Macronutrient and Micronutrient Intake in Children with Lung Disease
Abstract
:1. Introduction
2. Methods
3. Effects of Malnutrition on the Diaphragm and Respiratory Function
4. Caloric and Protein Needs of the Patient with Pulmonary Disease
5. Use of Indirect Calorimetry for Optimization of Nutritional Support
6. Micronutrients and Their Associations with Lung Function and Disease
6.1. Pneumonia
6.2. Cystic Fibrosis
6.3. Asthma
6.4. Bronchiolitis and Acute Lower Respiratory Tract Infection
6.5. Acute Lung Injury and Pediatric Acute Respiratory Distress Syndrome (ARDS)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Coss-Bu, J.A.; Hamilton-Reeves, J.; Patel, J.J.; Morris, C.R.; Hurt, R.T. Protein Requirements of the Critically Ill Pediatric Patient. Nutr. Clin. Pract. 2017, 32, 128S–141S. [Google Scholar] [CrossRef]
- Coss-Bu, J.A.; Klish, W.J.; Walding, D.; Stein, F.; Smith, E.O.; Jefferson, L.S. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am. J. Clin. Nutr. 2001, 74, 664–669. [Google Scholar] [CrossRef]
- Coss-Bu, J.A.; Walding, D.L.; David, Y.B.; Jefferson, L.S. Dead space ventilation in critically ill children with lung injury. Chest 2003, 123, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Coss Bu, J.A.; Kennedy, C.E.; Jefferson, L.S. Organ dysfunction is associated with hyperglycemia in critically ill children. Intensive Care Med. 2010, 36, 312–320. [Google Scholar] [CrossRef]
- Kyle, U.G.; Jaimon, N.; Coss-Bu, J.A. Nutrition support in critically ill children: Underdelivery of energy and protein compared with current recommendations. J. Acad. Nutr. Diet. 2012, 112, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Lucas, L.A.; Mackey, G.; Silva, J.C.; Lusk, J.; Orellana, R.; Shekerdemian, L.S.; Coss-Bu, J.A. Implementation of Nutrition Support Guidelines May Affect Energy and Protein Intake in the Pediatric Intensive Care Unit. J. Acad. Nutr. Diet. 2016, 116, 844–851.e4. [Google Scholar] [CrossRef]
- Kyle, U.G.; Shekerdemian, L.S.; Coss-Bu, J.A. Growth failure and nutrition considerations in chronic childhood wasting diseases. Nutr. Clin. Pract. 2015, 30, 227–238. [Google Scholar] [CrossRef]
- Kyle, U.G.; Spoede, E.T.; Mallory, G.B.; Orellana, R.; Shekerdemian, L.S.; Schecter, M.G.; Coss-Bu, J.A. Changes in body composition after lung transplantation in children. J. Heart Lung Transplant. 2013, 32, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Compher, C. Clinical Guidelines: Nutrition support of the critically ill child. JPEN J. Parenter. Enter. Nutr. 2009, 33, 260–276. [Google Scholar] [CrossRef]
- Mehta, N.M.; Duggan, C.P. Nutritional deficiencies during critical illness. Pediatr. Clin. N. Am. 2009, 56, 1143–1160. [Google Scholar] [CrossRef]
- Mehta, N.M.; Skillman, H.E.; Irving, S.Y.; Coss-Bu, J.A.; Vermilyea, S.; Farrington, E.A.; McKeever, L.; Hall, A.M.; Goday, P.S.; Braunschweig, C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr. Crit. Care Med. 2017, 18, 675–715. [Google Scholar] [CrossRef]
- Doekel, R.C., Jr.; Zwillich, C.W.; Scoggin, C.H.; Kryger, M.; Weil, J.V. Clinical semi-starvation: Depression of hypoxic ventilatory response. N. Engl. J. Med. 1976, 295, 358–361. [Google Scholar] [CrossRef]
- Arora, N.S.; Rochester, D.F. Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am. Rev. Respir. Dis. 1982, 126, 5–8. [Google Scholar]
- Sahebjami, H.; MacGee, J. Changes in connective tissue composition of the lung in starvation and refeeding. Am. Rev. Respir. Dis. 1983, 128, 644–647. [Google Scholar]
- McMurray, D.N.; Loomis, S.A.; Casazza, L.J.; Rey, H.; Miranda, R. Development of impaired cell-mediated immunity in mild and moderate malnutrition. Am. J. Clin. Nutr. 1981, 34, 68–77. [Google Scholar] [CrossRef]
- Kyle, U.G.; Akcan-Arikan, A.; Orellana, R.A.; Coss-Bu, J.A. Nutrition support among critically ill children with AKI. Clin. J. Am. Soc. Nephrol. 2013, 8, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Akcan-Arikan, A.; Silva, J.C.; Goldsworthy, M.; Shekerdemian, L.S.; Coss-Bu, J.A. Protein Feeding in Pediatric Acute Kidney Injury Is Not Associated With a Delay in Renal Recovery. J. Ren. Nutr. 2017, 27, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R. Clinical and physiologic evaluation of respiratory muscle function. Clin. Chest Med. 1989, 10, 199–214. [Google Scholar] [CrossRef]
- Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci. 2016, 1372, 53–64. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef]
- Amrein, K.; Zajic, P.; Schnedl, C.; Waltensdorfer, A.; Fruhwald, S.; Holl, A.; Purkart, T.; Wünsch, G.; Valentin, T.; Grisold, A.; et al. Vitamin D status and its association with season, hospital and sepsis mortality in critical illness. Crit. Care 2014, 18, R47. [Google Scholar] [CrossRef]
- Clairmont, A.; Tessman, D.; Stock, A.; Nicolai, S.; Stahl, W.; Sies, H. Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor. Carcinogenesis 1996, 17, 1389–1391. [Google Scholar] [CrossRef]
- Laaksi, I. Vitamin D and respiratory infection in adults. Proc. Nutr. Soc. 2012, 71, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S. Feeding the immune system: The role of micronutrients in restoring resistance to infections. Cab. Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 3, 1–21. [Google Scholar] [CrossRef]
- Kelsen, S.G. The effects of undernutrition on the respiratory muscles. Clin. Chest Med. 1986, 7, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.I.; Belman, M.J. Nutrition and the respiratory muscles. Clin. Chest Med. 1988, 9, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Rochester, D.F. Malnutrition and the respiratory muscles. Clin. Chest Med. 1986, 7, 91–99. [Google Scholar] [CrossRef]
- Gayan-Ramirez, G.; Decramer, M. Effects of mechanical ventilation on diaphragm function and biology. Eur. Respir. J. 2002, 20, 1579–1586. [Google Scholar] [CrossRef]
- Haitsma, J.J. Diaphragmatic dysfunction in mechanical ventilation. Curr. Opin. Anaesthesiol. 2011, 24, 214–218. [Google Scholar] [CrossRef]
- Jaber, S.; Jung, B.; Matecki, S.; Petrof, B.J. Clinical review: Ventilator-induced diaphragmatic dysfunction--human studies confirm animal model findings! Crit. Care 2011, 15, 206. [Google Scholar] [CrossRef]
- Crulli, B.; Kawaguchi, A.; Praud, J.P.; Petrof, B.J.; Harrington, K.; Emeriaud, G. Evolution of inspiratory muscle function in children during mechanical ventilation. Crit. Care 2021, 25, 229. [Google Scholar] [CrossRef]
- Dionisio, M.T.; Rebelo, A.; Pinto, C.; Carvalho, L.; Neves, J.F. Ultrasound Assessment of Ventilator-induced Diaphragmatic Dysfunction in Paediatrics. Acta Med. Port. 2019, 32, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Glau, C.L.; Conlon, T.W.; Himebauch, A.S.; Yehya, N.; Weiss, S.L.; Berg, R.A.; Nishisaki, A. Progressive Diaphragm Atrophy in Pediatric Acute Respiratory Failure. Pediatr. Crit. Care Med. 2018, 19, 406–411. [Google Scholar] [CrossRef]
- Johnson, R.W.; Ng, K.W.P.; Dietz, A.R.; Hartman, M.E.; Baty, J.D.; Hasan, N.; Zaidman, C.M.; Shoykhet, M. Muscle atrophy in mechanically-ventilated critically ill children. PLoS ONE 2018, 13, e0207720. [Google Scholar] [CrossRef] [PubMed]
- Mistri, S.; Dhochak, N.; Jana, M.; Jat, K.R.; Sankar, J.; Kabra, S.K.; Lodha, R. Diaphragmatic atrophy and dysfunction in critically ill mechanically ventilated children. Pediatr. Pulmonol. 2020, 55, 3457–3464. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.W.P.; Dietz, A.R.; Johnson, R.; Shoykhet, M.; Zaidman, C.M. Reliability of bedside ultrasound of limb and diaphragm muscle thickness in critically ill children. Muscle Nerve 2019, 59, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Zambon, M.; Greco, M.; Bocchino, S.; Cabrini, L.; Beccaria, P.F.; Zangrillo, A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: A systematic review. Intensive Care Med. 2017, 43, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.M.; Pássaro, C.P.; Antunes, M.A.; Cagido, V.R.; Einicker-Lamas, M.; Lowe, J.; Negri, E.M.; Damaceno-Rodrigues, N.R.; Soncini, R.; Capelozzi, V.L.; et al. Effects of different nutritional support on lung mechanics and remodelling in undernourished rats. Respir. Physiol. Neurobiol. 2008, 160, 54–64. [Google Scholar] [CrossRef]
- Dias, C.M.; Pássaro, C.P.; Cagido, V.R.; Einicker-Lamas, M.; Lowe, J.; Negri, E.M.; Capelozzi, V.L.; Zin, W.A.; Rocco, P.R. Effects of undernutrition on respiratory mechanics and lung parenchyma remodeling. J. Appl. Physiol. (1985) 2004, 97, 1888–1896. [Google Scholar] [CrossRef] [PubMed]
- Kelsen, S.G.; Ference, M.; Kapoor, S. Effects of prolonged undernutrition on structure and function of the diaphragm. J. Appl. Physiol. (1985) 1985, 58, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Kunovsky, P.; Sullivan, I. Ultrasound in the diagnosis of diaphragmatic paralysis after operation for congenital heart disease. Br. Heart J. 1990, 64, 20–22. [Google Scholar] [CrossRef]
- Fivez, T.; Hendrickx, A.; Van Herpe, T.; Vlasselaers, D.; Desmet, L.; Van den Berghe, G.; Mesotten, D. An Analysis of Reliability and Accuracy of Muscle Thickness Ultrasonography in Critically Ill Children and Adults. JPEN J. Parenter. Enter. Nutr. 2016, 40, 944–949. [Google Scholar] [CrossRef]
- Koskelo, E.K.; Kivisaari, L.M.; Saarinen, U.M.; Siimes, M.A. Quantitation of muscles and fat by ultrasonography: A useful method in the assessment of malnutrition in children. Acta Paediatr. Scand. 1991, 80, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.; Lee, J.H.; Leow, M.K.S.; Puthucheary, Z.A. Skeletal Muscle Ultrasonography in Nutrition and Functional Outcome Assessment of Critically Ill Children: Experience and Insights From Pediatric Disease and Adult Critical Care Studies [Formula: See text]. JPEN J. Parenter. Enter. Nutr. 2017, 41, 1091–1099. [Google Scholar] [CrossRef]
- Sanchez de Toledo, J.; Munoz, R.; Landsittel, D.; Shiderly, D.; Yoshida, M.; Komarlu, R.; Wearden, P.; Morell, V.O.; Chrysostomou, C. Diagnosis of abnormal diaphragm motion after cardiothoracic surgery: Ultrasound performed by a cardiac intensivist vs. fluoroscopy. Congenit. Heart Dis. 2010, 5, 565–572. [Google Scholar] [CrossRef]
- Urvoas, E.; Pariente, D.; Fausser, C.; Lipsich, J.; Taleb, R.; Devictor, D. Diaphragmatic paralysis in children: Diagnosis by TM-mode ultrasound. Pediatr. Radiol. 1994, 24, 564–568. [Google Scholar] [CrossRef]
- Güngör, Ş.; Doğan, A. Diaphragm thickness by ultrasound in pediatric patients with primary malnutrition. Eur. J. Pediatr. 2023, 182, 3347–3354. [Google Scholar] [CrossRef]
- Bakker, W. Nutritional state and lung disease in cystic fibrosis. J. Med. 1992, 41, 130–136. [Google Scholar]
- Borowitz, D. The interrelationship of nutrition and pulmonary function in patients with cystic fibrosis. Curr. Opin. Pulm. Med. 1996, 2, 457–461. [Google Scholar] [PubMed]
- Davis, P.B.; Drumm, M.; Konstan, M.W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 1996, 154, 1229–1256. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.; Cooksley, W.G.; Cooke, W.D. Improved growth and clinical, nutritional, and respiratory changes in response to nutritional therapy in cystic fibrosis. J. Pediatr. 1980, 97, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.A.; Quirk, P.; Swanson, C.E.; Thomas, B.J.; Holt, T.L.; Francis, P.J.; Shepherd, R.W. Nutritional growth retardation is associated with defective lung growth in cystic fibrosis: A preventable determinant of progressive pulmonary dysfunction. Nutrition 1995, 11, 350–354. [Google Scholar]
- Zemel, B.S.; Kawchak, D.A.; Cnaan, A.; Zhao, H.; Scanlin, T.F.; Stallings, V.A. Prospective evaluation of resting energy expenditure, nutritional status, pulmonary function, and genotype in children with cystic fibrosis. Pediatr. Res. 1996, 40, 578–586. [Google Scholar] [CrossRef]
- Zemel, B.S.; Jawad, A.F.; FitzSimmons, S.; Stallings, V.A. Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: Analysis of the Cystic Fibrosis Foundation National CF Patient Registry. J. Pediatr. 2000, 137, 374–380. [Google Scholar] [CrossRef]
- Konstan, M.W.; Butler, S.M.; Wohl, M.E.; Stoddard, M.; Matousek, R.; Wagener, J.S.; Johnson, C.A.; Morgan, W.J. Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J. Pediatr. 2003, 142, 624–630. [Google Scholar] [CrossRef]
- Hart, N.; Tounian, P.; Clément, A.; Boulé, M.; Polkey, M.I.; Lofaso, F.; Fauroux, B. Nutritional status is an important predictor of diaphragm strength in young patients with cystic fibrosis. Am. J. Clin. Nutr. 2004, 80, 1201–1206. [Google Scholar] [CrossRef]
- Hauschild, D.B.; Rosa, A.F.; Ventura, J.C.; Barbosa, E.; Moreira, E.A.M.; Ludwig Neto, N.; Moreno, Y.M.F. Association of nutritional status with lung function and morbidity in children and adolescents with cystic fibrosis: A 36-month cohort study. Rev. Paul. Pediatr. 2018, 36, 8. [Google Scholar] [CrossRef]
- Duijts, L. Growing large and fast: Is infant growth relevant for the early origins of childhood asthma? Thorax 2016, 71, 1071–1072. [Google Scholar] [CrossRef]
- Rodríguez, L.; Cervantes, E.; Ortiz, R. Malnutrition and gastrointestinal and respiratory infections in children: A public health problem. Int. J. Environ. Res. Public Health 2011, 8, 1174–1205. [Google Scholar] [CrossRef] [PubMed]
- Broström, E.B.; Akre, O.; Katz-Salamon, M.; Jaraj, D.; Kaijser, M. Obstructive pulmonary disease in old age among individuals born preterm. Eur. J. Epidemiol. 2013, 28, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Hawlader, M.D.; Noguchi, E.; El Arifeen, S.; Persson, L.; Moore, S.E.; Raqib, R.; Wagatsuma, Y. Nutritional status and childhood wheezing in rural Bangladesh. Public Health Nutr. 2014, 17, 1570–1577. [Google Scholar] [CrossRef]
- Ferdous, F.; Raqib, R.; Ahmed, S.; Faruque, A.; Chisti, M.J.; Ekström, E.C.; Wagatsuma, Y. Early childhood malnutrition trajectory and lung function at preadolescence. Public Health Nutr. 2021, 24, 1009–1020. [Google Scholar] [CrossRef]
- Casas, M.; den Dekker, H.T.; Kruithof, C.J.; Reiss, I.K.; Vrijheid, M.; Sunyer, J.; de Jongste, J.C.; Jaddoe, V.W.V.; Duijts, L. The effect of early growth patterns and lung function on the development of childhood asthma: A population based study. Thorax 2018, 73, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- den Dekker, H.T.; Sonnenschein-van der Voort, A.M.M.; de Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Voraphani, N.; Stern, D.A.; Zhai, J.; Wright, A.L.; Halonen, M.; Sherrill, D.L.; Hallberg, J.; Kull, I.; Bergström, A.; Murray, C.S.; et al. The role of growth and nutrition in the early origins of spirometric restriction in adult life: A longitudinal, multicohort, population-based study. Lancet Respir. Med. 2022, 10, 59–71. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar]
- Coss-Bu, J.A.; Mehta, N.M. Energy Metabolism. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 2, pp. 503–510. [Google Scholar]
- Orellana, R.A.; Coss-Bu, J.A. Energy and macronutrient requirements in the critically ill child. In Pediatric Critical Care Nutrition, 1st ed.; Goday, P.S., Mehta, N.M., Eds.; McGraw-Hill Education Medical: New York, NY, USA, 2015; pp. 33–58. [Google Scholar]
- Orellana, R.A.; Coss-Bu, J.A. Nutrition and Gastrointestinal Emergencies. In Pediatric Intensive Care; Watson, R.S., Thompson, A.E., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 193–207. [Google Scholar]
- Orellana, R.A.; Kyle, U.G.; Coss-Bu, J.A. Nutritional Assessment and Feeding in the ICU. In Comprehensive Critical Care: Pediatric; Stockwell, J.A., Preissig, C.M., Eds.; Society of Critical Care Medicine: Mount Porspect, IL, USA, 2012; pp. 931–948. [Google Scholar]
- Coss-Bu, J.A.; Jefferson, L.S.; Walding, D.; David, Y.; Smith, E.O.; Klish, W.J. Resting energy expenditure and nitrogen balance in critically ill pediatric patients on mechanical ventilation. Nutrition 1998, 14, 649–652. [Google Scholar] [CrossRef]
- Moreno, Y.M.F.; Hauschild, D.B.; Martins, M.D.; Bechard, L.J.; Mehta, N.M. Feasibility of Enteral Protein Supplementation in Critically Ill Children. JPEN J. Parenter. Enter. Nutr. 2018, 42, 61–70. [Google Scholar]
- Paddon-Jones, D.; Coss-Bu, J.A.; Morris, C.R.; Phillips, S.M.; Wernerman, J. Variation in Protein Origin and Utilization: Research and Clinical Application. Nutr. Clin. Pract. 2017, 32, 48S–57S. [Google Scholar] [CrossRef] [PubMed]
- Toole, B.J.; Toole, L.E.; Kyle, U.G.; Cabrera, A.G.; Orellana, R.A.; Coss-Bu, J.A. Perioperative nutritional support and malnutrition in infants and children with congenital heart disease. Congenit. Heart Dis. 2014, 9, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.C.; Coss-Bu, J.; Wu, M.; Schierbeek, H.; Joosten, K.F.; Dhar, A.; van Goudoever, J.B.; Castillo, L. Current recommended parenteral protein intakes do not support protein synthesis in critically ill septic, insulin-resistant adolescents with tight glucose control. Crit. Care Med. 2011, 39, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.C.; Schierbeek, H.; Coss-Bu, J.; Joosten, K.F.; Castillo, L.; van Goudoever, J.B. Albumin synthesis rates in post-surgical infants and septic adolescents; influence of amino acids, energy, and insulin. Clin. Nutr. 2011, 30, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Typpo, K. Nutrition: A Primary Therapy in Pediatric Acute Respiratory Distress Syndrome. Front. Pediatr. 2016, 4, 108. [Google Scholar] [CrossRef]
- Askanazi, J.; Elwyn, D.H.; Silverberg, P.A.; Rosenbaum, S.H.; Kinney, J.M. Respiratory distress secondary to a high carbohydrate load: A case report. Surgery 1980, 87, 596–598. [Google Scholar]
- Askanazi, J.; Nordenstrom, J.; Rosenbaum, S.H.; Elwyn, D.H.; Hyman, A.I.; Carpentier, Y.A.; Kinney, J.M. Nutrition for the patient with respiratory failure: Glucose vs. fat. Anesthesiology 1981, 54, 373–377. [Google Scholar] [CrossRef]
- Askanazi, J.; Rosenbaum, S.H.; Hyman, A.I.; Silverberg, P.A.; Milic-Emili, J.; Kinney, J.M. Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA 1980, 243, 1444–1447. [Google Scholar] [CrossRef]
- Skeie, B.; Askanazi, J.; Rothkopf, M.M.; Rosenbaum, S.H.; Kvetan, V.; Thomashow, B. Intravenous fat emulsions and lung function: A review. Crit. Care Med. 1988, 16, 183–194. [Google Scholar] [CrossRef]
- Takala, J.; Askanazi, J.; Weissman, C.; Lasala, P.A.; Milic-Emili, J.; Elwyn, D.H.; Kinney, J.M. Changes in respiratory control induced by amino acid infusions. Crit. Care Med. 1988, 16, 465–469. [Google Scholar] [CrossRef]
- Coss-Bu, J.A.; Jefferson, L.S.; Walding, D.; David, Y.; Smith, E.O.; Klish, W.J. Resting energy expenditure in children in a pediatric intensive care unit: Comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am. J. Clin. Nutr. 1998, 67, 74–80. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, E.E.; Alves, V.G.; da Fonseca, R.B. Indirect calorimetry: Methodology, instruments and clinical application. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Arriaza, A.; Esposito, M.; Coss-Bu, J.A. Is indirect calorimetry a necessity or a luxury in the pediatric intensive care unit? JPEN J. Parenter. Enter. Nutr. 2012, 36, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Lev, S.; Cohen, J.; Singer, P. Indirect calorimetry measurements in the ventilated critically ill patient: Facts and controversies--the heat is on. Crit. Care Clin. 2010, 26, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro Volp, A.C.; Esteves de Oliveira, F.C.; Duarte Moreira Alves, R.; Esteves, E.A.; Bressan, J. Energy expenditure: Components and evaluation methods. Nutr. Hosp. 2011, 26, 430–440. [Google Scholar] [CrossRef]
- Sion-Sarid, R.; Cohen, J.; Houri, Z.; Singer, P. Indirect calorimetry: A guide for optimizing nutritional support in the critically ill child. Nutrition 2013, 29, 1094–1099. [Google Scholar] [CrossRef]
- Dokken, M.; Rustøen, T.; Stubhaug, A. Indirect calorimetry reveals that better monitoring of nutrition therapy in pediatric intensive care is needed. JPEN J. Parenter. Enter. Nutr. 2015, 39, 344–352. [Google Scholar] [CrossRef]
- Hulst, J.M.; van Goudoever, J.B.; Zimmermann, L.J.; Hop, W.C.; Büller, H.A.; Tibboel, D.; Joosten, K.F. Adequate feeding and the usefulness of the respiratory quotient in critically ill children. Nutrition 2005, 21, 192–198. [Google Scholar] [CrossRef]
- Kerklaan, D.; Hulst, J.M.; Verhoeven, J.J.; Verbruggen, S.C.; Joosten, K.F. Use of Indirect Calorimetry to Detect Overfeeding in Critically Ill Children: Finding the Appropriate Definition. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 445–450. [Google Scholar] [CrossRef]
- Liusuwan Manotok, R.A.; Palmieri, T.L.; Greenhalgh, D.G. The respiratory quotient has little value in evaluating the state of feeding in burn patients. J. Burn Care Res. Off. Publ. Am. Burn. Assoc. 2008, 29, 655–659. [Google Scholar] [CrossRef]
- McClave, S.A.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J. Parenter. Enter. Nutr. 2003, 27, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Bechard, L.J.; Leavitt, K.; Duggan, C. Cumulative energy imbalance in the pediatric intensive care unit: Role of targeted indirect calorimetry. JPEN J. Parenter. Enter. Nutr. 2009, 33, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Juhász, M.F.; Varannai, O.; Németh, D.; Szakács, Z.; Kiss, S.; Izsák, V.D.; Martonosi, Á.R.; Hegyi, P.; Párniczky, A. Vitamin D supplementation in patients with cystic fibrosis: A systematic review and meta-analysis. J. Cyst. Fibros. 2021, 20, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, T.; Bazzaz, O.; Sawicki, G.S.; Gordon, C. Vitamin D status in children with cystic fibrosis. Associations with inflammation and bacterial colonization. Ann. Am. Thorac. Soc. 2014, 11, 205–210. [Google Scholar] [CrossRef]
- Tangpricha, V.; Lukemire, J.; Chen, Y.; Binongo, J.N.G.; Judd, S.E.; Michalski, E.S.; Lee, M.J.; Walker, S.; Ziegler, T.R.; Tirouvanziam, R.; et al. Vitamin D for the Immune System in Cystic Fibrosis (DISC): A double-blind, multicenter, randomized, placebo-controlled clinical trial. Am. J. Clin. Nutr. 2019, 109, 544–553. [Google Scholar] [CrossRef]
- Woestenenk, J.W.; Broos, N.; Stellato, R.K.; Arets, H.G.; van der Ent, C.K.; Houwen, R.H. Vitamin A intake and serum retinol levels in children and adolescents with cystic fibrosis. Clin. Nutr. 2016, 35, 654–659. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Schall, J.I.; Stallings, V.A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 2010, 92, 660–667. [Google Scholar] [CrossRef]
- Woestenenk, J.W.; Broos, N.; Stellato, R.K.; Arets, H.G.; van der Ent, C.K.; Houwen, R.H. Vitamin E intake, α-tocopherol levels and pulmonary function in children and adolescents with cystic fibrosis. Br. J. Nutr. 2015, 113, 1096–1101. [Google Scholar] [CrossRef]
- Ahmad, S.; Arora, S.; Khan, S.; Mohsin, M.; Mohan, A.; Manda, K.; Syed, M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021, 90, 108571. [Google Scholar] [CrossRef]
- Hansdottir, S.; Monick, M.M. Vitamin D effects on lung immunity and respiratory diseases. Vitam. Horm. 2011, 86, 217–237. [Google Scholar] [CrossRef]
- Loukou, I.; Moustaki, M.; Sardeli, O.; Plyta, M.; Katsagoni, C.N.; Douros, K. Association of vitamin A status with lung function in children and adolescents with cystic fibrosis. Pediatr. Investig. 2021, 5, 125–129. [Google Scholar] [CrossRef]
- Timoneda, J.; Rodríguez-Fernández, L.; Zaragozá, R.; Marín, M.P.; Cabezuelo, M.T.; Torres, L.; Viña, J.R.; Barber, T. Vitamin A Deficiency and the Lung. Nutrients 2018, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- Kolleck, I.; Sinha, P.; Rüstow, B. Vitamin E as an antioxidant of the lung: Mechanisms of vitamin E delivery to alveolar type II cells. Am. J. Respir. Crit. Care Med. 2002, 166, S62–S66. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Chen, C.S.; Lin, J.Y. High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio, but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized and challenged mice. J. Agric. Food Chem. 2009, 57, 10471–10476. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Louhiala, P. Vitamin C may affect lung infections. J. R. Soc. Med. 2007, 100, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Comhair, S.A.; Bhathena, P.R.; Farver, C.; Thunnissen, F.B.; Erzurum, S.C. Extracellular glutathione peroxidase induction in asthmatic lungs: Evidence for redox regulation of expression in human airway epithelial cells. FASEB J. 2001, 15, 70–78. [Google Scholar] [CrossRef]
- Liu, X.; Ali, M.K.; Dua, K.; Xu, R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022, 14, 2115. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Duvall, M.G.; Levy, B.D. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur. J. Pharmacol. 2016, 785, 144–155. [Google Scholar] [CrossRef]
- Richardson, D.P.; Lovegrove, J.A. Nutritional status of micronutrients as a possible and modifiable risk factor for COVID-19: A UK perspective. Br. J. Nutr. 2021, 125, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Thuesen, B.H.; Husemoen, L.L.; Ovesen, L.; Jørgensen, T.; Fenger, M.; Gilderson, G.; Linneberg, A. Atopy, asthma, and lung function in relation to folate and vitamin B(12) in adults. Allergy 2010, 65, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, H.; Azimian, A.; Ghasemzadeh-Moghaddam, H.; Safdari, M.; Haresabadi, M.; Daneshmand, T.; Namdar Ahmadabad, H. Evaluation of the relationship between serum levels of zinc, vitamin B12, vitamin D, and clinical outcomes in patients with COVID-19. J. Med. Virol. 2022, 94, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef]
- Huang, A.A.; Huang, S.Y. Quantification of the Relationship of Pyridoxine and Spirometry Measurements in the United States Population. Curr. Dev. Nutr. 2023, 7, 100078. [Google Scholar] [CrossRef]
- Manzetti, S.; Zhang, J.; van der Spoel, D. Thiamin function, metabolism, uptake, and transport. Biochemistry 2014, 53, 821–835. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Katsardis, C.; Tsoukalas, D.; Lambert, K.; Erbas, B.; Itsiopoulos, C. Potential role of folate status on pulmonary function in pediatric asthma. Nutrition 2021, 90, 111267. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.B.; Welti, R.; Oehme, F.W.; Pickrell, J.A. Perinatal hypocuprosis affects synthesis and composition of neonatal lung collagen, elastin, and surfactant. Am. J. Physiol. 1994, 267, L679–L685. [Google Scholar] [CrossRef]
- Cheng, F.; Peng, G.; Lu, Y.; Wang, K.; Ju, Q.; Ju, Y.; Ouyang, M. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front. Oncol. 2022, 12, 1019153. [Google Scholar] [CrossRef]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Kirolos, A.; Blacow, R.M.; Parajuli, A.; Welton, N.J.; Khanna, A.; Allen, S.J.; McAllister, D.A.; Campbell, H.; Nair, H. The impact of childhood malnutrition on mortality from pneumonia: A systematic review and network meta-analysis. BMJ Glob. Health 2021, 6, e007411. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013, 2013, Cd000980. [Google Scholar] [CrossRef]
- Hemilä, H.; Louhiala, P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013, 8, Cd005532. [Google Scholar] [CrossRef]
- Padhani, Z.A.; Moazzam, Z.; Ashraf, A.; Bilal, H.; Salam, R.A.; Das, J.K.; Bhutta, Z.A. Vitamin C supplementation for prevention and treatment of pneumonia. Cochrane Database Syst. Rev. 2021, 11, Cd013134. [Google Scholar] [CrossRef] [PubMed]
- Inamo, Y.; Hasegawa, M.; Saito, K.; Hayashi, R.; Ishikawa, T.; Yoshino, Y.; Hashimoto, K.; Fuchigami, T. Serum vitamin D concentrations and associated severity of acute lower respiratory tract infections in Japanese hospitalized children. Pediatr. Int. 2011, 53, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, X.; Guo, L.; Li, H.; Sun, C.; Cui, X.; Zhang, Q.; Song, G. Association between serum 25-hydroxyvitamin D concentration and pulmonary infection in children. Medicine 2018, 97, e9060. [Google Scholar] [CrossRef]
- McNally, J.D.; Leis, K.; Matheson, L.A.; Karuananyake, C.; Sankaran, K.; Rosenberg, A.M. Vitamin D deficiency in young children with severe acute lower respiratory infection. Pediatr. Pulmonol. 2009, 44, 981–988. [Google Scholar] [CrossRef]
- Oduwole, A.O.; Renner, J.K.; Disu, E.; Ibitoye, E.; Emokpae, E. Relationship between vitamin D levels and outcome of pneumonia in children. West. Afr. J. Med. 2010, 29, 373–378. [Google Scholar] [CrossRef]
- Vo, P.; Koppel, C.; Espinola, J.A.; Mansbach, J.M.; Celedón, J.C.; Hasegawa, K.; Bair-Merritt, M.; Camargo, C.A., Jr. Vitamin D Status at the Time of Hospitalization for Bronchiolitis and Its Association with Disease Severity. J. Pediatr. 2018, 203, 416–422.e1. [Google Scholar] [CrossRef]
- Das, R.R.; Singh, M.; Naik, S.S. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst. Rev. 2023, 1, Cd011597. [Google Scholar] [CrossRef] [PubMed]
- Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010, 91, 1255–1260. [Google Scholar] [CrossRef]
- Camargo, C.A., Jr.; Ganmaa, D.; Frazier, A.L.; Kirchberg, F.F.; Stuart, J.J.; Kleinman, K.; Sumberzul, N.; Rich-Edwards, J.W. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 2012, 130, e561–e567. [Google Scholar] [CrossRef]
- Hong, M.; Xiong, T.; Huang, J.; Wu, Y.; Lin, L.; Zhang, Z.; Huang, L.; Gao, D.; Wang, H.; Kang, C.; et al. Association of vitamin D supplementation with respiratory tract infection in infants. Matern. Child. Nutr. 2020, 16, e12987. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Mayo-Wilson, E.; Haykal, M.R.; Regan, A.; Sidhu, J.; Smith, A.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2022, 3, Cd008524. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.Y.; Abo El Fotoh, W.M.M. Low serum zinc level: The relationship with severe pneumonia and survival in critically ill children. Int. J. Clin. Pract. 2018, 72, e13211. [Google Scholar] [CrossRef]
- Acevedo-Murillo, J.A.; García León, M.L.; Firo-Reyes, V.; Santiago-Cordova, J.L.; Gonzalez-Rodriguez, A.P.; Wong-Chew, R.M. Zinc Supplementation Promotes a Th1 Response and Improves Clinical Symptoms in Fewer Hours in Children With Pneumonia Younger Than 5 Years Old. A Randomized Controlled Clinical Trial. Front. Pediatr. 2019, 7, 431. [Google Scholar] [CrossRef]
- Laghari, G.S.; Hussain, Z.; Taimur, M.; Jamil, N. Therapeutic Role of Zinc Supplementation in Children Hospitalized with Pneumonia. Cureus 2019, 11, e4475. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Moin, A.; Bhutta, Z.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst. Rev. 2016, 12, Cd005978. [Google Scholar] [CrossRef]
- Aziz, D.A.; Fatima, S.K.; Iftikhar, H.; Mir, F. Vitamin D status and pulmonary exacerbations in children and adolescents with cystic fibrosis: Experience from a tertiary care center. Lung India 2021, 38, 326–329. [Google Scholar] [CrossRef]
- Timmers, N.; Stellato, R.K.; van der Ent, C.K.; Houwen, R.H.J.; Woestenenk, J.W. Vitamin D intake, serum 25-hydroxy vitamin D and pulmonary function in paediatric patients with cystic fibrosis: A longitudinal approach. Br. J. Nutr. 2019, 121, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Wong-See, D.; Katz, T.; Gaskin, K.; Whitehead, B.; Jaffe, A.; Coakley, J.; Lochhead, A. Fat-soluble vitamin deficiency in children and adolescents with cystic fibrosis. J. Clin. Pathol. 2014, 67, 605–608. [Google Scholar] [CrossRef]
- Andropoulos, D.B. Appendix B: Pediatric Normal Laboratory Values. In Gregory’s Pediatric Anesthesia; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 1300–1314. [Google Scholar] [CrossRef]
- McCauley, L.A.; Thomas, W.; Laguna, T.A.; Regelmann, W.E.; Moran, A.; Polgreen, L.E. Vitamin D deficiency is associated with pulmonary exacerbations in children with cystic fibrosis. Ann. Am. Thorac. Soc. 2014, 11, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Alonso Vicente, C.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M.; Redondo Del Río, M.P. Copper and Copper/Zinc Ratio in a Series of Cystic Fibrosis Patients. Nutrients 2020, 12, 3344. [Google Scholar] [CrossRef]
- AbdulWahab, A.; Abushahin, A.; Allangawi, M.; Chandra, P.; Abdel Rahman, M.O.; Soliman, A. Serum zinc concentration in cystic fibrosis patients with CFTR I1234V mutation associated with pancreatic sufficiency. Clin. Respir. J. 2017, 11, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Abdulhamid, I.; Beck, F.W.; Millard, S.; Chen, X.; Prasad, A. Effect of zinc supplementation on respiratory tract infections in children with cystic fibrosis. Pediatr. Pulmonol. 2008, 43, 281–287. [Google Scholar] [CrossRef]
- Sharma, G.; Lodha, R.; Shastri, S.; Saini, S.; Kapil, A.; Singla, M.; Mukherjee, A.; Jat, K.R.; Kabra, M.; Kabra, S.K. Zinc Supplementation for One Year Among Children with Cystic Fibrosis Does Not Decrease Pulmonary Infection. Respir. Care 2016, 61, 78–84. [Google Scholar] [CrossRef]
- Watson, H.; Stackhouse, C. Omega-3 fatty acid supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020, 4, Cd002201. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Smith, S.; Lykkesfeldt, J. Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst. Rev. 2019, 10, Cd007020. [Google Scholar] [CrossRef]
- Thakur, C.; Kumar, J.; Kumar, P.; Goyal, J.P.; Singh, K.; Gupta, A. Vitamin-D supplementation as an adjunct to standard treatment of asthma in children: A randomized controlled trial (ViDASTA Trial). Pediatr. Pulmonol. 2021, 56, 1427–1433. [Google Scholar] [CrossRef]
- Siripornpanich, S.; Chongviriyaphan, N.; Manuyakorn, W.; Matangkasombut, P. Zinc and vitamin C deficiencies associate with poor pulmonary function in children with persistent asthma. Asian Pac. J. Allergy Immunol. 2022, 40, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Jat, K.R.; Khairwa, A. Vitamin D and asthma in children: A systematic review and meta-analysis of observational studies. Lung India 2017, 34, 355–363. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C.; Wang, Y.; Li, Y. Does vitamin E prevent asthma or wheeze in children: A systematic review and meta-analysis. Paediatr. Respir. Rev. 2018, 27, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Yadev, I.; Bindusha, S. Severity of asthma and Vitamin D status in children: A case-control study in a tertiary care center. Indian J. Allergy Asthma Immunol. 2020, 34, 103–106. [Google Scholar] [CrossRef]
- Malheiro, A.P.G.; Gianfrancesco, L.; Nogueira, R.J.N.; Grotta, M.B.; Morcillo, A.M.; Ribeiro, J.D.; Toro, A. Association between serum Vitamin D levels and asthma severity and control in children and adolescents. Lung 2023, 201, 181–187. [Google Scholar] [CrossRef]
- Forno, E.; Bacharier, L.B.; Phipatanakul, W.; Guilbert, T.W.; Cabana, M.D.; Ross, K.; Covar, R.; Gern, J.E.; Rosser, F.J.; Blatter, J.; et al. Effect of Vitamin D3 Supplementation on Severe Asthma Exacerbations in Children With Asthma and Low Vitamin D Levels: The VDKA Randomized Clinical Trial. JAMA 2020, 324, 752–760. [Google Scholar] [CrossRef]
- Kuti, B.P.; Kuti, D.K.; Smith, O.S. Serum Zinc, Selenium and Total Antioxidant Contents of Nigerian Children with Asthma: Association with Disease Severity and Symptoms Control. J. Trop. Pediatr. 2020, 66, 395–402. [Google Scholar] [CrossRef]
- Rajkumar, S.; Bhat, N.K.; Kumar, V.; Bolia, R.; Verma, P.K.; Kumar, M.; Chacham, S.; Mirza, A.A. Association of serum zinc levels and symptom control of asthma in children and adolescents- a prospective observational study. Eur. J. Pediatr. 2023, 182, 141–147. [Google Scholar] [CrossRef]
- Sdona, E.; Hallberg, J.; Andersson, N.; Ekström, S.; Rautiainen, S.; Håkansson, N.; Wolk, A.; Kull, I.; Melén, E.; Bergström, A. Dietary antioxidant intake in school age and lung function development up to adolescence. Eur. Respir. J. 2020, 55, 1900990. [Google Scholar] [CrossRef]
- Farjadian, S.; Moghtaderi, M.; Kalani, M.; Gholami, T.; Hosseini Teshnizi, S. Effects of omega-3 fatty acids on serum levels of T-helper cytokines in children with asthma. Cytokine 2016, 85, 61–66. [Google Scholar] [CrossRef]
- Bryce, J.; Boschi-Pinto, C.; Shibuya, K.; Black, R.E. WHO estimates of the causes of death in children. Lancet 2005, 365, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Rudan, I.; Boschi-Pinto, C.; Biloglav, Z.; Mulholland, K.; Campbell, H. Epidemiology and etiology of childhood pneumonia. Bull. World Health Organ. 2008, 86, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Alakaş, Y.; Celiloğlu, C.; Tolunay, O.; Matyar, S. The Relationship between Bronchiolitis Severity and Vitamin D Status. J. Trop. Pediatr. 2021, 67, fmab081. [Google Scholar] [CrossRef]
- Roth, D.E.; Jones, A.B.; Prosser, C.; Robinson, J.L.; Vohra, S. Vitamin D status is not associated with the risk of hospitalization for acute bronchiolitis in early childhood. Eur. J. Clin. Nutr. 2009, 63, 297–299. [Google Scholar] [CrossRef]
- Toivonen, L.; Hasegawa, K.; Ajami, N.J.; Celedón, J.C.; Mansbach, J.M.; Petrosino, J.F.; Camargo, C.A., Jr. Circulating 25-hydroxyvitamin D, nasopharyngeal microbiota, and bronchiolitis severity. Pediatr. Allergy Immunol. 2018, 29, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Doumat, G.; Mehta, G.D.; Mansbach, J.M.; Hasegawa, K.; Camargo, C.A., Jr. Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy. Nutrients 2023, 15, 2379. [Google Scholar] [CrossRef]
- Khoshnevisasl, P.; Sadeghzadeh, M.; Kamali, K.; Ardalani, A. A randomized clinical trial to assess the effect of zinc and vitamin D supplementation in addition to hypertonic saline on treatment of acute bronchiolitis. BMC Infect. Dis. 2022, 22, 538. [Google Scholar] [CrossRef]
- Das, R.R.; Singh, M.; Shafiq, N. Short-term therapeutic role of zinc in children < 5 years of age hospitalised for severe acute lower respiratory tract infection. Paediatr. Respir. Rev. 2012, 13, 184–191. [Google Scholar] [CrossRef]
- Ahadi, A.; Mirzarahimi, M.; Barak, M.; Ahari, S.; Reyhanian, M. Comparing the effect of zinc gluconate and placebo in the treatment of tachypnea, dyspnea and fever in children aged 2 to 23 months with acute bronchiolitis. Int. J. Clin. Trials 2020, 7, 50. [Google Scholar] [CrossRef]
- Gurkan, F.; Atamer, Y.; Ece, A.; Kocyigit, Y.; Tuzun, H.; Mete, M. Relationship among serum selenium levels, lipid peroxidation, and acute bronchiolitis in infancy. Biol. Trace Elem. Res. 2004, 100, 97–104. [Google Scholar] [CrossRef]
- Alonso de Vega, J.M.; Díaz, J.; Serrano, E.; Carbonell, L.F. Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit. Care Med. 2002, 30, 1782–1786. [Google Scholar] [CrossRef]
- Metnitz, P.G.; Bartens, C.; Fischer, M.; Fridrich, P.; Steltzer, H.; Druml, W. Antioxidant status in patients with acute respiratory distress syndrome. Intensive Care Med. 1999, 25, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Valla, F.V.; Bost, M.; Roche, S.; Pitance, M.; Cuerq, C.; Ridout, J.; Ecochard, R.; Ginhoux, T.; Bellon, A.; Ford-Chessel, C.; et al. Multiple Micronutrient Plasma Level Changes Are Related to Oxidative Stress Intensity in Critically Ill Children. Pediatr. Crit. Care Med. 2018, 19, e455–e463. [Google Scholar] [CrossRef] [PubMed]
- Linster, C.L.; Van Schaftingen, E.; Vitamin, C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wald, E.L.; Badke, C.M.; Hintz, L.K.; Spewak, M.; Sanchez-Pinto, L.N. Vitamin therapy in sepsis. Pediatr. Res. 2022, 91, 328–336. [Google Scholar] [CrossRef]
- Lima, L.F.; Leite, H.P.; Taddei, J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: Risk factors and prognostic significance. Am. J. Clin. Nutr. 2011, 93, 57–61. [Google Scholar] [CrossRef]
- Fathi, A.; Downey, C.; Rabiee Gohar, A. Vitamin C Deficiency in Critically Ill Children: Prospective Observational Cohort Study. Pediatr. Crit. Care Med. 2022, 23, 395–398. [Google Scholar] [CrossRef]
- Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest 2017, 151, 1229–1238. [Google Scholar] [CrossRef]
- Wald, E.L.; Sanchez-Pinto, L.N.; Smith, C.M.; Moran, T.; Badke, C.M.; Barhight, M.F.; Malakooti, M.R. Hydrocortisone-Ascorbic Acid-Thiamine Use Associated with Lower Mortality in Pediatric Septic Shock. Am. J. Respir. Crit. Care Med. 2020, 201, 863–867. [Google Scholar] [CrossRef]
- Rippel, C.; South, M.; Butt, W.W.; Shekerdemian, L.S. Vitamin D status in critically ill children. Intensive Care Med. 2012, 38, 2055–2062. [Google Scholar] [CrossRef]
- Madden, K.; Feldman, H.A.; Smith, E.M.; Gordon, C.M.; Keisling, S.M.; Sullivan, R.M.; Hollis, B.W.; Agan, A.A.; Randolph, A.G. Vitamin D deficiency in critically ill children. Pediatrics 2012, 130, 421–428. [Google Scholar] [CrossRef] [PubMed]
- McNally, J.D.; Menon, K.; Chakraborty, P.; Fisher, L.; Williams, K.A.; Al-Dirbashi, O.Y.; Doherty, D.R. The association of vitamin D status with pediatric critical illness. Pediatrics 2012, 130, 429–436. [Google Scholar] [CrossRef] [PubMed]
- McNally, J.D.; Nama, N.; O’Hearn, K.; Sampson, M.; Amrein, K.; Iliriani, K.; McIntyre, L.; Fergusson, D.; Menon, K. Vitamin D deficiency in critically ill children: A systematic review and meta-analysis. Crit. Care 2017, 21, 287. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, C.; Yang, Z.; Chen, F.; Gao, L. Vitamin D deficiency and clinical outcomes related to septic shock in children with critical illness: A systematic review. Eur. J. Clin. Nutr. 2019, 73, 1095–1101. [Google Scholar] [CrossRef]
- Wang, M.X.; Koh, J.; Pang, J. Association between micronutrient deficiency and acute respiratory infections in healthy adults: A systematic review of observational studies. Nutr. J. 2019, 18, 80. [Google Scholar] [CrossRef]
- Notz, Q.; Herrmann, J.; Schlesinger, T.; Kranke, P.; Sitter, M.; Helmer, P.; Stumpner, J.; Roeder, D.; Amrein, K.; Stoppe, C.; et al. Vitamin D deficiency in critically ill COVID-19 ARDS patients. Clin. Nutr. 2022, 41, 3089–3095. [Google Scholar] [CrossRef]
- Imai, Y.; Kuba, K.; Neely, G.G.; Yaghubian-Malhami, R.; Perkmann, T.; van Loo, G.; Ermolaeva, M.; Veldhuizen, R.; Leung, Y.H.; Wang, H.; et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008, 133, 235–249. [Google Scholar] [CrossRef]
- Saleh, J.; Peyssonnaux, C.; Singh, K.K.; Edeas, M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 2020, 54, 1–7. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Al-Quraishy, S.; Dkhil, M.A.; Wunderlich, F.; Sies, H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr. 2015, 6, 73–82. [Google Scholar] [CrossRef]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Meydani, S.N.; Barnett, J.B.; Dallal, G.E.; Fine, B.C.; Jacques, P.F.; Leka, L.S.; Hamer, D.H. Serum zinc and pneumonia in nursing home elderly. Am. J. Clin. Nutr. 2007, 86, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.W.; Cheng, S.C.; Lai, H.Y.; Chou, C.Y. Differential domain structure stability of the severe acute respiratory syndrome coronavirus papain-like protease. Arch. Biochem. Biophys. 2012, 520, 74–80. [Google Scholar] [CrossRef]
- Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antivir. Res. 2018, 149, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015, 6, e01697–e01715. [Google Scholar] [CrossRef]
- Gorji, A.; Khaleghi Ghadiri, M. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition 2021, 82, 111047. [Google Scholar] [CrossRef]
- Forceville, X.; Vitoux, D.; Gauzit, R.; Combes, A.; Lahilaire, P.; Chappuis, P. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit. Care Med. 1998, 26, 1536–1544. [Google Scholar] [CrossRef]
- Motoyama, T.; Okamoto, K.; Kukita, I.; Hamaguchi, M.; Kinoshita, Y.; Ogawa, H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit. Care Med. 2003, 31, 1048–1052. [Google Scholar] [CrossRef]
- Beck, M.A.; Esworthy, R.S.; Ho, Y.S.; Chu, F.F. Glutathione peroxidase protects mice from viral-induced myocarditis. FASEB J. 1998, 12, 1143–1149. [Google Scholar] [CrossRef]
- Kudva, A.K.; Shay, A.E.; Prabhu, K.S. Selenium and inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G71–G77. [Google Scholar] [CrossRef]
- Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef] [PubMed]
- Notz, Q.; Herrmann, J.; Schlesinger, T.; Helmer, P.; Sudowe, S.; Sun, Q.; Hackler, J.; Roeder, D.; Lotz, C.; Meybohm, P.; et al. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients 2021, 13, 2113. [Google Scholar] [CrossRef]
- Villamor, E.; Fawzi, W.W. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin. Microbiol. Rev. 2005, 18, 446–464. [Google Scholar] [CrossRef] [PubMed]
- Tepasse, P.R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.A.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021, 13, 2173. [Google Scholar] [CrossRef] [PubMed]
Micronutrient | Protective Role | Immune Functions | Lung-Related Functions |
---|---|---|---|
Vitamin D [103,104] | Anti-inflammatory Antimicrobial | Downregulates proinflammatory cytokines and increases TH2 cytokines. Contributes to the maintenance of Treg cells. | Increases expression of antimicrobial cathelicidin and airway epithelium response against viruses. |
Vitamin A [105,106] | Anti-inflammatory Antioxidant | Maintains cell proliferation, differentiation, and integrity. Induces Treg cells to differentiate immune tolerance. | Maintains respiratory tract epithelial cells. Deficiency is associated with respiratory disease. |
Vitamin E [107] | Anti-inflammatory Antioxidant | Deficiency is associated with an increase in inflammatory cytokines. | Constituent of lung surfactant Deficiency has been associated with a pro-apoptotic state of type II lung cells. |
Vitamin C [108,109] | Antioxidant | Cofactor for enzymes is present in phagocytes and lymphocytes. Protects cells against oxidative stress. | Decreases eosinophilic infiltration in respiratory tract; decreases inflammation, mucus hypersecretion, and bronchoconstriction. |
Selenium [110,111] | Anti-inflammatory Antioxidant | Participates in the synthesis of antioxidants like glutathione peroxidase, protects against apoptosis, increases proliferation and maturation of T cells and natural killer cells. | Cofactor of glutathione peroxidase and able to scavenge reactive oxygen species, which plays a role in the development of asthma through damaging normal tissue of lung |
Zinc [112,113] | Anti-inflammatory Antioxidant | Attenuates proinflammatory response, acts as an antioxidant intracellularly, and enhances the function of activated b cells. | Low levels of zinc promote an apoptotic state of respiratory epithelium. |
Omega 3 [114] | Anti-inflammatory | Converted to resolvins, protectins, and maresins. Decreases inflammation by decreasing neutrophil migration and decreasing proinflammatory cytokines and chemokines. | Protects against apoptotic states and increases bacterial clearance. |
Folate [115,116] | Modulator | Deficiency is associated with decreased CD8+ T cells and increased susceptibility to infections. | May decrease allergic airway inflammation. Decreases reactive oxygen species and Th2 immune response in asthma. |
Cobalamin Vitamin B12 [117,118] | Modulator | Involved in synthesis of nucleic acids and synthesis of proteins such as antibodies and immunoglobulins. Deficiency is associated with a decreased number of CD4+ cells. | Suppresses viral replication in host cells. |
Pyridoxine Vitamin B6 [118,119] | Modulator | Deficiency is associated with a decrease in proliferation of lymphocytes and reduced IL-2 production. | Decreases inflammation and lipid peroxidation. Alters caspase activation and AMPK phosphorylation which impacts lung inflammation and function. |
Thiamine Vitamin B1 [120,121] | Anti-inflammatory | Participates in the production of integrins which affects the immune system’s reactivity. Regulates expression of inflammatory agents. | Improves VO2 consumption in critically ill patients. |
Copper [122,123] | Antioxidant | Cofactor for enzymes that participate in redox reactions and production of superoxide anions. Deficiency is associated with a decrease in neutrophils and impaired function of B and T-cells. | Cofactor of LOX lysyl oxidase, which maintains and matures elastin fibers collagen production necessary for lung structure and distension. |
Riboflavin [124] | Antioxidant | Cofactor for enzymes that participate and regulate oxidative stress. Participates in the activation and modulation of macrophages and neutrophils. | Cofactor of FAD-dependent enzymes which protects lungs from oxidant-mediated injury and inflammatory injury. |
Infants 0–6 mos | Infants 7–12 mos | Children 1–3 y | Children 4–8 y | Females 9–13 y | Females 14–18 y | Males 9–13 y | Males 14–18 y | |
---|---|---|---|---|---|---|---|---|
Vitamin A (mcg/d) a | 400 * | 500 * | 300 | 400 | 600 | 700 | 600 | 900 |
Vitamin C (mg/d) | 40 * | 50 * | 15 | 25 | 45 | 65 | 45 | 75 |
Vitamin D (mcg/d) b,c | 10 | 10 | 15 | 15 | 15 | 15 | 15 | 15 |
Vitamin E (mg/d) d | 4 * | 5 * | 6 | 7 | 11 | 15 | 11 | 15 |
Vitamin K (mcg/d) | 2.0 * | 2.5 * | 30 * | 55 * | 60 * | 75 * | 60 * | 75 * |
Thiamin (mg/d) | 0.2 * | 0.3 * | 0.5 | 0.6 | 0.9 | 1.0 | 0.9 | 1.2 |
Riboflavin (mg/d) | 0.3 * | 0.4 * | 0.5 | 0.6 | 0.9 | 1.0 | 0.9 | 1.3 |
Niacin (mg/d) e | 2 * | 4 * | 6 | 8 | 12 | 14 | 12 | 16 |
Vitamin B6 (mg/d) | 0.1 * | 0.3 * | 0.5 | 0.6 | 1.0 | 1.2 | 1.0 | 1.3 |
Folate (mcg/d) f | 65 * | 80 * | 150 | 200 | 300 | 400 | 300 | 400 |
Vitamin B12 (mcg/d) | 0.4 * | 0.5 * | 0.9 | 1.2 | 1.8 | 2.4 | 1.8 | 2.4 |
Pantothenic Acid (mcg/d) | 1.7 * | 1.8 * | 2 * | 3 * | 4 * | 5 * | 4 * | 5 * |
Biotin (mcg/d) | 5 * | 6 * | 8 * | 12 * | 20 * | 25 * | 20 * | 25 * |
Choline (mg/d) g | 125 * | 150 * | 200 * | 250 * | 375 * | 400 * | 375 * | 550 * |
Calcium (mg/d) | 200 * | 260 * | 700 * | 1000 * | 1300 * | 1300 * | 1300 * | 1300 * |
Chromium (mcg/d) | 0.2 * | 5.5 * | 11 * | 15 * | 21 * | 24 * | 25 * | 35 * |
Copper (mg/d) | 200 * | 220 * | 340 * | 440 * | 700 | 890 | 700 | 890 |
Fluoride (mcg/d) | 0.01 * | 0.5 * | 0.7 * | 1 * | 2 * | 3 * | 2 * | 3 * |
Iodine (mcg/d) | 110 * | 130 * | 90 | 90 | 120 | 150 | 120 | 150 |
Iron (mg/d) | 0.27 * | 11 | 7 | 10 | 8 | 15 | 8 | 11 |
Magnesium (mg/d) | 30 * | 75 * | 80 | 130 | 240 | 360 | 240 | 410 |
Manganese (mg/d) | 0.003 * | 0.6 * | 1.2 * | 1.5 * | 1.6 * | 1.6 * | 1.9 * | 2.2 * |
Molybdenum (mcg/d) | 2 * | 3 * | 17 | 22 | 34 | 43 | 34 | 43 |
Phosphorus (mg/d) | 100 * | 275 * | 460 | 500 | 1250 | 1250 | 1250 | 1250 |
Selenium (mcg/d) | 15 * | 20 * | 20 | 30 | 40 | 55 | 40 | 55 |
Zinc (mg/d) | 2 * | 3 | 3 | 5 | 8 | 9 | 8 | 11 |
Linoleic Acid (g/d) | 4.4 * | 4.6 * | 7 * | 10 * | 10 * | 11 * | 12 * | 16 * |
α-Linolenic Acid (g/d) | 0.5 * | 0.5 * | 0.7 * | 0.9 * | 1.0 * | 1.1 * | 1.2 * | 1.6 * |
Micronutrient | Age | Normal | Insufficiency | Deficiency |
---|---|---|---|---|
Vitamin A (mg/L) | ||||
0–1 mos | 0.18–0.50 | <0.10 | ||
2 mos–12 y | 0.20–0.50 | <0.10 | ||
13–17 y | 0.26–0.70 | <0.10 | ||
Vitamin D (ng/mL) | ||||
All ages | 30–80 | 20–29 | <20.0 | |
Vitamin E (mg/L) | ||||
0–1 mos | 1.0–3.5 | |||
2–5 mos | 2.0–6.0 | |||
6 mos–1 y | 3.5–8.0 | |||
2–12 y | 5.5–9.0 | |||
>13 y | 5.5–18.0 | |||
Vitamin K (nmol/L) | ||||
All ages | 0.22–4.88 | |||
Vitamin C (µmol/L) | ||||
All ages | 23–114 | |||
Selenium (µg/L) | ||||
All ages | 23–190 | |||
Zinc (µg/L) | ||||
All ages | 60–120 | |||
Omega 3 (mmol/L) | ||||
All ages | 0.12–0.55 |
Micronutrient | Lung Disease | Study Design | Age Group | Findings |
---|---|---|---|---|
Vitamin A | Pneumonia | Meta-analysis | Infants and children < 5 y (n = 1,202,382) | Supplementation with Vit A decreased morbidity and mortality [140]. |
Vitamin A | Cystic fibrosis | Observational longitudinal | Children and adolescents (n = 231) | Serum retinol levels were positively associated with predicted FEV1% [105]. |
Vitamin A | ARDS | Cross-sectional | Adults (n = 87) | Critically ill hospitalized patients had significantly lower Vit A levels vs. those who were moderately ill [210]. |
Vitamin C | Pneumonia | Meta-analysis | Children and adults (n = 11,306), (n = 2655) | Supplementation with Vit C showed a decrease in the incidence of pneumonia and decreased hospital length of stay (LOS) and mortality [128,130]. |
Vitamin C | Critically ill children | Prospective case-control study | Children (n = 81) | The prevalence of Vit C deficiency in critically ill children was 18% compared to 0% in the control group [183]. |
Vitamin C and Zinc | Asthma | Cross-sectional | Children aged 7–17 y (n = 76) | Vit C deficiency was associated with severe asthma, and plasma zinc levels were correlated with FEV1% [157]. |
Vitamin D | Respiratory tract infections | Observational and case-control | Infants and children (n = 13), (n = 1582), (n = 197), (n = 34), (n = 1016) | Insufficient or deficient plasma levels of Vit D were associated with more complications and severity of the disease [131,132,133,134,135]. |
Vitamin D | Pneumonia | Meta-analysis | Infants and children < 5 y. (n = 1601) | Supplementation with Vit D showed no difference in the duration of illness, hospital LOS, or mortality [136]. |
Vitamin D | Influenza | Randomized control trial (RCT) | Infants and children (n = 334), (n = 247), (n = 2244) | Supplementation with Vit D decreased the incidence of influenza and respiratory tract infections [137,138,139]. |
Vitamin D | Cystic fibrosis | Retrospective | Infants and children up to 18 y (n = 69), (n = 130), (n = 148), (n = 190) | Children with Vit D deficiency vs. those with insufficient or sufficient levels had a higher rate of pulmonary exacerbations [145,149], and serum levels of 25-OHD were lower in children colonized with P. aeruginosa vs. non-infected patients. [98]. Vit D supplementation with higher levels showed improved pulmonary function by predicted forced expiratory volume in 1 s (FEV1%) [146,149]. |
Vitamin D | Asthma | Meta-analysis | Children (n = 13,160) | Fifty-five percent of children with asthma were either Vit D-deficient or -insufficient, and asthmatic children were 3.4 times more likely to be Vit D-deficient vs. controls [158]. |
Vitamin D | Asthma | Case-control | Children aged 2–12 y (n = 140) | Children with moderate-to-severe asthma vs. mild asthma were 2.8 times more likely to have Vit D insufficiency [160]. |
Vitamin D | Asthma | Prospective, longitudinal | Children aged 7–17 y (n = 141) | Children with severe asthma vs. mild-to-moderate asthma were 3 times more likely to have Vit D insufficiency [161]. |
Vitamin D | Asthma | RCT | Children aged 6–16 y (n = 192), (n = 60) | Children supplemented with Vit D vs. placebo did not have better asthma control measured as the number of episodes, duration of the episodes, emergency visits, hospital admissions, or use of steroids [156,162]. |
Vitamin D | Bronchiolitis | Prospective | Children aged < 2 y (n = 182) | Children with low levels of Vit D had a higher degree of severity of illness and admission to the intensive care unit [169]. |
Vitamin D | Bronchiolitis | Case-control | Children aged 1–25 months. (n = 129) | Vit D status was not associated with risk of hospitalization for uncomplicated acute lower respiratory infection [170]. |
Vitamin D | Bronchiolitis | Retrospective | Infants (n = 1016) | In infants with lower levels of Vit D, presence of Hemophilus-microbiota in the nasopharynx was associated with higher severity [171]. |
Vitamin D | Bronchiolitis | Observational longitudinal | Children aged 3 to 6 y (n = 363) | Children with higher Vit D status at age 3 compared to those with lower status had decreased FEV1% and FVC% at 6 y [172]. |
Vitamin D and Zinc | Bronchiolitis | Double-blind, RCT | Children aged 2 to 23 months (n = 94) | By the third day of hospitalization, no significant difference on respiratory rate among the three groups (Control vs. Vit D vs. Zinc) and no difference in hospital LOS [173]. |
Vitamin D | ARDS | Systematic review, retrospective | Adults (n = 39), (n = 15,207) | Vit D deficiency was associated with increased duration of infection, ICU LOS, and mechanical ventilation [191,192]. |
Vitamin E | Cystic fibrosis | Observational longitudinal | Children and adolescents (n = 232) | FEV1% was not associated with serum α-tocopherol levels [102]. |
Vitamin E | Asthma | Meta-analysis | Children (n = 12,878) | Vit E supplementation was not associated with wheezing or asthma [159]. |
Omega 3 | Cystic fibrosis | Meta-analysis | Children and adults (n = 106) | Inconclusive results with omega 3 supplementation regarding lung function or antibiotic use [154]. |
Selenium | Bronchiolitis | Case-control | Infants (n = 59) | Infants had lower levels of selenium during the hospital admission vs. post-discharge and compared to healthy controls [176]. |
Thiamine | Critically ill children | Prospective cohort study | Children (n = 202) | Low thiamine levels were found in 28% of children and was associated with high levels of C-reactive protein concentrations [182]. |
Zinc | Pneumonia | Prospective, RCT, and systematic review | Infants and children < 5 y (n = 320), (n = 103), (n = 100), (n = 5193) | Decreased zinc levels in children with higher severity of illness [141]; children who received zinc supplementation recovered faster and had shorter hospital LOS [142,143], and zinc supplementation was associated with lower incidence and prevalence of pneumonia [144]. |
Zinc | Cystic fibrosis | Cross-sectional | Children and adults (n = 53) | FEV1% was lower but not significant in patients with zinc deficiency vs. patients with normal levels [151]. |
Zinc | Cystic fibrosis | Double-blind placebo-controlled trial | Children aged 7–18 y (n = 26), (n = 40) | Zinc supplementation in deficient children decreased the days of oral antibiotics/year vs. the placebo group [152]; another study reported no difference [153]. |
Zinc | Asthma | Prospective observational | Children (n = 67) | Children with controlled asthma vs. the uncontrolled group had significantly higher serum zinc levels [164]. |
Zinc | Acute lower respiratory tract infection (ALRTI) | Meta-analysis | Children < 5 y (n = 1066) | There was no significant difference between placebo and zinc group regarding time to resolution of severe illness and hospital LOS [174]. |
Zinc | Bronchiolitis | Randomized control trial | Children aged 2–23 months (n = 100) | Zinc supplementation could improve clinical symptoms and decrease LOS in bronchiolitis [175]. |
Zinc and Selenium | Asthma | Case-control | Children aged 2–15 y (n = 160) | Children with asthma vs. controls had significantly lower serum levels of zinc and selenium [163]. |
Zinc and Selenium | ARDS | Retrospective | Adults (n = 22) | Zinc levels were significantly lower in severe COVID-19 induced adult respiratory distress syndrome (ARDS) [208]. |
Antioxidants * | Cystic fibrosis | Meta-analysis | Children and adults (n = 924) | Increased FEV1% in the antioxidant group vs. the control group [155]. |
HAT ** | Septic Shock and acute lung injury | Retrospective propensity score-matched analysis | Children (n = 557) | Children treated with HAT therapy had lower mortality when compared with matched untreated control patients and matched hydrocortisone-only-treated patients [185]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knebusch, N.; Mansour, M.; Vazquez, S.; Coss-Bu, J.A. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients 2023, 15, 4142. https://doi.org/10.3390/nu15194142
Knebusch N, Mansour M, Vazquez S, Coss-Bu JA. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients. 2023; 15(19):4142. https://doi.org/10.3390/nu15194142
Chicago/Turabian StyleKnebusch, Nicole, Marwa Mansour, Stephanie Vazquez, and Jorge A. Coss-Bu. 2023. "Macronutrient and Micronutrient Intake in Children with Lung Disease" Nutrients 15, no. 19: 4142. https://doi.org/10.3390/nu15194142
APA StyleKnebusch, N., Mansour, M., Vazquez, S., & Coss-Bu, J. A. (2023). Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients, 15(19), 4142. https://doi.org/10.3390/nu15194142