The Role of Vitamin D in Cardiovascular Diseases
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Measures
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Relationship between Vitamin D and CVD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 19 January 2022).
- Centers for Disease Control and Prevention. About Multiple Cause of Death, 1999–2020. Available online: https://wonder.cdc.gov/mcd-icd10.html (accessed on 16 May 2023).
- Centers for Disease Control and Prevention. Heart Disease Facts. Available online: https://www.cdc.gov/heartdisease/facts.htm (accessed on 16 May 2023).
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.E.; Muntner, P.; Woodward, M. Sex Differences in the Prevalence of, and Trends in, Cardiovascular Risk Factors, Treatment, and Control in the United States, 2001 to 2016. Circulation 2019, 139, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Post, W.S.; Watson, K.E.; Hansen, S.; Folsom, A.R.; Szklo, M.; Shea, S.; Barr, R.G.; Burke, G.; Bertoni, A.G.; Allen, N.; et al. Racial and Ethnic Differences in All-Cause and Cardiovascular Disease Mortality: The MESA Study. Circulation 2022, 146, 229–239. [Google Scholar] [CrossRef]
- Mannoh, I.; Hussien, M.; Commodore-Mensah, Y.; Michos, E.D. Impact of social determinants of health on cardiovascular disease prevention. Curr. Opin. Cardiol. 2021, 36, 572–579. [Google Scholar] [CrossRef]
- Jagannathan, R.; Patel, S.A.; Ali, M.K.; Narayan, K.M.V. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr. Diabetes Rep. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Pallazola, V.A.; Davis, D.M.; Whelton, S.P.; Cardoso, R.; Latina, J.M.; Michos, E.D.; Sarkar, S.; Blumenthal, R.S.; Arnett, D.K.; Stone, N.J.; et al. A Clinician’s Guide to Healthy Eating for Cardiovascular Disease Prevention. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 251–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharadkumar, P.S. A Systematic Review: Do We Really Need Multivitamin and Mineral Supplements to Stay Healthy? Am. J. Public Health 2022, 10, 163–168. [Google Scholar]
- Yeung, L.-K.; Alschuler, D.M.; Wall, M.; Luttmann-Gibson, H.; Copeland, T.; Hale, C.; Sloan, R.P.; Sesso, H.D.; Manson, J.E.; Brickman, A.M. Multivitamin Supplementation Improves Memory in Older Adults: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2023, 118, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, Q.; Park, Y.; Hollenbeck, A.; Schatzkin, A.; Chen, H. Multivitamins, Individual Vitamin and Mineral Supplements, and Risk of Diabetes Among Older U.S. Adults. Diabetes Care 2010, 34, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, B.; Zhong, C.; Zhang, R.; Wang, M.; Zhang, Y.; Han, L. Multivitamin/mineral supplementation and the risk of cardiovascular disease: A large prospective study using UK Biobank data. Eur. J. Nutr. 2022, 61, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-E.; Weinstein, S.J.; Liao, L.M.; Sinha, R.; Huang, J.; Albanes, D. Multivitamin Use and Overall and Site-Specific Cancer Risks in the National Institutes of Health–AARP Diet and Health Study. J. Nutr. 2022, 152, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gaziano, J.M.; Sesso, H.D.; Christen, W.G.; Bubes, V.; Smith, J.P.; MacFadyen, J.; Schvartz, M.; Manson, J.E.; Glynn, R.J.; Buring, J.E. Faculty Opinions recommendation of Multivitamins in the prevention of cancer in men: The Physicians’ Health Study II randomized controlled trial. JAMA 2012, 308, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Fantacone, M.L.; Lowry, M.B.; Uesugi, S.L.; Michels, A.J.; Choi, J.; Leonard, S.W.; Gombart, S.K.; Gombart, J.S.; Bobe, G.; Gombart, A.F. The Effect of a Multivitamin and Mineral Supplement on Immune Function in Healthy Older Adults: A Double-Blind, Randomized, Controlled Trial. Nutrients 2020, 12, 2447. [Google Scholar] [CrossRef]
- Dudi, A.K. Mental Health Therapy: Multivitamins. Int. J. Psychiatry Res. 2023, 6, 1–6. [Google Scholar] [CrossRef]
- Zittermann, A. Vitamin D and disease prevention with special reference to cardiovascular disease. Prog. Biophys. Mol. Biol. 2006, 92, 39–48. [Google Scholar] [CrossRef]
- Heaney, R.P. Vitamin D in Health and Disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.M.; Gaboury, I.; Ladhani, M.; Zlotkin, S. Vitamin D-deficiency rickets among children in Canada. Can. Med. Assoc. J. 2007, 177, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Creo, A.L.; Thacher, T.D.; Pettifor, J.M.; Strand, M.A.; Fischer, P.R. Nutritional rickets around the world: An update. Paediatr. Int. Child Health 2017, 37, 84–98. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Nutritional Rickets and Osteomalacia in the Twenty-first Century: Revised Concepts, Public Health, and Prevention Strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-W.; Lee, H.-C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.-M.; Giovannucci, E.L.; Willett, W.; Buring, J.E.; et al. Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025850. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. Mayo Clin. Proc. 2013, 88, 720–755. [Google Scholar] [CrossRef] [PubMed]
- Schlotz, W.; Schulz, P.; Hellhammer, J.; Stone, A.A.; Hellhammer, D.H. Trait anxiety moderates the impact of performance pressure on salivary cortisol in everyday life. Psychoneuroendocrinology 2006, 31, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Dalia, T.; Ranka, S.; Sethi, P.; Oni, O.A.; Safarova, M.S.; Parashara, D.; Gupta, K.; Barua, R.S. The Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Myocardial Infarction and Mortality. J. Endocr. Soc. 2021, 5, bvab124. [Google Scholar] [CrossRef]
- Acharya, P.; Safarova, M.S.; Dalia, T.; Bharati, R.; Ranka, S.; Vindhyal, M.; Jiwani, S.; Barua, R.S. Effects of Vitamin D Supplementation and 25-Hydroxyvitamin D Levels on the Risk of Atrial Fibrillation. Am. J. Cardiol. 2022, 173, 56–63. [Google Scholar] [CrossRef]
- Alagacone, S.; Verga, E.; Verdolini, R.; Saifullah, S.M. The association between vitamin D deficiency and the risk of resistant hypertension. Clin. Exp. Hypertens. 2020, 42, 177–180. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Rainsbury, J.; Kimball, S.M. Vitamin D supplementation, serum 25 (OH) D concentrations and cardiovascular disease risk factors: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Mirhosseini, N.; Vatanparast, H.; Kimball, S.M. The Association between Serum 25(OH)D Status and Blood Pressure in Participants of a Community-Based Program Taking Vitamin D Supplements. Nutrients 2017, 9, 1244. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, S.; Sanika, G.H.A.; Zhao, J.; Zhang, H.; Zhao, L.; Wang, W. Association between Serum 25-Hydroxyvitamin D Level and Stroke Risk: An Analysis Based on the National Health and Nutrition Examination Survey. Behav. Neurol. 2021, 2021, 5457881. [Google Scholar] [CrossRef]
- Pittas, A.G.; Chung, M.; Trikalinos, T.; Mitri, J.; Brendel, M.; Patel, K.; Lichtenstein, A.H.; Lau, J.; Balk, E.M. Systematic Review: Vitamin D and Cardiometabolic Outcomes. Ann. Intern. Med. 2010, 152, 307–314. [Google Scholar] [CrossRef]
- Hsia, J.; Heiss, G.; Ren, H.; Allison, M.; Dolan, N.C.; Greenland, P.; Heckbert, S.R.; Johnson, K.C.; Manson, J.E.; Sidney, S.; et al. Calcium/Vitamin D Supplementation and Cardiovascular Events. Circulation 2007, 115, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.-T.; Camargo, C.A. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Lucas, R.M.; Byrne, S.N.; Hollestein, L.; Rhodes, L.E.; Yazar, S.; Young, A.R.; Berwick, M.; Ireland, R.A.; Olsen, C.M. The effects of exposure to solar radiation on human health. Photochem. Photobiol. Sci. 2023, 22, 1011–1047. [Google Scholar] [CrossRef]
- Scragg, R.; Rahman, J.; Thornley, S. Association of sun and UV exposure with blood pressure and cardiovascular disease: A systematic review. J. Steroid Biochem. Mol. Biol. 2019, 187, 68–75. [Google Scholar] [CrossRef]
- Holick, M.F. Environmental factors that influence the cutaneous production of vitamin D. Am. J. Clin. Nutr. 1995, 61, 638S–645S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terushkin, V.; Bender, A.; Psaty, E.L.; Engelsen, O.; Wang, S.Q.; Halpern, A.C. Estimated equivalency of vitamin D production from natural sun exposure versus oral vitamin D supplementation across seasons at two US latitudes. J. Am. Acad. Dermatol. 2010, 62, 929.e1–929.e9. [Google Scholar] [CrossRef]
- Kantor, E.D.; Rehm, C.D.; Du, M.; White, E.; Giovannucci, E.L. Trends in Dietary Supplement Use among US Adults From 1999-2012. JAMA 2016, 316, 1464–1474. [Google Scholar] [CrossRef]
- Rooney, M.R.; Harnack, L.; Michos, E.D.; Ogilvie, R.P.; Sempos, C.T.; Lutsey, P.L. Trends in Use of High-Dose Vitamin D Supplements Exceeding 1000 or 4000 International Units Daily, 1999–2014. JAMA 2017, 317, 2448–2450. [Google Scholar] [CrossRef] [Green Version]
- Dror, Y.; Giveon, S.M.; Hoshen, M.; Feldhamer, I.; Balicer, R.D.; Feldman, B.S. Vitamin D Levels for Preventing Acute Coronary Syndrome and Mortality: Evidence of a Nonlinear Association. J. Clin. Endocrinol. Metab. 2013, 98, 2160–2167. [Google Scholar] [CrossRef] [Green Version]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Tjønneland, A.; Olsen, A.; Halkjær, J.; Lind, B.; Heegaard, A.M.; Schwarz, P. A Reverse J-Shaped Association Between Serum 25-Hydroxyvitamin D and Cardiovascular Disease Mortality: The CopD Study. J. Clin. Endocrinol. Metab. 2015, 100, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, B.; Gao, X.; Tian, R.; Pan, Y.; Jiang, Y.; Gu, H.; Wang, Y.; Wang, Y.; Liu, G. Serum 25-hydroxyvitamin D and the risk of cardiovascular disease: Dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 810–819. [Google Scholar] [CrossRef] [Green Version]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Schwarz, P.; Heegaard, A.M.; Lind, B. A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: The CopD study. J. Clin. Endocrinol. Metab. 2012, 97, 2644–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaëlsson, K.; Baron, J.A.; Snellman, G.; Gedeborg, R.; Byberg, L.; Sundström, J.; Berglund, L.; Ärnlöv, J.; Hellman, P.; Blomhoff, R.; et al. Plasma vitamin D and mortality in older men: A community-based prospective cohort study. Am. J. Clin. Nutr. 2010, 92, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Zittermann, A.; Kuhn, J.; Dreier, J.; Knabbe, C.; Gummert, J.F.; Börgermann, J. Vitamin D status and the risk of major adverse cardiac and cerebrovascular events in cardiac surgery. Eur. Heart J. 2013, 34, 1358–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine of the National Academies; Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. DRI Dietary Reference Intakes Calcium Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011; Available online: https://nap.nationalacademies.org/read/13050/chapter/1 (accessed on 10 June 2023).
- Fain, J.A. NHANES: Use of a Free Public Data Set; SAGE Publications: Los Angeles, CA, USA, 2017; p. 151. [Google Scholar]
- Laboratory Procedure Manual: 25-Hydroxyvitamin D3, C3-epimer-25Hydroxyvitamin D3, and 25-Hydroxyvitamin D2 June 2020. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/VID-I-MET-508.pdf (accessed on 25 July 2023).
- Wang, T.-Y.; Wang, H.-W.; Jiang, M.-Y. Prevalence of vitamin D deficiency and associated risk of all-cause and cause-specific mortality among middle-aged and older adults in the United States. Front. Nutr. 2023, 10, 1163737. [Google Scholar] [CrossRef] [PubMed]
- Forrest, K.Y.; Stuhldreher, W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011, 31, 48–54. [Google Scholar] [CrossRef]
- Wolf, S.T.; Kenney, W.L. Skin pigmentation and vitamin D–folate interactions in vascular function: An update. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 528–535. [Google Scholar] [CrossRef]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappé, D.L.; Muhlestein, J.B.; Intermountain Heart Collaborative (IHC) Study Group. Relation of Vitamin D Deficiency to Cardiovascular Risk Factors, Disease Status, and Incident Events in a General Healthcare Population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef]
- Zhou, A.; Selvanayagam, J.B.; Hyppönen, E. Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur. Heart J. 2022, 43, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (Interquartile Range) | n (%) |
---|---|---|
Age (year) | 50.3 (29.0) | |
Gender | ||
Male | 4704 (47.9) | |
Female | 5121 (52.1) | |
Race/Ethnicity | ||
Hispanic | 2672 (27.2) | |
Non-Hispanic White | 3341 (34.0) | |
Non-Hispanic Black | 2112 (21.5) | |
Other Race | 1700 (17.3) | |
Body Mass Index | 29.7 (8.8) | |
Blood Pressure | ||
No | 6194 (63.0) | |
Yes | 3631 (37.0) | |
Diabetes | ||
No | 8075 (82.2) | |
Yes | 1750 (17.8) | |
Cholesterol | ||
No | 6369 (64.8) | |
Yes | 3456 (35.2) | |
C-reactive Protein | ||
<0.2 | 4937 (50.2) | |
≥0.2 | 4888 (49.8) | |
Vitamin D | ||
Deficiency | 770 (7.8) | |
Insufficiency | 2252 (22.9) | |
Normal | 6370 (64.8) | |
Adequacy | 433 (4.4) | |
Cardiovascular Disease | ||
No | 8797 (89.5) | |
Yes | 1028 (10.5) |
Variable | Non-CVD Group (n = 8797) | CVD Group (n = 1028) | Statistic | p-Value |
---|---|---|---|---|
Age (year), mean (interquartile range) | 48.4 (29.0) | 66.4 (17.0) | −42.8 | <0.001 |
Gender, n (%) | ||||
Male | 4108 (46.7) | 596 (58.0) | −0.1 | <0.001 |
Female | 4689 (53.3) | 432 (42.0) | ||
Race/ethnicity, n (%) | ||||
Hispanic | 2475 (28.1) | 197 (19.2) | 0.1 | <0.001 |
Non-Hispanic White | 2869 (32.6) | 472 (45.9) | ||
Non-Hispanic Black | 1865 (21.2) | 247 (24.0) | ||
Other | 1588 (18.1) | 112 (10.9) | ||
Body Mass Index (kg/m2) mean (interquartile range) | 29.6 (8.7) | 30.9 (8.8) | −5.3 | <0.001 |
Blood pressure, n (%) | ||||
No | 5930 (67.4) | 264 (25.7) | 0.3 | <0.001 |
Yes | 2867 (32.6) | 764 (74.3) | ||
Diabetes, n (%) | ||||
No | 7465 (84.9) | 610 (59.3) | 0.2 | <0.001 |
Yes | 1332 (15.1) | 418 (40.7) | ||
Cholesterol, n (%) | ||||
No | 5995 (68.1) | 374 (36.4) | 0.2 | <0.001 |
Yes | 2802 (31.9) | 654 (63.6) | ||
C-reactive protein, n (%) | ||||
<0.2 | 4514 (51.3) | 423 (41.1) | 0.1 | <0.001 |
≥0.2 | 4283 (48.7) | 605 (58.9) | ||
Vitamin D, n (%) | ||||
Deficiency | 701 (8.0) | 69 (6.7) | 0.1 | <0.001 |
Insufficiency | 2062 (23.4) | 190 (18.5) | ||
Normal | 5670 (64.5) | 700 (68.1) | ||
Adequacy | 364 (4.1) | 69 (6.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.; Birmingham, W.C.; Ocampo, M.; Mohajeri, A. The Role of Vitamin D in Cardiovascular Diseases. Nutrients 2023, 15, 3547. https://doi.org/10.3390/nu15163547
Hung M, Birmingham WC, Ocampo M, Mohajeri A. The Role of Vitamin D in Cardiovascular Diseases. Nutrients. 2023; 15(16):3547. https://doi.org/10.3390/nu15163547
Chicago/Turabian StyleHung, Man, Wendy C. Birmingham, Monica Ocampo, and Amir Mohajeri. 2023. "The Role of Vitamin D in Cardiovascular Diseases" Nutrients 15, no. 16: 3547. https://doi.org/10.3390/nu15163547
APA StyleHung, M., Birmingham, W. C., Ocampo, M., & Mohajeri, A. (2023). The Role of Vitamin D in Cardiovascular Diseases. Nutrients, 15(16), 3547. https://doi.org/10.3390/nu15163547