Snd 1utrients

Article

Hericium coralloides Ameliorates Alzheimer’s Disease
Pathologies and Cognitive Disorders by Activating Nrf2
Signaling and Regulating Gut Microbiota

Yue Guan !, Dongyu Shi 2, Shimiao Wang !, Yueying Sun 2, Wanyu Song 2, Shuyan Liu 1** and Chunyue Wang *

check for
updates

Citation: Guan, Y.; Shi, D.; Wang, S.;
Sun, Y.; Song, W.; Liu, S.; Wang, C.
Hericium coralloides Ameliorates
Alzheimer’s Disease Pathologies and
Cognitive Disorders by Activating
Nrf2 Signaling and Regulating Gut
Microbiota. Nutrients 2023, 15, 3799.
https://doi.org/10.3390/
nul5173799

Academic Editor: Rita Businaro

Received: 29 July 2023
Revised: 26 August 2023
Accepted: 27 August 2023
Published: 30 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of
Plant Protection, Jilin Agricultural University, Changchun 130118, China; guanyue@miailsjlau.edu.cn (Y.G.);
wangshimiao@mails jlau.edu.cn (S.W.)

College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
2106100121@mails.jlau.edu.cn (D.S.); sunyueying0727@163.com (Y.S.); wanyusongyj@163.com (W.S.)
Correspondence: liussyan@163.com (S.L.); wangchunyue@jlau.edu.cn (C.W.)

Abstract: Alzheimer’s disease (AD) is prone to onset and progression under oxidative stress con-
ditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and
possesses antioxidant properties. In the present study, the nutritional composition and neuropro-
tective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC
improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting
results showed that HC reduced the levels of p-tau and amyloid-f deposition in the brain. By altering
the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing
bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased
D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxy-
gen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase,
inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor
erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant
activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective
effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent
and offers a theoretical justification for both the development and use of this fungus.

Keywords: Alzheimer’s disease; Hericium coralloides; oxidative stress; gut microbiota; nuclear factor
erythroid 2-related factor 2

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive
dysfunction, which usually presents with memory loss [1]. The World Alzheimer Report
2021 estimates the global prevalence to be approximately 50 million people, with the
number of people affected rising to 139 million by 2050 [2]. The primary pathological
characteristics of AD include extracellular senile plaques with amyloid-3 (Af) peptide
aggregation and intracellular neurofibrillary tangles with excessive hyperphosphorylation
of tau protein [3,4]. In recent years, hypotheses about Alzheimer’s disease mainly include
the AP cascade hypothesis, tau protein hypothesis, cholinergic injury hypothesis, metal ion
disorder hypothesis, oxidative stress hypothesis, and neuroinflammation theory, but there
is no theory that can reasonably and comprehensively explain its pathogenesis [5-7].

Although the pathogenesis of Alzheimer’s disease remains unclear, there is increas-
ing evidence that gut microbes, through their own metabolites or exogenous substances
(prebiotics, natural products, etc.), regulate their composition in the gut, thereby playing a
neuroprotective role by alleviating oxidative stress [8]. In an AD mouse model induced by
A4 injection into the hippocampus, probiotics (Lactobacillus acidophilus, Bifidobacterium
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lactobacillus, etc.) reduced oxidative stress and improved their cognitive impairment by
reducing malondialdehyde (MDA) content [9]. Probiotics (B. animalis) significantly increase
the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-Px) in the plasma and liver of D-galactose-induced oxidative stress model rats and
significantly decrease MDA levels [10]. Short-chain fatty acids (SCFAs) are major metabo-
lites of the gut microbiota that play a defensive role in central nervous system diseases by
regulating oxidative stress and blood-brain barrier integrity [11]. Supplementation with
SCFAs decreased MDA levels and oxidative damage and alleviated cognitive impairment
and A accumulation in the brains of AD mice [12]. A key regulator of oxidative stress is
nuclear factor erythroid 2-related factor 2 (Nrf2). The pathway linked to Nrf2 is considered
a critical antioxidant signaling pathway [13]. Nrf2 eventually binds to antioxidant response
elements, triggering phase Il gene expression—heme oxygenase-1 (HO-1) and NAD(P)H:
quinine oxidoreductase (NQO1), among others [14]—thereby inhibiting oxidative stress,
reducing A deposition and tau phosphorylation, and exerting neuroprotection [15].

Edible and medicinal mushrooms have great antioxidant potential owing to their
various active ingredients and are excellent sources of natural antioxidants [16]. Hericium
erinaceus, China’s famous rare and valuable edible mushroom, is an important component
of a wide range of food and pharmaceutical products [17] and has shown therapeutic
potential in hyperlipidemia [18], neurodegenerative diseases [19], and cancer [20]. Previous
studies have shown that the extraction of H. erinaceus increases antioxidant levels, improves
mitochondrial membrane potential, inhibits apoptosis, and plays a neuroprotective role in
H,0O,-induced HT22 cells [21]. In addition, our group confirmed that the mycelial polysac-
charide of H. erinaceus alleviated oxidative stress and inhibited Ca®* overload in APP/PS1
mice by regulating Nrf2 and its downstream kinases [22]. Hericium coralloides (HC) belongs
to the Hericium genus, Hericiaceae family, and Russulales order with H. erinaceus [23]. Ex-
tracellular polysaccharides of HC exhibit anticancer activity by inhibiting AGS and MKN-45
cells, based on strong 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity [24]. In
D-galactose-induced aging mice, the HC extract significantly improved SOD, CAT, and
GSH-Px levels and decreased MDA levels [25]. However, no studies to date have reported
the effects of HC on AD.

In this study, we detected the main components of HC, explored the neuroprotective
effect of HC on APP/PS1 mice through behavioral experiments, immunohistochemistry,
gut microbiota, metabolomics, detection of biochemical indicators, immunofluorescence,
and Western blotting, and clarified its mechanism.

2. Materials and Methods
2.1. HC Preparation

HC fruiting bodies were obtained by artificial cultivation (strain 2020071401 was
provided and identified by the Engineering Research Center of the Chinese Ministry of
Education for Edible and Medicinal Fungi of Jilin Agricultural University). The composition
of the culture substrate was 60-65% moisture, 85% sawdust, 10% wheat bran, 3% soybean
meal, 1% maize flour, and 1% gypsum. The substrate was sterilized in an autoclave at
121 °C for 0.5 h after being placed in heat resistant polypropylene bags (15 cm x 37 cm).
After cooling to room temperature, the sterilized substrate was inoculated with 30 mL of the
liquid culture strain. After mycelial colonization of the substrate, the bags were exposed to
a temperature of 18 °C in a controlled chamber to stimulate mushroom production. During
mycelial growth and primordium initiation, the relative humidity of the room was altered
to 60-70% and 70-85%, respectively. The fruiting bodies were dried via pulverization using
a grinding stirrer.
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2.2. Nutritional Component, Mineral, and Heavy Metal Analyses

The nutrient components of HC were systematically analyzed according to our previ-
ous research methods [26,27]. The total ash content was evaluated by weighing the residue
recovered after 24 h of burning at 550 °C. The Kjeldahl technique was used to calculate
crude protein content [28]. Crude fat content was measured using Soxhlet extraction with
petroleum ether as the solvent. The phenol-sulfuric acid technique was used to determine
total sugar content [29]. The contents of reducing sugar and crude fiber were detected
using the 3,5-dinitrosalicylic acid colorimetric [30] and Ankom filter bag methods [31],
respectively. High-performance liquid chromatography was used to measure mannitol
content [32]. The levels of total alkaloids [33], triterpenoids [34], sterol [35], flavonoids, and
saponins [36] were determined using UV spectrophotometry.

An appropriate amount of the sample was added to a Teflon digestion tank and 5 mL
of nitric acid was added. After standing and completion of reaction, the sample was placed
in a microwave digestion apparatus. After digestion at 100 °C, 140 °C, 160 °C, and 180 °C
for 3 min each and 190 °C for 15 min, ICP-MS was used to detect the following minerals and
heavy metal ions: potassium (K), magnesium (Mg), calcium (Ca), sodium (Na), zinc (Zn),
iron (Fe), manganese (Mn), selenium (Se), copper (Cu), chromium (Cr), cadmium (Cd),
arsenic (As), lead (Pb), and mercury (Hg).

2.3. Animals and Ethical Statement

All animal experiments were performed in accordance with the Institutional Ani-
mal Ethics Committee of Jilin Agricultural University (Permit Number: 20220615001).
Age-matched wild-type (WT) male mice and B6C3-Tg (APPswePSEN1dE9)/Nju double
transgenic male mice (APP/PS1) (genotype: (Appswe) T, (Psenl) T) were purchased from
Liaoning Changsheng Biotechnology Co., Ltd. (Liaoning, China). Prior to the experiment,
the animals were acclimatized to the new environment for 1 week and maintained ata 12 h
light/dark cycle at 22 £ 2 °C and 50 £ 10% humidity. Food and water were provided
ad libitum. After a week of acclimatization, WT mice were designated as the control
group (n =8, 0.2% CMC-Na, 5 mL/kg). The APP/PS1 mice were randomly divided into
two groups: APP/PS1 group (n = 8, 0.2% sodium carboxymethyl cellulose (CMC-Na),
5 mL/kg), 500 mg/kg HC-treated (APP/PS1+HC) group (n = 8, dissolved in 0.2% of CMC-
Na, 5 mL/kg). For 49 d, medication was administered intragastrically to all mice at the
same time every day (9:00 a.m.). The behavioral experiments began after 42 d of treatment.
They were designed to assess learning and memory-related parameters, including a step-
down test and Morris water maze (MWM). Finally, the mice were euthanized and blood
and tissues were immediately collected for further analysis (Figure 1A).

2.4. Behavioral Tests
2.4.1. Step-Down Test

The short-term memory of the mice was examined using a step-down test [22].
The step-down apparatus (SDT-8, Chengdu Techman Software Co., Ltd., Chengdu,
China) consisted of an experimental box (658 mm x 395 mm x 450 mm) and a platform
(45 mm x 45 mm); the mice were placed in the experimental box for 60 s. Following the
adaptation period, they were electroshocked (36 V continuous for 300 s). Under normal
conditions, the mice jumped onto the platform when electroshocked. The experiment offi-
cially began 24 h after the first training session, and the mice were placed on the platform
to record the time spent. Any latency greater than 300 s was counted as 300 s.
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Figure 1. HC treatment improved cognitive and behavioral disorders in APP/PS1 mice. (A) Schematic
diagram of mouse experiment process. (B) HC treatment prolonged the residence time of APP/PS1
mice on the platform in the step-down test. (C) Representative trajectories of MWM naviga-
tion test. (D) HC decreased the escape latency of APP/PS1 mice in the MWM navigation test.
(E) Representative trajectories of the MWM probe trial (no platform). (F) HC treatment increased the
crossing times of APP/PS1 mice in the MWM probe trial (no platform). The data are expressed as
mean + S.EM. (n =8). # p <0.01, ¥ p <0.001 vs. WT mice; * p < 0.05, *** p < 0.001 vs. APP/PS1 mice.

2.4.2. MWM Test

The MWM test was used to evaluate the learning and memory abilities of APP/PS1
mice. Similar to previous research [37], the experimental mice underwent 4 d of training
before the formal test, 4 times a day (at least once from the other side of the platform; the
other three quadrants were randomly placed); the navigation experiment and the probe
experiment started on days 49 and 50, and the mice were placed in a circular pool filled
with titanium dioxide (SA201, Jiangsu SANS Software Co., Ltd., Jiangsu, China). On day 49,
mice were placed in the pool from the other side of the platform and the time taken to
locate the platform was measured. On day 50, after the platform was removed, the number
of crossed platform areas was recorded.

2.5. Hematoylin and Eosin (H&E) and Immunohistochemistry Staining

In accordance with our previous research [38], the collected tissue samples (heart,
liver, spleen, kidney, and brain) were fixed in 4% paraformaldehyde solution, dehydrated
in 50-100% ethanol and distilled water, then paraffin embedded, cut into 5 um slices,
dewaxed twice in xylene, twice in 100-75% anhydrous ethanol, and finally hydrated. All
specimens were stained with H&E. The pathological status of the collected tissue samples
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was analyzed, sections were observed, and images were collected using a standing optical
microscope (Eclipse E100, Nikon, Tokyo, Japan).

As in our previous study [39], after dewaxing and hydration, the brain sections were
added to a citric acid antigen retrieval buffer (pH 6.0) (G1202, Servicebio, Beijing, China)
for antigen repair. Tissues were evenly covered with 3% bovine serum albumin and
incubated at room temperature for 30 min. The tissues were then left overnight along with
antibody Af1_4, (bs-0107R, Bioss, Beijing, China). The phosphate buffer solution (PBS)
was washed thrice before incubation with horseradish peroxidase-labeled goat anti-rabbit
antibody (E-AB-1003, Elabscience, Wuhan, China) at 25 °C for 1 h. The sections were then
restrained with diaminobenzidine tetrachloride solution and hematoxylin and observed
under a microscope (Eclipse E100).

2.6. Gut Microbiota Analysis

As reported in our previous study [27], the cecal contents of the three groups of
mice (WT, APP/PS1, and HC-treated APP/PS1) were evaluated. The 165 rRNA gene
was amplified using near-full-length polymerase chain reaction (forward primer 27F:
5-AGAGTTTGATCMTGGCTCAG-3' and reverse primer 1492R: 5-ACCTTGTTACGACTT-3'),
DNA extraction, DNA quality determination, and high throughput sequencing for 165
rRNA analysis.

2.7. Non-Targeted Metabolomics Analysis of Serum Samples

A pre-cooled methanol/acetonitrile/aqueous solution (2:2:1, v/v) was pre-chilled,
and 100 pL of mouse serum was added. The mixture was stirred by eddy current and
ultrasound at low temperature for 30 min, held at —20 °C degrees for 10 min, and cen-
trifuged at 14,000 g for 20 min at 4 °C; the supernatant was then vacuum dried. In the
mass spectrometer, 100 pL of acetonitrile solution (acetonitrile:water = 1:1, v/v) was added
for redissolution, eddy current, centrifugation at 4 °C for 15 min. Ultra-high-performance
liquid chromatography (UHPLC, 1290 Infinity LC; Agilent Technologies, Santa Clara, CA,
USA) and triple quadrupole mass spectrometry (AB SCIEX TripleTOF 6600; AB SCIEX,
Framingham, MA, USA) were used to analyze the supernatant and separate the metabolites
under the same conditions as previously reported [40].

The total difference in the identified metabolites was assessed using orthogonal partial
least squares discriminant analysis (OPLS-DA). Correlations between metabolites with
significant differences were analyzed based on correlation analysis methods (p < 0.05). Sta-
tistical significance was determined by one-way analysis of variance followed by Dunnett’s
multiple comparison test, and the associated metabolic pathways were evaluated using the
Kyoto Encyclopedia of Genes and Genomes (KEGG).

2.8. Determination of Biochemical Indexes

The three groups of brain tissue samples collected were homogenized in normal saline
using a high-throughput tissue grinder (Scientz-48, Scientz, Ningbo, China) and centrifuged
twice at 4 °C using a centrifuge (3K15, Sigma, Neustadt, Germany). A Pierce bicinchoninic
acid (BCA) protein assay kit (23225, Thermo Fisher Scientific, Carlsbad, CA, USA) was used
to measure the protein concentration. Kits (Nanjing Jiancheng Biotechnology Co., Ltd.,
Nanjing, China) were used to measure the GSH-Px (A005-1-2), CAT (A007-1-1), SOD (A001-
1-1), and MDA contents (A003-1-1). Reactive oxygen species (ROS) (MM-43700M1) levels
in the serum and brain samples were assessed using enzyme-linked immunosorbent assay
kits from Jiangsu Enzymatic Immunity Biotechnology Co., Ltd. (Shenzhen, China).

2.9. Immunofluorescence

Slides containing brain slices were washed in PBS (pH 7.4) thrice for 5 min each, sealed
with 3% bovine serum albumin (BSA) for 30 min, and incubated at 4 °C overnight with
4-hydroxynonenal (4-HNE) (bs-6313R, Bioss, Shanghai, China) and Nrf2 (A1244, ABclonal,
Wuhan, China). After washing with PBS, the secondary antibody (GB21404; Servicebio,
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Wuhan, China) was incubated for 50 min in the dark before imaging with a positive
fluorescence microscope (NIKON ECLIPSE C1, Nikon). Semi-quantitative analysis of the
images was performed using Image Pro Plus (version 6.0; Media Cybernetics, Rockville,
MD, USA).

2.10. Western Blotting

Mouse brain tissues were lysed with a 1% protease and phosphatase inhibitor mixture
in radioimmunoprecipitation assay buffer (PC 101, Epizyme, Shanghai, China) to extract
total protein. The total protein concentration in the supernatant was determined using a
BCA protein assay kit. The supernatant was denatured by heating in a metal bath for 5 min.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis separated 45 pg of protein,
which was subsequently transferred to a polyvinylidene fluoride membrane (0.45 pum)
(10600023, Cytiva, Breisgau, Germany). The membrane was incubated with the primary
antibody at 4 °C overnight after being sealed with 5% BSA for 5 h (Table S1). After repeated
washing, the membrane was incubated with a suitable enzyme-labeled secondary antibody
(Table S1) at 4 °C for 4 h. Finally, an ultra-high-sensitivity enhanced chemiluminescence kit
(GK10008, GLPBIO, Montclair, NJ, USA) reagent was used for imprinting. Densitometric
analysis of the protein bands was performed using Image] software (version 6.0; National
Institutes of Health, Bethesda, MD, USA).

2.11. Statistical Analysis

Data are expressed as mean =+ standard error of the mean (S.E.M.) and calculated using
GraphPad Prism 9.3.1 (GraphPad Software Inc., San Diego, CA, USA) with Brown-Forsythe
and Bartlett’s one-way analysis of variance followed by Tukey’s post-hoc test. Statistical
significance was set at p < 0.05.

3. Results
3.1. The Main Composition of HC

Our results showed that the HC content was 33.40% total sugar, 16.00% crude protein,
11.70% total ash, 7.95% reducing sugar, 6.30% crude fat, 4.60% crude fiber, 3.32% total
triterpenoids, 1.10% total saponins, 0.88% total flavonoids, and 0.57% total alkaloids. The
total sterol and phenol contents were 0.43% and 0.18%, respectively. The total sugar content
was the highest. Among the eight minerals detected in the HC, K content was the highest,
and the concentrations of the six heavy metals were low (Table 1).

Table 1. Main composition of HC.

Compounds Contents (%) Compounds Contents (%)

Total sugar 33.40 Total triterpenoids 3.32
Crude protein 16.00 Total saponins 1.10
General nutritional composition Total ash 11.70 Total flavonoids 0.88
p Reducing sugar 7.95 Total alkaloids 0.57
Crude fat 6.30 Total sterol 0.43
Crude fiber 4.60 Total phenol 0.18

Compounds Contents (mg/kg) Compounds Contents (mg/kg)
K 4.02 x 10* Zn 64.60
. Mg 1.09 x 103 Fe 50.90
Minerals Ca 280.00 Mn 7.97
Na 110.00 Se 0.04
Cu 113.00 As 0.11
Heavy metals Cr 0.76 Pb 0.04
Cd 0.20 Hg 0.01

Above results are shown to retain two decimal places.
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3.2. Effects of HC Treatment on Cognitive Impairments in APP/PS1 Mice

The body weights of the mice in the three groups varied within the normal range
during the experiment (Figure S1A). There were no significant differences in the in-
dexes of the hearts (Figure S1B), livers (Figure S1C), spleens (Figure S1D), and kidneys
(Figure S1E) of WT, APP/PS1, and APP/PS1+HC mice, and no significant pathological
changes were observed in the H&E staining results (Figure S1F-J), indicating the safety of
HC administration.

In the step-down test, APP/PS1 mice spent significantly less time on the platform than
WT mice (p < 0.001). In contrast, HC-treated APP/PS1 mice spent a significantly longer time
on the platform (p < 0.001) (Figure 1B). The MWM test was used to evaluate the learning
and memory abilities of the mice in each group. In the navigation test, APP/PS1 mice had
a longer escape latency than WT mice (p < 0.01), indicating that APP/PS1 mice exhibited
cognitive and spatial memory loss. However, HC treatment dramatically decreased the
escape latency in APP/PS1 mice (p < 0.05) (Figure 1C,D). In the probe trial, HC treatment
significantly increased the number of crossings of the platform area (p < 0.05) (Figure 1E,F).
These results indicate that HC improved AD-like symptoms in APP/PS1 mice.

3.3. HC Treatment Alleviated AB and p-tau Deposition in APP/PS1 Mice

APP/PS1 mice are commonly used as an AD model. These mice co-expressed amyloid
precursor protein and presenilin-1, showing plaque aggregation and significant cognitive
impairment at 8 months [41]. Af1.40 and APq.4p are produced via the amyloidogenic
pathway [42,43]. Excessive production or aggregation of A{3 leads to inflammatory cascade
reactions, neurofibrillary tangles, axon damage, and synaptic loss, and then causes neuronal
apoptosis [44], aggravating the process of AD. Compared to APP/PS1 mice, HC improved
the pathological status and significantly inhibited the AP plaque area in the hippocampus
and cortex (p < 0.001) (Figure 2A-D). Western blotting results showed that Af31.49 and
Apq.4p were downregulated in the brains of APP/PS1 mice after HC treatment (p < 0.05)
(Figure 2E-G). Additionally, p-tau was significantly reduced by HC treatment in APP/PS1
mice, with no significant difference observed in t-tau, suggesting that HC reduced tau
hyperphosphorylation (p < 0.05) (Figure 2E,H,I). These results suggested that HC reduced
Ap and p-tau deposition in APP/PS1 mice.

3.4. HC Regqulated the Gut Microbiota in APP/PS1 Mice

Mounting evidence suggests that the gut microbiota plays an essential role in the de-
velopment of AD [45]. We used operational taxonomic unit (OTU) analysis to characterize
differences in gut microbiota among WT mice, APP/PS1 mice, and HC-treated APP/PS1
mice. While 1739, 1703, and 1552 specific OTUs were observed in WT, APP/PS1, and
HC-treated APP/PS1 mice, respectively, no significant differences were observed among
them (Figure 3A). Similarly, no group differences were shown in « diversity (Figure 3B).
-diversity was analyzed using non-metric multidimensional scaling, which revealed dif-
ferences in the composition of microbial communities between different groups. B-diversity
analysis showed that the APP/PS1 group was more distant from the other two groups,
and HC-treated APP/PS1 mice had a similar microbial composition to the WT group,
highlighting the ability of HC to regulate the structure of the gut microbiota (Figure 3C).
The risk of AD may be increased or decreased by gut microbial metabolites and their
influence on host neurochemical alterations. Infection with pathogenic microorganisms
increases the risk of developing AD [46]. A heatmap was used to analyze the top 20 flora
with average abundance at the genus level, and the results showed that, compared with
WT mice, APP/PS1 mice showed a decreased abundance of Candidatus Arthromitus, Oscil-
libacter, Neglecta, Kineothrix, Anaerotruncus, and Ruminococcus, and an increased abundance
of Faecalibaculum, Akkermansia, Alistipes, Staphylococcus, and Helicobacter, among which
Anaerotruncus, Ruminococcus, and Alistipes are related to oxidative stress [47-49], whereas
HC reversed this trend (Figure 3D and Table 52). The MetaCyc database was used to detect
the metabolic pathways among all groups: fermentation, glycolysis, pentose phosphate



Nutrients 2023, 15, 3799 8 of 17

pathways, and the TCA cycle, which are implicated in oxidative stress [50] (Figure 3E).
These results suggest that HC may modulate oxidative stress-mediated AD by improving
the gut microbial composition and its metabolites.
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Figure 2. HC reduced the accumulation of Af and p-tau in the brains of APP/PS1 mice. (A) HC
reduced deposition of AP (red arrow). Scale bar = 100 um for 80x magnification and 20 pm for
400x magnification. Quantification of the mean density of A in the (B) brain, (C) hippocampus,
and (D) cortex of APP/PS1 mice. (E) HC decreased the expression of AB1.49, AP1-42, and p-tau in the
brains of APP/PS1 mice. Normalized to the levels of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and quantification of the levels of (F) AB1.49, (G) AP1.42, (H) p-tau, and (I) t-tau expressed
as percentage of the corresponding WT mice. Data are expressed as mean & S.E.M. (n = 3). # p < 0.05,
# p <0.01, ¥ p <0.001 vs. WT mice; * p < 0.05, ** p < 0.001 vs. APP/PS1 mice.
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Figure 3. HC regulates gut microbiotain APP/PS1 mice. (A) Venn diagram. (B) « diversity was

analyzed via Chaol; Faith’s phylogenetic diversity; Good’s coverage index; Shannon; Simpson;

Pielou’s evenness; observed species (1 = 4). (C) NMDS for unweighted UniFrac distance and f3-

diversity analysis. (D) Heatmap of the top 20 genera with average abundance obtained by UPGMA

clustering based on Euclidean distance of species composition data. (E) The predicted abundances

of secondary functional pathways based on the MetaCyc metabolic database, where the horizontal

coordinate is the abundance of functional pathways and the vertical coordinate is the functional

pathways of MetaCyc’s second classification level.

3.5. HC Regqulated the Levels of Oxidative Stress-Related Metabolites in Serum

To investigate the neuroprotective mechanism of HC, serum metabolism was analyzed
using UPLC-MS/MS. In the non-targeted serum metabolites, a total of 1035 metabolites
were detected, including lipids and lipid-like molecules and organic acids and derivatives
(Figure S2A); inter-group differences were evaluated via OPLS-DA analysis (Figure S2B).
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In the Venn diagram analysis, after HC treatment, 67 metabolites differed from those in
APP/PS1 mice (Figure S2C). According to the metabolic pathway database, HC altered
18 metabolic pathways, including D-glutamine and D-glutamate metabolism, GABAergic
synapses, and sulfur metabolism (Figure 4A). Compared to those in WT mice, APP/PS1
mice had decreased levels of three metabolites and increased levels of five metabolites.
After HC treatment, this phenomenon was reversed (Figure 4B and Table S3). Among these
metabolites, D-glutamic acid was positively correlated with oxidized glutathione levels
(Figure 4C). According to the correlation analysis of the top 20 most abundant intestinal
bacteria with eight kinds of altered metabolites, D-glutamic acid and oxidized glutathione
levels were positively correlated with the abundance of Helicobacter, and negatively corre-
lated with C. Arthromitus (Figure 4D), which are associated with oxidative stress.
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Figure 4. HC regulates serum metabolites in APP/PS1 mice. (A) KEGG enrichment pathway
diagram (The deeper the bubble color, the smaller the p value and the more significant the enrichment
degree. Bubble size is positively associated with the influencing elements) (n = 4). (B) Heatmap
of eight significantly altered metabolites in HC-treated APP/PS1 mice. (C) Correlation coefficient
diagram of serum metabolites after HC treatment. (D) Correlation analysis between gut microbiota

and serum metabolites ** p < 0.01.

3.6. Anti-Oxidative Stress Effects of HC Treatment Were Mediated by the Nrf2 Pathway

Oxidative stress is the excessive production of free radicals after the body is stimulated,
and the antioxidant effect in the body is abnormal, which promotes the deposition of Af3,
excessive p-tau, and the apoptosis of neurons [51]. Excessive ROS causes lipid peroxidation,
generates 4-HNE and MDA, and aggravates AD [52]. The body’s defense system of
antioxidant enzymes reduces oxidative stress by reducing ROS. SOD, GSH-Px, and CAT are
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antioxidant enzymes that contribute significantly to reducing oxidative stress in vivo [53].
Compared with that in APP/PS1 mice, HC reduced the expression of 4-HNE in the brain
(p < 0.001) (Figure 5A,B), inhibited the levels of ROS and MDA in serum and brain tissue
(p < 0.05) (Figure 5C-F), and increased the levels of SOD (p < 0.01) (Figure 5G,H), GSH-Px
(p < 0.05) (Figure 5L]), and CAT (p < 0.01) (Figure 5K,L) in serum and brain tissue.
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Figure 5. HC increased the antioxidant capacity in APP/PS1 mice. (A) HC reduced the expression
of 4-HNE in the brain (white arrow). (B) Semi-quantitative data of 4-HNE. Scale bar = 100 um for
200 x magnification. HC decreased the levels of (C,D) ROS and (E,F) MDA and increased the levels
of (G,H) SOD, (IJ) GSH-Px, and (K,L) CAT in serum and brain. Data are expressed as mean + S.E.M.
(n =3 for (A,B), n = 6 for (C-L)). # p < 0.05, # p < 0.01, #* p < 0.001 vs. WT mice; * p < 0.05, ** p < 0.01,
*** p <0.001 vs. APP/PS1 mice.

In AD, the Nrf2 signaling pathway protects the body from oxidative stress. HC
treatment upregulated the expression of Nrf2 in the brain of APP/PS1 mice (p < 0.001)
(Figure 6A,B). To further verify the immunofluorescence results, Western blotting was
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GCLC, HO-1, NQO1, SOD1, and SOD2 levels were significantly downregulated in APP /PS1
mice compared with those in WT mice (p < 0.05). After 7 weeks of HC treatment, these
phenomena were strongly reversed (p < 0.05) (Figure 6C-I). Additionally, the expression of
the oxidative damage marker 4-HNE was decreased in HC-treated APP/PS1 mice (p < 0.05)
(Figure 6C,]). Excessive ROS damages mitochondrial DNA and induces mitochondrial
dysfunction. Mitochondrial disorders were significantly influenced by proteins from the
B cell lymphoma-2 (Bcl-2) family; HC increased the expression of Bcl-2 (p < 0.001) and
reduced that of Bcl2-associated X (Bax) (p < 0.05) (Figure 6K-M). Above results suggesting
that HC regulates Nrf2 signaling.
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Figure 6. HC treatment activates the Nrf2 pathway in APP/PS1 mice. (A) HC increased the ex-
pression of Nrf2 in the brain (white arrow). (B) Semi-quantitative data of Nrf2. (C) HC treatment
regulated Nrf2 signaling and 4-HNE expression. Quantification of the mean density of (D) Nrf2,
(E) GCLC, (F) HO-1, (G) NQO1, (H) SOD1, (I) SOD2, and (J) 4-HNE. (K) HC ameliorated the concen-
trations of Bcl-2 and Bax. Quantification of the mean density of (L) Bcl-2 and (M) Bax. Quantitative
data were normalized by GAPDH and expressed as a percentage of the corresponding WT mice.
Scale bar = 100 um for 200 x magnification. Data are expressed as mean + S.EM. (n = 3). # p < 0.05,
# p <0.01, ¥ p <0.001 vs. WT mice; * p < 0.05, ** p < 0.001 vs. APP/PS1 mice.
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4. Discussion

In this study, the composition of HC was determined, and it was found that HC
contained a variety of nutrients, among which the total sugar content was the highest.
Various nutrients in HC may be involved in regulating neurodegenerative diseases. First,
we identified improved memory and cognitive effects of HC in APP/PS1 mice. Second, we
analyzed the neuroprotective effects of HC in APP/PS1 mice based on gut microbiome and
non-targeted serum metabolomics. HC administration reversed the increase in Helicobacter
abundance and oxidized glutathione levels in APP/PS1 mice. Finally, HC alleviated
oxidative stress; reduced ROS and MDA levels; increased GSH-Px, CAT, and SOD levels;
and activated the Nrf2 pathway to ameliorate AD symptoms. These findings demonstrate
that HC inhibits AD progression by modulating oxidative stress, highlighting its potential
as a therapeutic agent.

Currently, no medication can prevent, treat, or reverse the progression of AD [54].
Owing to the complexity of AD pathogenesis, the efficacy of single-target drug therapy is
limited and has side effects [55]. Mushrooms contain various bioactive ingredients and are
considered potential drug candidates owing to their safety and neuroprotective effects [56].
In the present study, HC were rich in nutrients, which improved the pathological features
of AD. Extracellular A deposits form plaques and accelerate tau hyperphosphorylation,
thereby accelerating AD progression [57,58]. The interaction between A and p-tau leads to
neuronal loss and synaptic damage, resulting in cognitive decline, while plaque deposition
and neurofibrillary tangles lead to direct behavioral changes in patients with AD [57]. After
HC treatment, the short-term and spatial learning and memory of APP/PS1 mice were
improved, the deposition of A3 was reduced, and the expression of p-tau was downregu-
lated, which is similar to previous findings on H. erinaceus [59,60], suggesting a potential
therapeutic role for HC in APP/PS1 mice. Disruption of the gut microbiota induces Af3
deposition and oxidative stress, leading to memory and cognitive impairments [61]. The
regulation of the gut microbiota improves AD-like symptoms. Gut microbiota a improve
AD symptoms by secreting neurotransmitters and other beneficial metabolites (such as
SCFAs) [62]. In APP/PS1 mice, HC increased SCFA concentrations by increasing the abun-
dance of Anaerotruncus and Ruminococcus [47,48]. SCFAs directly cross the blood—brain
barrier and act on the central nervous system to regulate redox enzymes, activate the Nrf2
pathway, and maintain redox homeostasis under physiological conditions, thereby prevent-
ing AP accumulation and ameliorating cognitive impairment [11,63]. In addition, SCFAs
interfere with the protein—protein interactions of A3 peptides and inhibit the formation of
neurotoxic aggregates from Af3 oligomers [64]. Alistipes is a common bacterium associated
with oxidative stress, and the abundance of Alistipes and Helicobacter are positively corre-
lated with ROS and negatively correlated with SOD and glutathione (GSH) [49]. Helicobacter
induces A overexpression in the rat hippocampus and cortex [12]. In this study, the abun-
dance of Akkermansia, Alistipes, and Helicobacter increased; meanwhile, Anaerotruncus and
Ruminococcus decreased in APP/PS1 mice, which is consistent with previous studies. After
HC treatment, its abundance significantly decreased, indicating a neuroprotective effect.
These results suggest that HC exerts an anti-AD effect by regulating the gut microbiota,
which is probably related to oxidative stress.

Serum metabolome and pathway enrichment analyses showed that HC intervention
decreased the levels of D-glutamic acid and oxidized glutathione, and affected D-glutamine
and D-glutamic acid metabolism in APP/PS1 mice. GSH, which interacts with ROS,
plays a crucial role in the antioxidant defense system and maintenance of neuronal redox
homeostasis [65]. The reduced GSH/oxidized glutathione ratio is widely used as an
important index of cellular redox balance [66]. D-glutamic acid is a potent natural inhibitor
of GSH synthesis, and excess glutamate inhibits the antioxidant state, induces oxidative
stress, and leads to neuronal cell death [67,68]. In addition, lipid peroxidation products lead
to the loss of glutamate transporter function [69]. As expected, HC reduced free radicals
and lipid peroxidation and maintained cell redox homeostasis.
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Based on the gut microbial and metabolomic analyses, we conjecture that the neuropro-
tective effect of HC on APP/PS1 mice may be related to the modulation of oxidative stress.
In AD pathology, AP and p-tau promote the production of ROS [70], and the excessive
accumulation of ROS attacks biofilms, induces lipid peroxidation, and produces 4-HNE
and MDA [71]. Nrf2 enhances cellular defenses and ameliorates oxidative damage by
regulating oxidative stress [72]. Many natural products have been demonstrated to act as
Nrf2 inducers to prevent Af accumulation and tau phosphorylation by regulating oxida-
tive stress, thereby improving the physiological function of AD mice. When stimulated
by oxidative stress, Nrf2 induces the expression of downstream regulatory genes such as
HO-1, NQO1, and GCLC, and activates antioxidant enzymes (SOD and GSH-Px) [15,73,74],
whose defense mechanisms improve oxidative stress. SOD is the first line of defense against
free radicals and converts superoxide anions into HyO,, which is catalyzed by GSH-Px and
CAT to decompose into oxygen and water, thus acting as a protective agent against ROS
toxicity [75,76]. In APP/PS1 mice, HC not only upregulated the levels of the antioxidant
enzymes SOD, GSH-Px, and CAT in brain tissue and serum, but also downregulated the
expression of 4-HNE and MDA in the brain. The expression of Nrf2 and its driving genes,
such as NQO1, HO-1, and GCLC, were decreased in AD brains [15]. In this study, HC
reduced the production of lipid peroxides and increased the levels of antioxidant enzymes
by activating the Nrf2 signaling and regulating gut microbiota, thus preventing oxidative
damage and delaying AD progression.

5. Conclusions

In conclusion, we confirmed that HC alleviated oxidative stress and cognitive impair-
ment in APP/PS1 mice by activating Nrf2 signaling and regulating the gut microbiota, thus
playing an anti-AD role and suggesting that HC is a promising potential treatment for AD.
This study had some limitations. Although the composition of HC has been determined,
the active ingredient with neuroprotective effects has not been confirmed, and further
research is needed.
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