Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Determination of BMR
2.3. Statistical Analysis
3. Results
3.1. Characteristic of the Training Dataset Participants
3.2. Development of the Present Predictive Equation
3.3. Difference and Correlation between mBMR and pBMR
3.4. Agreement between mBMR and pBMR
3.5. Verification in the Testing Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biddle, S.J.H.; Bengoechea, E.G.; Pedisic, Z.; Bennie, J.; Vergeer, I.; Wiesner, G. Screen Time, Other Sedentary Behaviours, and Obesity Risk in Adults: A Review of Reviews. Curr. Obes. Rep. 2017, 6, 352. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, J.A.; Winkler, E.A.H.; Howie, E.K.; Tremblay, M.S.; Smith, A.; Abbott, R.A.; Eastwood, P.R.; Healy, G.N.; Straker, L.M. Objectively Measured Patterns of Sedentary Time and Physical Activity in Young Adults of The Raine Study Cohort. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The Energy Balance Model of Obesity: Beyond Calories in, Calories Out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef]
- Ravussin, E.; Bogardus, C. Relationship of Genetics, Age, and Physical Fitness to Daily Energy Expenditure And Fuel Utilization. Am. J. Clin. Nutr. 1989, 49, 968–975. [Google Scholar] [CrossRef]
- Maury-Sintjago, E.; Rodríguez-Fernández, A.; Parra-Flores, J.; Ruíz-De la Fuente, M. Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase. Nutrients 2022, 14, 1997. [Google Scholar] [CrossRef] [PubMed]
- Katsukawa, F. Energy Requirements for Older Patients with Type 2 Diabetes: A Narrative Review of the Current Findings and Future Tasks. Nutrients 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.A. Measurement of Energy Expenditure. Public Health Nutr. 2005, 8, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Takemae, A.; Takazawa, T.; Kamiyama, J.; Kanamoto, M.; Tobe, M.; Hinohara, H.; Kunimoto, F.; Saito, S. A Novel Prediction Equation of Resting Energy Expenditure for Japanese Septic Patients. J. Crit. Care 2020, 56, 236–242. [Google Scholar] [CrossRef]
- Skallerup, A.; Nygaard, L.; Olesen, S.S.; Vinter-Jensen, L.; Kohler, M.; Rasmussen, H.H. Can We Rely on Predicted Basal Metabolic Rate in Patients With Intestinal Failure on Home Parenteral Nutrition? J. Parenter. Enter. Nutr. 2017, 41, 1139–1145. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Jurado-Fasoli, L.; De-la-O, A.; Gutierrez, A.; Castillo, M.J.; Ruiz, J.R. Accuracy and Validity of Resting Energy Expenditure Predictive Equations in Middle-Aged Adults. Nutrients 2018, 10, 1635. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Lu, Y.-F.; Chen, W.-J. Predictive Equations for Basal Metabolic Rate in Chinese Adults. J. Am. Diet. Assoc. 1995, 95, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, M.; Mao, D.; Zeng, G.; Zhuo, Q.; Hu, W.; Piao, J.; Yang, X.; Huang, C. Basal Energy Expenditure In Southern Chinese Healthy Adults: Measurement and Development of a New Equation. Br. J. Nutr. 2010, 104, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Camps, S.G.; Wang, N.X.; Tan, W.S.K.; Henry, C.J. Estimation of Basal Metabolic Rate in Chinese: Are the Current Prediction Equations Applicable? Nutr. J. 2016, 15, 79. [Google Scholar] [CrossRef]
- Xue, J.; Li, S.; Zhang, Y.; Hong, P. Accuracy of Predictive Resting-Metabolic-Rate Equations in Chinese Mainland Adults. Int. J. Environ. Res. Public Health 2019, 16, 2747. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, G.H.J. Predicting Basal Metabolic Rate in the Obese is Difficult. Eur. J. Clin. Nutr. 2003, 57, 335–340. [Google Scholar]
- Bedogni, G.; Bertoli, S.; Leone, A.; De Amicis, R.; Lucchetti, E.; Agosti, F.; Marazzi, N.; Battezzati, A.; Sartorio, A. External Validation of Equations to Estimate Resting Energy Expenditure in 14952 Adults with Overweight and Obesity and 1948 Adults with Normal Weight from Italy. Clin. Nutr. 2019, 38, 457–464. [Google Scholar] [CrossRef]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily Energy Expenditure through the Human Life Course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef]
- Sinha, S.; Kurpad, A.V.; Kuriyan, R. Total Energy Expenditure (TEE) of Young Adults from Urban South India: Revisiting Their Daily Energy Requirement. Eur. J. Clin. Nutr. 2021, 75, 845–851. [Google Scholar] [CrossRef]
- Chima, L.; Mulrooney, H.M.; Warren, J.; Madden, A.M. A Systematic Review and Quantitative Analysis of Resting Energy Expenditure Prediction Equations In Healthy Overweight and Obese Children and Adolescents. J. Hum. Nutr. Diet. 2020, 33, 373–385. [Google Scholar] [CrossRef]
- Itoi, A.; Yamada, Y.; Yokoyama, K.; Adachi, T.; Kimura, M. Validity of Predictive Equations for Resting Metabolic Rate in Healthy Older Adults. Clin. Nutr. ESPEN 2017, 22, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, R.; Li, R.; Chen, M.Y.; Huang, R.; Li, X.N. Evaluating the Predictive Factors of Resting Energy Expenditure and Validating Predictive Equations for Chinese Obese Children. World J. Pediatr. 2018, 14, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J. Basal Metabolic Rate Studies in Humans: Measurement and Development of New Equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef]
- Ganpule, A.A.; Tanaka, S.; Ishikawa-Takata, K.; Tabata, I. Interindividual Variability in Sleeping Metabolic Rate in Japanese Subjects. Eur. J. Clin. Nutr. 2007, 61, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Wu, J.H.; Huang, C.Y.; Li, K.J.; Liu, X.L.; Zhang, S.L.; Wang, Y.L.; Chen, W.; Li, M.; Yang, X.G.; et al. Basal Energy Expenditure of Chinese Healthy Adults: Comparison of Measured and Predicted Values. Biomed Environ. Sci. 2020, 33, 566–572. [Google Scholar] [CrossRef]
- Wu, J.; Mao, D.; Zhang, Y.; Chen, X.; Hong, P.; Piao, J.; Zhuo, Q.; Yang, X. Basal Energy Expenditure, Resting Energy Expenditure and One Metabolic Equivalent (1 MET) Values for Young Chinese Adults with Different Body Weights. Asia Pac. J. Clin. Nutr. 2019, 28, 35–41. [Google Scholar] [CrossRef]
- Overstreet, B.S.; Bassett, D.R.; Crouter, S.E.; Rider, B.C.; Parr, B.B. Portable Open-Circuit Spirometry Systems. J. Sports Med. Phys. Fit. 2017, 57, 227–237. [Google Scholar] [CrossRef]
- Altman, B.D. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Henderson, A.R. Information for Authors: Is the Advice Regarding the Reporting of Residuals in Regression Analysis Incomplete? Should Cook’s Distance be Included? Clin. Chem. 2006, 52, 1848–1850. [Google Scholar] [CrossRef]
- Bendavid, I.; Lobo, D.N.; Barazzoni, R.; Cederholm, T.; Coeffier, M.; de van der Schueren, M.; Fontaine, E.; Hiesmayr, M.; Laviano, A.; Pichard, C.; et al. The Centenary of the Harris-Benedict Equations: How to Assess Energy Requirements Best? Recommendations from the ESPEN Expert Group. Clin. Nutr. 2021, 40, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Carteri, R.B.; Feldmann, M.; Gross, J.S.; Kruger, R.L.; Lopes, A.L.; Reischak-Oliveira, A. Comparison between Resting Metabolic Rate and Indirect Calorimetry in Postmenopausal Women. Rev. Nutr. -Braz. J. Nutr. 2017, 30, 583–591. [Google Scholar] [CrossRef]
- Leung, R.; Woo, J.; Chan, D.; Tang, N. Validation of Prediction Equations for Basal Metabolic Rate in Chinese Subjects. Eur. J. Clin. Nutr. 2000, 54, 551–554. [Google Scholar] [CrossRef]
- Hayter, J.E.; Henry, C.J. A Re-Examination of Basal Metabolic Rate Predictive Equations: The Importance of Geographic Origin of Subjects in Sample selection. Eur. J. Clin. Nutr. 1994, 48, 702–707. [Google Scholar]
- Bosy-Westphal, A.; Hagele, F.A.; Muller, M.J. Impact of Energy Turnover on the Regulation of Energy and Macronutrient Balance. Obesity 2021, 29, 1114–1119. [Google Scholar] [CrossRef]
- Jesus, P.; Achamrah, N.; Grigioni, S.; Charles, J.; Rimbert, A.; Folope, V.; Petit, A.; Dechelotte, P.; Coeffier, M. Validity of Predictive Equations for Resting Energy Expenditure According to the Body Mass Index in a Population of 1726 Patients followed in a Nutrition Unit. Clin. Nutr. 2015, 34, 529–535. [Google Scholar] [CrossRef]
Equation Source | Sex | Age (Years) | Equation |
---|---|---|---|
Harris–Benedict (kcal/d) | Males | 21–70 | 66.473 + 5.003 H + 13.752 W − 6.775 A |
Females | 21–70 | 655.096 + 1.850 H + 9.563 W − 4.676 A | |
Schofield (kcal/d) | Males | 18–30 | 15.057 W + 692.2 |
Females | 18–30 | 14.818 W + 486.6 | |
Males | 30–60 | 11.472 W + 873.1 | |
Females | 30–60 | 8.126 W + 845.6 | |
Henry (kcal/d) | Males | 18–30 | 16.0 W + 545 |
Females | 18–30 | 13.1 W + 558 | |
Males | 30–60 | 14.2 W + 593 | |
Females | 30–60 | 9.74 W + 694 | |
Liu (kcal/d) | Both | 20–78 | 13.88 W + 4.16 H − 3.43 A − 112.40 S + 54.34 |
Yang (kJ/d) | Both | 18–45 | 89 W + 600 S + 277 |
Hong (kcal/d) | Both | 18–67 | 13.9 W − 5.39 A − 247 S + 1102 |
Singapore (kJ/d) | Both | 21–69 | 52.6 W – 196 S + 2974 |
AA Ganpule (kJ/d) | Both | ≥20 | 48.1 W + 23.4 H – 13.8 A – 54.73 S + 123.8 |
New equation (kcal/d) | Both | 18–45 | 14.52 W – 155.88 S + 565.79 |
Male | p | Female | p | Total | p | ||||
---|---|---|---|---|---|---|---|---|---|
Database 1 (n = 253) | Database 2 (n = 236) | Database 1 (n = 263) | Database 2 (n = 250) | Database 1 (n = 516) | Database 2 (n = 486) | ||||
Age (years) | 26.9 ± 7.1 | 26.9 ± 7.2 | 0.98 | 27.0 ± 7.7 | 26.5 ± 7.4 | 0.53 | 26.9 ± 7.4 | 26.7 ± 7.3 | 0.62 |
Height (cm) | 169.8 ± 6.0 | 169.4 ± 5.7 | 0.40 | 158.9 ± 5.4 | 158.9 ± 7.2 | 0.92 | 164.3 ± 7.9 | 164.0 ± 7.6 | 0.44 |
Weight (kg) | 61.7 ± 6.6 | 61.3 ± 6.1 | 0.30 | 51.2 ± 5.2 | 53.2 ± 5.1 | 0.93 | 57.4 ± 7.3 | 57.1 ± 6.9 | 0.82 |
BMI (kg/m2) | 21.3 ± 1.5 | 21.3 ± 1.4 | 0.86 | 21.0 ± 1.5 | 21.1 ± 1.5 | 0.86 | 21.2 ± 1.5 | 21.2 ± 1.5 | 0.10 |
Equation Source | Mean ± s.d. (kcal/d) | Correlation Coefficient (r) |
---|---|---|
Measured BMR (n = 486) | 1315 ± 307 | - |
Predicted BMR from | ||
Harris–Benedict | 1579 ± 98 * | 0.243 |
Schofield | 1438 ± 183 * | 0.519 |
Henry | 1414 ± 164 * | 0.518 |
Liu | 1326 ± 169 | 0.511 |
Yang | 1351 ± 198 * | 0.515 |
Hong | 1625 ± 201 * | 0.510 |
Singapore | 1283 ± 165 * | 0.516 |
AA Ganpule | 1321 ± 171 | 0.511 |
New equation | 1315 ± 159 | 0.518 |
Equation | Mean of Difference (kcal/d) | Limits of Agreement (kcal/d) | Under Estimation (%) | Over Estimation (%) | Accuracy (%) | ICC (95%CI) |
---|---|---|---|---|---|---|
Harris–Benedict | −263.6 | −848.6 and 321.5 | 7.4 | 66.9 | 25.7 | 0.085 (−0.023–0.191) |
Schofield | −122.5 | −638.2 and 393.2 | 13.2 | 48.4 | 38.5 | 0.409 (0.256–0.529) |
Henry | −98.6 | −613.0 and 415.7 | 14.4 | 44.4 | 41.2 | 0.399 (0.283–0.498) |
Liu | −10.9 | −528.2 and 506.4 | 25.7 | 31.3 | 43.0 | 0.432 (0.357–0.502) |
Yang | −35.7 | −556.8 and 485.4 | 22.2 | 34.8 | 43.0 | 0.465 (0.392–0.532) |
Hong | −310.2 | −834.5 and 214.1 | 3.5 | 74.7 | 21.8 | 0.273 (−0.068–0.529) |
Singapore | 32.8 | −482.5 and 548.0 | 33.5 | 28.0 | 38.5 | 0.428 (0.352–0.498) |
AA Ganpule | −5.7 | −523.1 and 511.6 | 27.0 | 31.7 | 41.4 | 0.436 (0.361–0.505) |
New equation | −0.2 | −514.3 and 513.9 | 27.4 | 31.5 | 41.2 | 0.424 (0.348–0.494) |
Male (n = 21) | Female (n = 20) | |
---|---|---|
Age (years) | 21.4 ± 1.2 | 21.0 ± 1.5 |
Height (cm) | 176.2 ± 5.5 | 163.2 ± 4.3 |
Weight (kg) | 66.6 ± 7.5 | 53.9 ± 3.9 |
BMI (kg/m2) | 21.4 ± 1.6 | 20.2 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Mao, D.; Xu, Z.; Wang, Y.; Yang, X.; Zhuo, Q.; Tian, Y.; Huan, Y.; Li, Y. Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults. Nutrients 2023, 15, 4185. https://doi.org/10.3390/nu15194185
Wang X, Mao D, Xu Z, Wang Y, Yang X, Zhuo Q, Tian Y, Huan Y, Li Y. Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults. Nutrients. 2023; 15(19):4185. https://doi.org/10.3390/nu15194185
Chicago/Turabian StyleWang, Xiaojing, Deqian Mao, Zechao Xu, Yongjun Wang, Xiaoguang Yang, Qin Zhuo, Ying Tian, Yuping Huan, and Yajie Li. 2023. "Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults" Nutrients 15, no. 19: 4185. https://doi.org/10.3390/nu15194185
APA StyleWang, X., Mao, D., Xu, Z., Wang, Y., Yang, X., Zhuo, Q., Tian, Y., Huan, Y., & Li, Y. (2023). Predictive Equation for Basal Metabolic Rate in Normal-Weight Chinese Adults. Nutrients, 15(19), 4185. https://doi.org/10.3390/nu15194185