Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Experiment Design
2.3. Bilateral Ovariectomy Procedure
2.4. Exercise Session
2.5. Intermitting Fasting
2.6. Sampling and Sacrificing
2.7. Estimation of Redox Status
2.7.1. Oxidative Stress Index Evaluation
2.7.2. Antioxidant Activity Assessment
2.7.3. Determination of Inflammatory Cytokines
2.7.4. Estimation of BDNF Protein
2.7.5. Assessment of Acetylcholinesterase and Monoamines
2.7.6. Real-Time Quantitative Polymerase Chain Reaction
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel Moneim, A.E.; Ezzat, A.; Salem, F.H.; Kassab, R.; El-Yamany, N.A. Protective effect of virgin coconut oil against doxorubicin-mediated hepatotoxicity in rats. Adv. Basic Appl. Sci. 2023, 1, 46–54. [Google Scholar] [CrossRef]
- Ishikawa, A.; Matsushita, H.; Shimizu, S.; Morita, N.; Hanai, R.; Sugiyama, S.; Watanabe, K.; Wakatsuki, A. Impact of Menopause and the Menstrual Cycle on Oxidative Stress in Japanese Women. J. Clin. Med. 2023, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.P.; Reckelhoff, J.F. Estrogen, hormonal replacement therapy and cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 2011, 20, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lopez, M. Central regulation of energy metabolism by estrogens. Mol. Metab. 2018, 15, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zeng, Q.; Jiang, K.; Zhao, Y.; Long, Z.; Du, Y.; Wang, K.; He, G. Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice. Genes Dis. 2022, 9, 1315–1331. [Google Scholar] [CrossRef]
- Yalin, S.; Sagir, O.; Comelekoglu, U.; Berkoz, M.; Eroglu, P. Strontium ranelate treatment improves oxidative damage in osteoporotic rat model. Pharmacol. Rep. 2012, 64, 396–402. [Google Scholar] [CrossRef]
- Javani, G.; Alihemmati, A.; Habibi, P.; Yousefi, H.; Karimi, P.; Ebraheimi, V.; Ahmadiasl, N. The Effects of Genistein on Renal Oxidative Stress and Inflammation of Ovariectomized Rats. Jundishapur J. Nat. Pharm. Prod. 2019, 14, e57149. [Google Scholar] [CrossRef]
- Yuan, X.; Fu, Z.; Ji, P.; Guo, L.; Al-Ghamdy, A.O.; Alkandiri, A.; Habotta, O.A.; Abdel Moneim, A.E.; Kassab, R.B. Selenium Nanoparticles Pre-Treatment Reverse Behavioral, Oxidative Damage, Neuronal Loss and Neurochemical Alterations in Pentylenetetrazole-Induced Epileptic Seizures in Mice. Int. J. Nanomed. 2020, 15, 6339–6353. [Google Scholar] [CrossRef]
- Foster, K.A.; Margraf, R.R.; Turner, D.A. NADH hyperoxidation correlates with enhanced susceptibility of aged rats to hypoxia. Neurobiol. Aging 2008, 29, 598–613. [Google Scholar] [CrossRef]
- Simpkins, J.W.; Yang, S.H.; Wen, Y.; Singh, M. Estrogens, progestins, menopause and neurodegeneration: Basic and clinical studies. Cell. Mol. Life Sci. 2005, 62, 271–280. [Google Scholar] [CrossRef]
- Stubbs, B.; Koyanagi, A.; Hallgren, M.; Firth, J.; Richards, J.; Schuch, F.; Rosenbaum, S.; Mugisha, J.; Veronese, N.; Lahti, J.; et al. Physical activity and anxiety: A perspective from the World Health Survey. J. Affect. Disord. 2017, 208, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Lauze, M.; Daneault, J.F.; Duval, C. The Effects of Physical Activity in Parkinson’s Disease: A Review. J. Park. Dis. 2016, 6, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Marmett, B.; Nunes, R.B.; de Souza, K.S.; Lago, P.D.; Rhoden, C.R. Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate. Redox Rep. Commun. Free Radic. Res. 2018, 23, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.R.; Jafari, M.; Rezaei, S.; Agha-Alinejad, H.; Sobhani, V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab. Anim. 2020, 49, 119–125. [Google Scholar] [CrossRef]
- Morgan, J.A.; Corrigan, F.; Baune, B.T. Effects of physical exercise on central nervous system functions: A review of brain region specific adaptations. J. Mol. Psychiatry 2015, 3, 3. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Camiletti-Moiron, D.; Aparicio, V.A.; Aranda, P.; Radak, Z. Does exercise reduce brain oxidative stress? A systematic review. Scand. J. Med. Sci. Sports 2013, 23, e202–e212. [Google Scholar] [CrossRef]
- Kohman, R.A.; Bhattacharya, T.K.; Wojcik, E.; Rhodes, J.S. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J. Neuroinflam. 2013, 10, 114. [Google Scholar] [CrossRef]
- Emami, S.R.; Jafari, M.; Haghshenas, R.; Ravasi, A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J. Exerc. Nutr. Biochem. 2016, 20, 29–35. [Google Scholar] [CrossRef]
- Buresh, R.; Berg, K. A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness. Sports Med. Open 2015, 1, 3. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Chen, Y.; Yang, Y.; Zhang, J.J. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion. Eur. J. Nutr. 2019, 58, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Harney, D.J.; Cielesh, M.; Chu, R.; Cooke, K.C.; James, D.E.; Stockli, J.; Larance, M. Proteomics analysis of adipose depots after intermittent fasting reveals visceral fat preservation mechanisms. Cell Rep. 2021, 34, 108804. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xie, C.; Lu, S.; Nichols, R.G.; Tian, Y.; Li, L.; Patel, D.; Ma, Y.; Brocker, C.N.; Yan, T.; et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017, 26, 672–685.e4. [Google Scholar] [CrossRef] [PubMed]
- Savencu, C.E.; Linta, A.; Farcas, G.; Bina, A.M.; Cretu, O.M.; Malita, D.C.; Muntean, D.M.; Sturza, A. Impact of Dietary Restriction Regimens on Mitochondria, Heart, and Endothelial Function: A Brief Overview. Front. Physiol. 2021, 12, 768383. [Google Scholar] [CrossRef] [PubMed]
- Faitg, J.; Leduc-Gaudet, J.P.; Reynaud, O.; Ferland, G.; Gaudreau, P.; Gouspillou, G. Effects of Aging and Caloric Restriction on Fiber Type Composition, Mitochondrial Morphology and Dynamics in Rat Oxidative and Glycolytic Muscles. Front. Physiol. 2019, 10, 420. [Google Scholar] [CrossRef]
- Khraiwesh, H.; Lopez-Dominguez, J.A.; Lopez-Lluch, G.; Navas, P.; de Cabo, R.; Ramsey, J.J.; Villalba, J.M.; Gonzalez-Reyes, J.A. Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1023–1034. [Google Scholar] [CrossRef]
- Castello, L.; Froio, T.; Maina, M.; Cavallini, G.; Biasi, F.; Leonarduzzi, G.; Donati, A.; Bergamini, E.; Poli, G.; Chiarpotto, E. Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic. Biol. Med. 2010, 48, 47–54. [Google Scholar] [CrossRef]
- Real-Hohn, A.; Navegantes, C.; Ramos, K.; Ramos-Filho, D.; Cahue, F.; Galina, A.; Salerno, V.P. The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS ONE 2018, 13, e0202784. [Google Scholar] [CrossRef]
- Judge, S.; Judge, A.; Grune, T.; Leeuwenburgh, C. Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R254–R259. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- de Haan, J.B.; Cristiano, F.; Iannello, R.; Bladier, C.; Kelner, M.J.; Kola, I. Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum. Mol. Genet. 1996, 5, 283–292. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Pagel, P.; Blome, J.; Wolf, H.U. High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease. J. Chromatogr. B Biomed. Sci. Appl. 2000, 746, 297–304. [Google Scholar] [CrossRef]
- Ge, F.; Yang, H.; Lu, W.; Shi, H.; Chen, Q.; Luo, Y.; Liu, L.; Yan, J. Ovariectomy Induces Microglial Cell Activation and Inflammatory Response in Rat Prefrontal Cortices to Accelerate the Chronic Unpredictable Stress-Mediated Anxiety and Depression. BioMed Res. Int. 2020, 2020, 3609758. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Zhu, X.; Ni, X.; Lu, J. Exercise Increases Cystathionine-gamma-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats. Int. Heart J. 2016, 57, 96–103. [Google Scholar] [CrossRef]
- Gunay, A.; Gunes, N.; Gunay, U. Effect of ovariohysterectomy on lipid peroxidation and levels of some antioxidants and biochemical parameters in bitches. Bull. Vet. Inst. Pulawy 2011, 55, 695–698. [Google Scholar]
- Agacayak, E.; Basaranoglu, S.; Tunc, S.Y.; Icen, M.S.; Findik, F.M.; Kaplan, I.; Evliyaoglu, O.; Gul, T. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein. Drug Des. Dev. Ther. 2015, 9, 2975–2982. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.B.; Mazzanti, C.M.; Franca, R.T.; Pagnoncelli, M.; Costa, M.M.; de Souza, E.M.; Goncalves, J.; Spanevello, R.; Schmatz, R.; da Costa, P.; et al. 17-beta estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle-aged rats. Life Sci. 2012, 90, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Borras, C.; Gambini, J.; Lopez-Grueso, R.; Pallardo, F.V.; Vina, J. Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim. Biophys. Acta 2010, 1802, 205–211. [Google Scholar] [CrossRef]
- Gomez-Zubeldia, M.A.; Corrales, S.; Arbues, J.; Nogales, A.G.; Millan, J.C. Influence of estradiol and gestagens on oxidative stress in the rat uterus. Gynecol. Oncol. 2002, 86, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.B.; Lacava, Z.G.; Miyasaka, C.K.; Chaves, S.B.; Curi, R. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids. Braz. J. Med. Biol. Res. 2001, 34, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Makker, K.; Sharma, R. Clinical relevance of oxidative stress in male factor infertility: An update. Am. J. Reprod. Immunol. 2008, 59, 2–11. [Google Scholar] [CrossRef]
- Patki, G.; Allam, F.H.; Atrooz, F.; Dao, A.T.; Solanki, N.; Chugh, G.; Asghar, M.; Jafri, F.; Bohat, R.; Alkadhi, K.A.; et al. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS ONE 2013, 8, e74522. [Google Scholar] [CrossRef]
- Abdel Moneim, A.E. Indigofera oblongifolia prevents lead acetate-induced hepatotoxicity, oxidative stress, fibrosis and apoptosis in rats. PLoS ONE 2016, 11, e0158965. [Google Scholar] [CrossRef]
- Abbas, A.M.; Elsamanoudy, A.Z. Effects of 17beta-estradiol and antioxidant administration on oxidative stress and insulin resistance in ovariectomized rats. Can. J. Physiol. Pharmacol. 2011, 89, 497–504. [Google Scholar] [CrossRef]
- Ribon-Demars, A.; Pialoux, V.; Boreau, A.; Marcouiller, F.; Larivière, R.; Bairam, A.; Joseph, V. Protective roles of estradiol against vascular oxidative stress in ovariectomized female rats exposed to normoxia or intermittent hypoxia. Acta Physiol. 2019, 225, e13159. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, S.; Ramachandran, I.; Muthusamy, B.; Vasudevan, G.; Prabhu, V.; Subramaniam, V.; Jagadeesan, A.; Narasimhan, S. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta Int. J. Clin. Chem. 2005, 360, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Lean, J.M.; Jagger, C.J.; Kirstein, B.; Fuller, K.; Chambers, T.J. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 2005, 146, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Maggio, D.; Barabani, M.; Pierandrei, M.; Polidori, M.C.; Catani, M.; Mecocci, P.; Senin, U.; Pacifici, R.; Cherubini, A. Marked decrease in plasma antioxidants in aged osteoporotic women: Results of a cross-sectional study. J. Clin. Endocrinol. Metab. 2003, 88, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Ignacio, D.L.; Fortunato, R.S.; Silvestre, D.; Matta, L.; de Vansconcelos, A.L.; Carvalho, D.P.; Galina, A.; Werneck-de-Castro, J.P.; Cavalcanti-de-Albuquerque, J.P. Physical exercise improves mitochondrial function in ovariectomized rats. J. Endocrinol. 2022, 254, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Chlebowski, R.T.; Stefanick, M.L.; Aragaki, A.K.; Rossouw, J.E.; Prentice, R.L.; Anderson, G.; Howard, B.V.; Thomson, C.A.; LaCroix, A.Z.; et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 2013, 310, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, N.; De Teresa, C.; Cano, A.; Godoy, D.; Hita-Contreras, F.; Lapotka, M.; Llaneza, P.; Manonelles, P.; Martinez-Amat, A.; Ocon, O.; et al. Benefits of physical exercise in postmenopausal women. Maturitas 2016, 93, 83–88. [Google Scholar] [CrossRef]
- Stein, E.; Silva, I.M.; Dorneles, G.P.; Lira, F.S.; Romao, P.; Peres, A. Reduced Fat Oxidation During Exercise in Post-Menopausal Overweight-Obese Women with Higher Lipid Accumulation Product Index. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2020, 128, 556–562. [Google Scholar] [CrossRef]
- Wehr, E.; Pilz, S.; Boehm, B.O.; Marz, W.; Obermayer-Pietsch, B. The lipid accumulation product is associated with increased mortality in normal weight postmenopausal women. Obesity 2011, 19, 1873–1880. [Google Scholar] [CrossRef]
- Silva, S.B.; Honorato-Sampaio, K.; Costa, S.P.; Domingues, T.E.; da Cruz, T.M.M.; Rodrigues, C.M.; Costa, K.B.; Dos Santos, J.M.; da Silva Lage, V.K.; Gaiad, T.P.; et al. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci. Rep. 2022, 12, 8764. [Google Scholar] [CrossRef]
- Mulyaningrum, U.; Muttaqina, A.; Idninda, A.; Pulungan, N.; Agustiningtyas, I.; Fidianingsih, I. Effect of Dawood Fasting on the Increased Level of Antioxidant Enzymes. Open Access Maced. J. Med. Sci. 2021, 9, 4175. [Google Scholar] [CrossRef]
- Klenk, J.; Rapp, K.; Ulmer, H.; Concin, H.; Nagel, G. Changes of body mass index in relation to mortality: Results of a cohort of 42,099 adults. PLoS ONE 2014, 9, e84817. [Google Scholar] [CrossRef]
- Wilhelmi de Toledo, F.; Grundler, F.; Goutzourelas, N.; Tekos, F.; Vassi, E.; Mesnage, R.; Kouretas, D. Influence of Long-Term Fasting on Blood Redox Status in Humans. Antioxidants 2020, 9, 496. [Google Scholar] [CrossRef]
- Sasahara, K.; Shikimi, H.; Haraguchi, S.; Sakamoto, H.; Honda, S.; Harada, N.; Tsutsui, K. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J. Neurosci. 2007, 27, 7408–7417. [Google Scholar] [CrossRef] [PubMed]
- Lokuge, S.; Frey, B.N.; Foster, J.A.; Soares, C.N.; Steiner, M. The rapid effects of estrogen: A mini-review. Behav. Pharmacol. 2010, 21, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Ostlund, H.; Keller, E.; Hurd, Y.L. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. N. Y. Acad. Sci. 2003, 1007, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kingsberg, S.A.; Larkin, L.C.; Liu, J.H. Clinical Effects of Early or Surgical Menopause. Obstet. Gynecol. 2020, 135, 853–868. [Google Scholar] [CrossRef]
- Rodriguez-Landa, J.F. Considerations of Timing Post-ovariectomy in Mice and Rats in Studying Anxiety- and Depression-Like Behaviors Associated With Surgical Menopause in Women. Front. Behav. Neurosci. 2022, 16, 829274. [Google Scholar] [CrossRef]
- Monteleone, P.; Mascagni, G.; Giannini, A.; Genazzani, A.R.; Simoncini, T. Symptoms of menopause—Global prevalence, physiology and implications. Nat. Rev. Endocrinol. 2018, 14, 199–215. [Google Scholar] [CrossRef]
- Batallán Burrowes, A.A.; Olajide, O.J.; Iasenza, I.A.; Shams, W.M.; Carter, F.; Chapman, C.A. Ovariectomy reduces cholinergic modulation of excitatory synaptic transmission in the rat entorhinal cortex. PLoS ONE 2022, 17, e0271131. [Google Scholar] [CrossRef]
- Hammond, R.; Gibbs, R.B. GPR30 is positioned to mediate estrogen effects on basal forebrain cholinergic neurons and cognitive performance. Brain Res. 2011, 1379, 53–60. [Google Scholar] [CrossRef]
- Mansour, S.; Moustafa, E.; Hassan, A.; Thabet, N.M. Protective role of krill oil against estrogen deficiency induced neurodegeneration in ovariectomized rats. Indian. J. Exp. Biol. 2017, 55, 279–285. [Google Scholar]
- Estes, K.S.; Simpkins, J.W. Age-related alteration in catecholamine activity within microdissected brain regions of ovariectomized fischer 344 rats. J. Neurosci. Res. 1984, 11, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.W.; Kuo, Y.M. Exercise benefits brain function: The monoamine connection. Brain Sci. 2013, 3, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Knochel, C.; Oertel-Knochel, V.; O’Dwyer, L.; Prvulovic, D.; Alves, G.; Kollmann, B.; Hampel, H. Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog. Neurobiol. 2012, 96, 46–68. [Google Scholar] [CrossRef] [PubMed]
- Archer, T. Influence of physical exercise on traumatic brain injury deficits: Scaffolding effect. Neurotox. Res. 2012, 21, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Ahlskog, J.E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 2011, 77, 288–294. [Google Scholar] [CrossRef]
- Jacobs, I.; Bell, D.G. Effects of acute modafinil ingestion on exercise time to exhaustion. Med. Sci. Sports Exerc. 2004, 36, 1078–1082. [Google Scholar] [CrossRef]
- Foley, T.E.; Fleshner, M. Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromol. Med. 2008, 10, 67–80. [Google Scholar] [CrossRef]
- de Castro, J.M.; Duncan, G. Operantly conditioned running: Effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacol. Biochem. Behav. 1985, 23, 495–500. [Google Scholar] [CrossRef]
- Dunn, A.L.; Reigle, T.G.; Youngstedt, S.D.; Armstrong, R.B.; Dishman, R.K. Brain norepinephrine and metabolites after treadmill training and wheel running in rats. Med. Sci. Sports Exerc. 1996, 28, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Sarbadhikari, S.N.; Saha, A.K. Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis. Theor. Biol. Med. Model. 2006, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Elesawy, B.H.; Raafat, B.M.; Muqbali, A.A.; Abbas, A.M.; Sakr, H.F. The Impact of Intermittent Fasting on Brain-Derived Neurotrophic Factor, Neurotrophin 3, and Rat Behavior in a Rat Model of Type 2 Diabetes Mellitus. Brain Sci. 2021, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Ishida, A.; Nakajima, W.; Takada, G. Short-term fasting alters neonatal rat striatal dopamine levels and serotonin metabolism: An in vivo microdialysis study. Brain Res. Dev. Brain Res. 1997, 104, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Zhou, D.; Ruther, E. Long-term modulation of presynaptic 5-HT-output: Experimentally induced changes in cortical 5-HT-transporter density, tryptophan hydroxylase content and 5-HT innervation density. J. Neural Transm. 1997, 104, 993–1004. [Google Scholar] [CrossRef]
- Fuenmayor, L.D.; Garcia, S. The effect of fasting on 5-hydroxytryptamine metabolism in brain regions of the albino rat. Br. J. Pharmacol. 1984, 83, 357–362. [Google Scholar] [CrossRef]
- Jahng, J.W.; Kim, J.G.; Kim, H.J.; Kim, B.T.; Kang, D.W.; Lee, J.H. Chronic food restriction in young rats results in depression- and anxiety-like behaviors with decreased expression of serotonin reuptake transporter. Brain Res. 2007, 1150, 100–107. [Google Scholar] [CrossRef]
- Haider, S.; Haleem, D.J. Decreases of brain serotonin following a food restriction schedule of 4 weeks in male and female rats. Med. Sci. Monit. 2000, 6, 1061–1067. [Google Scholar]
- Roseberry, A.G. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area. J. Neurophysiol. 2015, 114, 1072–1082. [Google Scholar] [CrossRef]
- Fond, G.; Macgregor, A.; Leboyer, M.; Michalsen, A. Fasting in mood disorders: Neurobiology and effectiveness. A review of the literature. Psychiatry Res. 2013, 209, 253–258. [Google Scholar] [CrossRef]
- Bastani, A.; Rajabi, S.; Kianimarkani, F. The Effects of Fasting During Ramadan on the Concentration of Serotonin, Dopamine, Brain-Derived Neurotrophic Factor and Nerve Growth Factor. Neurol. Int. 2017, 9, 7043. [Google Scholar] [CrossRef] [PubMed]
- Yousef, S.; Omar, A.; Fahad, A.; Abdel Moneim, A.E.; Metwally, D.M.; El-khadragy, M.F.; Kassab, R.B. The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int. J. Environ. Res. Public Health 2019, 16, 2895. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Yang, Y.R.; Yu, S.M. Protective effects of treadmill training on infarction in rats. Brain Res. 2001, 922, 140–143. [Google Scholar] [CrossRef]
- Liebelt, B.; Papapetrou, P.; Ali, A.; Guo, M.; Ji, X.; Peng, C.; Rogers, R.; Curry, A.; Jimenez, D.; Ding, Y. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 2010, 166, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Lin, V.; Davis, W.; Huang, T.; Carranza, A.; Sprague, S.; Reyes, R.; Jimenez, D.; Ding, Y. Preischemic induction of TNF-alpha by physical exercise reduces blood-brain barrier dysfunction in stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow. Metab. 2008, 28, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Zhang, M.; Wang, X.; Li, W.B.; Ren, S.Q.; Zhang, F. Pre-ischemic exercise alleviates oxidative damage following ischemic stroke in rats. Exp. Ther. Med. 2014, 8, 1325–1329. [Google Scholar] [CrossRef]
- Otsuka, S.; Setoyama, K.; Takada, S.; Nakanishi, K.; Terashi, T.; Norimatsu, K.; Tani, A.; Sakakima, H.; Maruyama, I.; Tancharoen, S.; et al. Preconditioning Exercise in Rats Attenuates Early Brain Injury Resulting from Subarachnoid Hemorrhage by Reducing Oxidative Stress, Inflammation, and Neuronal Apoptosis. Mol. Neurobiol. 2021, 58, 5602–5617. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Zhu, W.W.; Zhou, D. Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the basilar artery after subarachnoid hemorrhage in rats. Ann. Clin. Lab. Sci. 2010, 40, 233–239. [Google Scholar]
- Li, T.; Wang, H.; Ding, Y.; Zhou, M.; Zhou, X.; Zhang, X.; Ding, K.; He, J.; Lu, X.; Xu, J.; et al. Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Res. 2014, 1558, 90–99. [Google Scholar] [CrossRef]
- Kwon, S.H.; Ma, S.X.; Hwang, J.Y.; Lee, S.Y.; Jang, C.G. Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25-35 neurotoxicity. Neuroscience 2015, 304, 14–28. [Google Scholar] [CrossRef]
- Tutakhail, A.; Nazary, Q.A.; Lebsir, D.; Kerdine-Romer, S.; Coudore, F. Induction of brain Nrf2-HO-1 pathway and antinociception after different physical training paradigms in mice. Life Sci. 2018, 209, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Rashidy-Pour, A.; Bavarsad, K.; Miladi-Gorji, H.; Seraj, Z.; Vafaei, A.A. Voluntary exercise and estradiol reverse ovariectomy-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats. Pharmacol. Biochem. Behav. 2019, 187, 172819. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Piovano, G.S.; Varayoud, J.; Luque, E.H.; Ramos, J.G. Long-term ovariectomy increases BDNF gene methylation status in mouse hippocampus. J. Steroid Biochem. Mol. Biol. 2014, 144, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Li, Z.; Yeung, V.; Xu, R.J. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr. Metab. 2010, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Engler-Chiurazzi, E.; Tsang, C.; Nonnenmacher, S.; Liang, W.S.; Corneveaux, J.J.; Prokai, L.; Huentelman, M.J.; Bimonte-Nelson, H.A. Tonic Premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats. Neurobiol. Aging 2011, 32, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, Y.; Hu, W.; Gao, Y.; Ni, X.; Sheng, H.; Liu, Y. Exercise ameliorates depression-like behavior and increases hippocampal BDNF level in ovariectomized rats. Neurosci. Lett. 2014, 573, 13–18. [Google Scholar] [CrossRef]
- Kim, T.W.; Kim, C.S.; Kim, J.Y.; Kim, C.J.; Seo, J.H. Combined exercise ameliorates ovariectomy-induced cognitive impairment by enhancing cell proliferation and suppressing apoptosis. Menopause 2016, 23, 18–26. [Google Scholar] [CrossRef]
- Sartori, C.R.; Vieira, A.S.; Ferrari, E.M.; Langone, F.; Tongiorgi, E.; Parada, C.A. The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 2011, 180, 9–18. [Google Scholar] [CrossRef]
- Rocha-Gomes, A.; Alvarenga e Castro, T.P.; Almeida, P.R.; Balsamão Paes Leme, P.S.; da Silva, A.A.; Riul, T.R.; Bastos, C.P.; Leite, H.R. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav. Brain Res. 2023, 453, 114605. [Google Scholar] [CrossRef]
- Johansson, B.B.; Ohlsson, A.L. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp. Neurol. 1996, 139, 322–327. [Google Scholar] [CrossRef]
- Jin, J.; Jing, H.; Choi, G.; Oh, M.S.; Ryu, J.H.; Jeong, J.W.; Huh, Y.; Park, C. Voluntary exercise increases the new cell formation in the hippocampus of ovariectomized mice. Neurosci. Lett. 2008, 439, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Hong, Y.P.; Lee, S.J. Effects of exercise on mature or precursor brain-derived neurotrophic factor pathways in ovariectomized rats. Mol. Med. Rep. 2017, 16, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Fan, J.; Ge, T.; Tang, L.; Li, B. The mechanism of acute fasting-induced antidepressant-like effects in mice. J. Cell. Mol. Med. 2018, 22, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chau, L.; Liu, S.; Avshalumov, M.V.; Rice, M.E.; Carr, K.D. A food restriction protocol that increases drug reward decreases tropomyosin receptor kinase B in the ventral tegmental area, with no effect on brain-derived neurotrophic factor or tropomyosin receptor kinase B protein levels in dopaminergic forebrain regions. Neuroscience 2011, 197, 330–338. [Google Scholar] [PubMed]
- Bariohay, B.; Lebrun, B.; Moyse, E.; Jean, A. Brain-derived neurotrophic factor plays a role as an anorexigenic factor in the dorsal vagal complex. Endocrinology 2005, 146, 5612–5620. [Google Scholar] [CrossRef]
Name | Accession Number | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|---|
GAPDH | NM_017008.4 | CTCTCTGCTCCTCCCTGTTC | TACGGCCAAATCCGTTCACA |
SOD2 | NM_017051.2 | CGGGGGCCATATCAATCACA | GCCTCCAGCAACTCTCCTTT |
SOD1 | NM_017050.1 | TGGTGGTCCACGAGAAACAA | GCAATCCCAATCACACCACAA |
GPx1 | NM_030826.4 | CCTGGTATCTGGGCTTGGTG | TTAGGCGTAAAGGCATCGGG |
GPx4 | NM_001039849.3 | AAGTCCTAGGAAGCGCCCA | GGGTTGAAAGGCTCGGGAAT |
BDNF | NM_001270630.1 | AATAATGTCTGACCCCAGTGCC | ATTGTTGTCACGCTCCTGGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrahim, T.; Alangry, R.; Alotaibi, R.; Almandil, L.; Alburikan, S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023, 15, 4270. https://doi.org/10.3390/nu15194270
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients. 2023; 15(19):4270. https://doi.org/10.3390/nu15194270
Chicago/Turabian StyleAlbrahim, Tarfa, Raghad Alangry, Raghad Alotaibi, Leen Almandil, and Sara Alburikan. 2023. "Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats" Nutrients 15, no. 19: 4270. https://doi.org/10.3390/nu15194270
APA StyleAlbrahim, T., Alangry, R., Alotaibi, R., Almandil, L., & Alburikan, S. (2023). Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients, 15(19), 4270. https://doi.org/10.3390/nu15194270