59 | 2633 (39.7%) | 2306 (87.6%) | 254 (9.6%) | 73 (2.8%) | |
60–69 | 2643 (39.8%) | 2279 (86.2%) | 266 (10.1%) | 98 (3.7%) | |
70–79 | 1174 (17.7%) | 906 (77.2%) | 176 (15%) | 92 (7.8%) | |
80+ | 184 (2.8%) | 123 (66.8%) | 37 (20.1%) | 24 (13%) | |
Sex, n (%) abc | <0.001 | ||||
Male | 2487 (37.5%) | 2261 (90.9%) | 178 (7.2%) | 48 (1.9%) | |
Female | 4147 (62.5%) | 3353 (80.9%) | 555 (13.4%) | 239 (5.8%) | |
Ethnic group, n (%) abc | <0.001 | ||||
Han | 2394 (36.1%) | 2168 (90.6%) | 175 (7.3%) | 51 (2.1%) | |
Tibetan | 1276 (19.2%) | 1035 (81.1%) | 171 (13.4%) | 70 (5.5%) | |
Qiang | 1272 (19.2%) | 1077 (84.7%) | 154 (12.1%) | 41 (3.2%) | |
Yi | 607 (9.1%) | 433 (71.3%) | 103 (17%) | 71 (11.7%) | |
Uyghur | 563 (8.5%) | 483 (85.8%) | 68 (12.1%) | 12 (2.1%) | |
Other | 522 (7.9%) | 418 (80.1%) | 62 (11.9%) | 42 (8%) | |
Educational level, n (%) abc | <0.001 | ||||
No formal education | 1842 (27.8%) | 1266 (68.7%) | 375 (20.4%) | 201 (10.9%) | |
Elementary school | 2237 (33.7%) | 1990 (89%) | 194 (8.7%) | 53 (2.4%) | |
Middle school | 1438 (21.7%) | 1349 (93.8%) | 74 (5.1%) | 15 (1%) | |
High school and above | 1117 (16.8%) | 1009 (90.3%) | 90 (8.1%) | 18 (1.6%) | |
Occupation, n (%) abc | <0.001 | ||||
Farmer | 4321 (65.1%) | 3493 (80.8%) | 576 (13.3%) | 252 (5.8%) | |
Worker | 531 (8%) | 504 (94.9%) | 23 (4.3%) | 4 (0.8%) | |
White-collar | 696 (10.5%) | 632 (90.8%) | 54 (7.8%) | 10 (1.4%) | |
Others | 1086 (16.4%) | 985 (90.7%) | 80 (7.4%) | 21 (1.9%) | |
Spouse status, n (%) abc | <0.001 | ||||
Without spouse | 1098 (16.6%) | 846 (77%) | 158 (14.4%) | 94 (8.6%) | |
With Spouse | 5536 (83.4%) | 4768 (86.1%) | 575 (10.4%) | 193 (3.5%) | |
Longevity of families, n (%) ab | <0.001 | ||||
No | 5545 (83.6%) | 4630 (83.5%) | 650 (11.7%) | 265 (4.8%) | |
Yes | 1089 (16.4%) | 984 (90.4%) | 83 (7.6%) | 22 (2%) | |
Number of residual teeth, mean (SD) abc | 21.20 (9.52) | 21.83 (9.19) | 18.37 (10.19) | 16.03 (10.98) | <0.001 |
Number of residual teeth, n (%) abc | <0.001 | ||||
0–8 | 993 (15%) | 742 (74.7%) | 165 (16.6%) | 86 (8.7%) | |
9–16 | 724 (10.9%) | 560 (77.3%) | 109 (15.1%) | 55 (7.6%) | |
17–24 | 1512 (22.8%) | 1279 (84.6%) | 182 (12%) | 51 (3.4%) | |
25–32 | 3405 (51.3%) | 3033 (89.1%) | 277 (8.1%) | 95 (2.8%) | |
Denture usage, n (%) a | 0.027 | ||||
No | 4112 (62%) | 3517 (85.5%) | 423 (10.3%) | 172 (4.2%) | |
Yes | 2522 (38%) | 2097 (83.1%) | 310 (12.3%) | 115 (4.6%) | |
MNA-SF score, mean (SD) abc | 12.58 (1.58) | 12.86 (1.37) | 11.48 (1.6) | 10.03 (1.81) | <0.001 |
MNA-SF assessment status, n (%) abc | <0.001 | ||||
Normal | 5185 (78.2%) | 4697 (90.6%) | 408 (7.9%) | 80 (1.5%) | |
Nutrition risk | 1393 (21%) | 907 (65.1%) | 310 (22.3%) | 176 (12.6%) | |
Malnutrition | 56 (0.8%) | 10 (17.9%) | 15 (26.8%) | 31 (55.4%) | |
Type of drinking water, n (%) b | 0.004 | ||||
Tap water | 5318 (80.2%) | 4530 (85.2%) | 574 (10.8%) | 214 (4%) | |
Well water | 410 (6.2%) | 348 (84.9%) | 48 (11.7%) | 14 (3.4%) | |
Spring water | 716 (10.8%) | 574 (80.2%) | 91 (12.7%) | 51 (7.1%) | |
Others | 190 (2.9%) | 162 (85.3%) | 20 (10.5%) | 8 (4.2%) | |
History of smoking, n (%) ab | <0.001 | ||||
No | 5353 (80.7%) | 4464 (83.4%) | 635 (11.9%) | 254 (4.7%) | |
Yes | 1281 (19.3%) | 1150 (89.8%) | 98 (7.7%) | 33 (2.6%) | |
History of alcohol use, n (%) ab | <0.001 | ||||
No | 4911 (74%) | 4091 (83.3%) | 582 (11.9%) | 238 (4.8%) | |
Yes | 1723 (26%) | 1523 (88.4%) | 151 (8.8%) | 49 (2.8%) | |
History of drinking tea, n (%) ab | <0.001 | ||||
No | 3687 (55.6%) | 3019 (81.9%) | 467 (12.7%) | 201 (5.5%) | |
Yes | 2947 (44.4%) | 2595 (88.1%) | 266 (9%) | 86 (2.9%) |
Outcome Variable | Model 1: Cognitive Score | Model 2: Cognitive Score | Model 3: MNA-SF Score | ||||
---|---|---|---|---|---|---|---|
β | 95% CI 1 | β | 95% CI | β | 95% CI | ||
MNA-SF Score | -- | -- | −0.309 | −0.330 to −0.289 | -- | -- | |
Number of Residual Teeth | −0.150 | −0.190 to −0.111 | −0.089 | −0.126 to −0.052 | 0.197 | 0.153 to 0.241 | |
Age group | 50–59 | Ref 2 | Ref | Ref | |||
60–69 | 0.007 | −0.070 to 0.085 | 0.021 | −0.052 to 0.094 | 0.043 | −0.043 to 0.130 | |
70–79 | 0.338 | 0.233 to 0.444 | 0.256 | 0.156 to 0.355 | −0.268 | −0.386 to −0.15 | |
80+ | 0.598 | 0.381 to 0.815 | 0.456 | 0.252 to 0.66 | −0.461 | −0.704 to −0.219 | |
Sex | Male | Ref 2 | Ref | Ref | |||
Female | 0.414 | 0.324 to 0.504 | 0.378 | 0.293 to 0.462 | −0.116 | −0.217 to −0.016 | |
Ethnic group | Han | Ref | Ref | Ref | |||
Tibetan | 0.432 | 0.332 to 0.532 | 0.382 | 0.288 to 0.476 | −0.163 | −0.275 to −0.051 | |
Qiang | 0.157 | 0.060 to 0.254 | 0.145 | 0.054 to 0.235 | −0.039 | −0.148 to 0.069 | |
Yi | 0.809 | 0.683 to 0.935 | 0.610 | 0.491 to 0.729 | −0.643 | −0.784 to −0.503 | |
Uyghur | 0.335 | 0.199 to 0.472 | 0.222 | 0.094 to 0.35 | −0.366 | −0.518 to −0.213 | |
Others | 0.431 | 0.301 to 0.561 | 0.258 | 0.135 to 0.381 | −0.560 | −0.706 to −0.415 | |
Educational level | No formal education | Ref | Ref | Ref | |||
Elementary school | −0.844 | −0.930 to −0.757 | −0.714 | −0.795 to −0.632 | 0.421 | 0.325 to 0.517 | |
Middle school | −0.754 | −0.857 to −0.650 | −0.612 | −0.709 to −0.514 | 0.458 | 0.343 to 0.574 | |
High school and above | 0.129 | −0.005 to 0.263 | 0.226 | 0.100 to 0.351 | 0.312 | 0.163 to 0.462 | |
Occupation | Farmer | Ref | Ref | Ref | |||
Worker | −0.233 | −0.362 to −0.105 | −0.222 | −0.342 to −0.102 | 0.037 | −0.106 to 0.180 | |
White-collar | −0.271 | −0.413 to −0.130 | −0.197 | −0.330 to −0.065 | 0.240 | 0.082 to 0.398 | |
Others | −0.196 | −0.295 to −0.098 | −0.152 | −0.244 to −0.059 | 0.143 | 0.033 to 0.253 | |
Spouse status | Without spouse | Ref | Ref | Ref | |||
With spouse | −0.053 | −0.146 to 0.040 | −0.024 | −0.111 to 0.063 | 0.095 | −0.009 to 0.198 | |
Longevity of family | No | Ref | Ref | Ref | |||
Yes | −0.162 | −0.251 to −0.073 | −0.147 | −0.231 to −0.063 | 0.048 | −0.052 to 0.147 | |
Denture usage | No | Ref | Ref | Ref | |||
Yes | −0.200 | −0.282 to −0.118 | −0.152 | −0.228 to −0.075 | −0.2 | −0.282 to −0.118 | |
Type of drinking water | Tap water | Ref | Ref | Ref | |||
Well water | −0.008 | −0.146 to 0.13 | 0.002 | −0.128 to 0.131 | 0.031 | −0.123 to 0.186 | |
Spring water | 0.153 | 0.044 to 0.262 | 0.118 | 0.016 to 0.220 | −0.113 | −0.235 to 0.009 | |
Others | −0.062 | −0.260 to 0.136 | −0.019 | −0.205 to 0.167 | 0.138 | −0.083 to 0.359 | |
History of smoking | No | Ref | Ref | Ref | |||
Yes | 0.071 | −0.034 to 0.175 | −0.001 | −0.099 to 0.098 | −0.230 | −0.347 to −0.113 | |
History of alcohol use | No | Ref | Ref | Ref | |||
Yes | 0.014 | −0.073 to 0.100 | 0.030 | −0.051 to 0.111 | 0.054 | −0.043 to 0.150 | |
History of drinking tea | No | Ref | Ref | Ref | |||
Yes | −0.114 | −0.187 to −0.042 | −0.056 | −0.124 to 0.012 | 0.189 | 0.109 to 0.270 | |
Intercept | 1.679 | 1.459 to 1.899 | 5.306 | 4.991 to 5.621 | 11.722 | 11.476 to 11.967 | |
Observations | 6634 | 6634 | 6634 | ||||
R2 | 0.183 | 0.280 | 0.096 | ||||
Adjusted R2 | 0.180 | 0.278 | 0.092 | ||||
Residual standard error | 1.349 | 1.266 | 1.51 | ||||
F Statistic ([df 3]; p value) | 59.12 ([25, 6608]; <0.001) | 98.98 ([26, 6607]; <0.001) | 27.91 ([25, 6608]; <0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xia, X.; Wu, W.; Tian, X.; Hu, Y.; Dong, B.; Wang, Y. The Mediating Effects of Nutritional Status on the Relationship between Number of Residual Teeth and Cognitive Function among Older Adults: A Cross-Sectional Multicenter Study. Nutrients 2023, 15, 3089. https://doi.org/10.3390/nu15143089
Li Y, Xia X, Wu W, Tian X, Hu Y, Dong B, Wang Y. The Mediating Effects of Nutritional Status on the Relationship between Number of Residual Teeth and Cognitive Function among Older Adults: A Cross-Sectional Multicenter Study. Nutrients. 2023; 15(14):3089. https://doi.org/10.3390/nu15143089
Chicago/Turabian StyleLi, Yun, Xin Xia, Wenwen Wu, Xin Tian, Yuexia Hu, Birong Dong, and Yanyan Wang. 2023. "The Mediating Effects of Nutritional Status on the Relationship between Number of Residual Teeth and Cognitive Function among Older Adults: A Cross-Sectional Multicenter Study" Nutrients 15, no. 14: 3089. https://doi.org/10.3390/nu15143089
APA StyleLi, Y., Xia, X., Wu, W., Tian, X., Hu, Y., Dong, B., & Wang, Y. (2023). The Mediating Effects of Nutritional Status on the Relationship between Number of Residual Teeth and Cognitive Function among Older Adults: A Cross-Sectional Multicenter Study. Nutrients, 15(14), 3089. https://doi.org/10.3390/nu15143089