Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Differentiation
2.2. Chemical Treatments and Cell Viability
2.3. Quantitative Metal Analyses
2.4. Heme and Total Porphyrin Assays
2.5. Quantitative Real-Time PCR (qPCR)
2.6. Western Blot Analyses
2.7. Statistical Analyses
3. Results
3.1. G1E-ER4 Cells Acquire Zinc during Development and Depend on Zinc for Survival
3.2. Restriction of Cellular Zinc Impairs Hemoglobinization G1E-ER4 Cells by Differentiation
3.3. Cellular Iron Contents of Differentiating G1E-ER4 Cells Are Not Affected by Zinc Status
3.4. Zinc Restriction Differentially Affects Porphyrin Metabolites Produced during Hemoglobinization of MEL-DS19 Cells
3.5. Erythroid Progenitors Developing under Zinc Restriction Manifest Changes in Heme Metabolites Distinct from Those of Iron Deficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151306-7.
- Gardner, W.; Kassebaum, N. Global, Regional, and National Prevalence of Anemia and Its Causes in 204 Countries and Territories, 1990–2019. Curr. Dev. Nutr. 2020, 4, 830. [Google Scholar] [CrossRef]
- Huber, K.L.; Cousins, R.J. Zinc Metabolism and Metallothionein Expression in Bone Marrow during Erythropoiesis. Am. J. Physiol.-Endocrinol. Metab. 1993, 264, E770–E775. [Google Scholar] [CrossRef] [PubMed]
- Koury, S.; Yarlagadda, S.; Moskalik-Liermo, K.; Popli, N.; Kim, N.; Apolito, C.; Peterson, A.; Zhang, X.; Zu, P.; Tamburlin, J.; et al. Differential Gene Expression during Terminal Erythroid Differentiation. Genomics 2007, 90, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Ryu, M.-S.; Zhang, D.; Protchenko, O.; Shakoury-Elizeh, M.; Philpott, C.C. PCBP1 and NCOA4 Regulate Erythroid Iron Storage and Heme Biosynthesis. J. Clin. Investig. 2017, 127, 1786–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monacelli, R.; Tanaka, H.; Yoe, J.H. Spectrochemical Determination of Magnesium, Chromium, Nickel, Copper and Zinc in Human Plasma. Clin. Chim. Acta 1956, 1, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Walther, L.E.; Winnefeld, K.; Sölch, O. Determination of Iron, Copper, Zinc, Magnesium and Selenium in Plasma and Erythrocytes in Neurosurgical Patients. J. Trace Elem. Med. Biol. 2000, 14, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, N.; Liao, R.; Wilson, G.M.; Dent, M.R.; Cao, M.; Burstyn, J.N.; Hematti, P.; Liu, X.; Zhang, Y.; Zheng, Y.; et al. GATA/Heme Multi-Omics Reveals a Trace Metal-Dependent Cellular Differentiation Mechanism. Dev. Cell 2018, 46, 581–594.e4. [Google Scholar] [CrossRef] [Green Version]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, E.K. The Remarkable Character of Porphobilinogen Synthase. Acc. Chem. Res. 2016, 49, 2509–2517. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, V.M.; Kaufman, G.K.; Urbach, A.R.; Gitlin, I.; Gudiksen, K.L.; Weibel, D.B.; Whitesides, G.M. Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein−Ligand Binding. Chem. Rev. 2008, 108, 946–1051. [Google Scholar] [CrossRef]
- King, J.C. Zinc: An Essential but Elusive Nutrient. Am. J. Clin. Nutr. 2011, 94, 679S–684S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumssa, D.B.; Joy, E.J.M.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary Calcium and Zinc Deficiency Risks Are Decreasing but Remain Prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessells, K.R.; Brown, K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [Green Version]
- King, L.E.; Fraker, P.J. Zinc Deficiency in Mice Alters Myelopoiesis and Hematopoiesis. J. Nutr. 2002, 132, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- King, L.E.; Frentzel, J.W.; Mann, J.J.; Fraker, P.J. Chronic Zinc Deficiency in Mice Disrupted T Cell Lymphopoiesis and Erythropoiesis While B Cell Lymphopoiesis and Myelopoiesis Were Maintained. J. Am. Coll. Nutr. 2005, 24, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Abebe, Y.; Stabler, S.; Allen, R.H.; Westcott, J.E.; Stoecker, B.J.; Krebs, N.F.; Hambidge, K.M. Zinc, Gravida, Infection, and Iron, but Not Vitamin B-12 or Folate Status, Predict Hemoglobin during Pregnancy in Southern Ethiopia. J. Nutr. 2008, 138, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, L.A.; Parnell, W.R.; Thomson, C.D.; Green, T.J.; Gibson, R.S. Serum Zinc Is a Major Predictor of Anemia and Mediates the Effect of Selenium on Hemoglobin in School-Aged Children in a Nationally Representative Survey in New Zealand. J. Nutr. 2016, 146, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Atasoy, H.I.; Bugdayci, G. Zinc Deficiency and Its Predictive Capacity for Anemia: Unique Model in School Children. Pediatr. Int. 2018, 60, 703–709. [Google Scholar] [CrossRef]
- Prasad, A.S.; Halsted, J.A.; Nadimi, M. Syndrome of Iron Deficiency Anemia, Hepatosplenomegaly, Hypogonadism, Dwarfism and Geophagia. Am. J. Med. 1961, 31, 532–546. [Google Scholar] [CrossRef]
- Prasad, A.S.; Miale, A.; Farid, Z.; Sandstead, H.H.; Schulert, A.R. Zinc Metabolism in Patients with the Syndrome of Iron Deficiency Anemia, Hepatosplenomegaly, Dwarfism, and Hypognadism. J. Lab. Clin. Med. 1963, 61, 537–549. [Google Scholar]
- Grillo, A.S.; SantaMaria, A.M.; Kafina, M.D.; Cioffi, A.G.; Huston, N.C.; Han, M.; Seo, Y.A.; Yien, Y.Y.; Nardone, C.; Menon, A.V.; et al. Restored Iron Transport by a Small Molecule Promotes Absorption and Hemoglobinization in Animals. Science 2017, 356, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Ebert, P.S.; Hess, R.A.; Frykholm, B.C.; Tschudy, D.P. Succinylacetone, a Potent Inhibitor of Heme Biosynthesis: Effect on Cell Growth, Heme Content and δ-Aminolevulinic Acid Dehydratase Activity of Malignant Murine Erythroleukemia Cells. Biochem. Biophys. Res. Commun. 1979, 88, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Guggisberg, C.A.; Kim, J.; Lee, J.; Chen, X.; Ryu, M.-S. NCOA4 Regulates Iron Recycling and Responds to Hepcidin Activity and Lipopolysaccharide in Macrophages. Antioxidants 2022, 11, 1926. [Google Scholar] [CrossRef]
- Parsons, P.J. Measurement of Erythrocyte Protoporphyrin Concentration by Double Extraction and Spectrofluorometry. Curr. Protoc. Toxicol. 2001. [Google Scholar] [CrossRef]
- Hanna, T.L.; Dietzler, D.N.; Smith, C.H.; Gupta, S.; Zarkowsky, H.S. Erythrocyte Porphyrin Analysis in the Detection of Lead Poisoning in Children: Evaluation of Four Micromethods. Clin. Chem. 1976, 22, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Garden, J.S.; Mitchell, D.G.; Jackson, K.W.; Aldous, K.M. Improved Ethanol Extraction Procedure for Determining Zinc Protoporphyrin in Whole Blood. Clin. Chem. 1977, 23, 1585–1589. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Hardyman, J.E.J.; Tyson, J.; Jackson, K.A.; Aldridge, C.; Cockell, S.J.; Wakeling, L.A.; Valentine, R.A.; Ford, D. Zinc Sensing by Metal-Responsive Transcription Factor 1 (MTF1) Controls Metallothionein and ZnT1 Expression to Buffer the Sensitivity of the Transcriptome Response to Zinc. Metallomics 2016, 8, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Langmade, S.J.; Ravindra, R.; Daniels, P.J.; Andrews, G.K. The Transcription Factor MTF-1 Mediates Metal Regulation of the Mouse ZnT1 Gene. J. Biol. Chem. 2000, 275, 34803–34809. [Google Scholar] [CrossRef] [Green Version]
- Philpott, C.C.; Ryu, M.-S. Special Delivery: Distributing Iron in the Cytosol of Mammalian Cells. Front. Pharmacol. 2014, 5, 173. [Google Scholar] [CrossRef]
- Iwai, K.; Klausner, R.D.; Rouault, T.A. Requirements for Iron-Regulated Degradation of the RNA Binding Protein, Iron Regulatory Protein 2. EMBO J. 1995, 14, 5350–5357. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.J. Global Regulation of Erythroid Gene Expression by Transcription Factor GATA-1. Blood 2004, 104, 3136–3147. [Google Scholar] [CrossRef] [Green Version]
- Bloomer, J.R.; Reuter, R.J.; Morton, K.O.; Wehner, J.M. Enzymatic Formation of Zinc-Protoporphyrin by Rat Liver and Its Potential Effect on Hepatic Heme Metabolism. Gastroenterology 1983, 85, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Rettmer, R.L.; Carlson, T.H.; Origenes, M.L.; Md, J.; Jack, R.M.; Labbé, R.F. Zinc Protoporphyrin/Heme Ratio for Diagnosis of Preanemic Iron Deficiency. Pediatrics 1999, 104, e37. [Google Scholar] [CrossRef] [Green Version]
- Hastka, J.; Lasserre, J.J.; Schwarzbeck, A.; Hehlmann, R. Central Role of Zinc Protoporphyrin in Staging Iron Deficiency. Clin. Chem. 1994, 40, 768–773. [Google Scholar] [CrossRef]
- Siyame, E.W.P.; Hurst, R.; Wawer, A.A.; Young, S.D.; Broadley, M.R.; Chilimba, A.D.C.; Ander, L.E.; Watts, M.J.; Chilima, B.; Gondwe, J.; et al. A High Prevalence of Zinc- but Not Iron-Deficiency among Women in Rural Malawi: A Cross-Sectional Study. Int. J. Vitam. Nutr. Res. 2013, 83, 176–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killilea, D.W.; Rohner, F.; Ghosh, S.; Otoo, G.E.; Smith, L.; Siekmann, J.H.; King, J.C. Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration. J. Nutr. 2017, 147, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Jeng, S.-S.; Hsu, Y.-C.; Liao, Y.-M.; Wang, Y.-X.; Cao, X.; Huang, L.-J. In Anemia Zinc Is Recruited from Bone and Plasma to Produce New Red Blood Cells. J. Inorg. Biochem. 2020, 210, 111172. [Google Scholar] [CrossRef]
- Ryu, M.-S.; Lichten, L.A.; Liuzzi, J.P.; Cousins, R.J. Zinc Transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in Mouse Red Blood Cells Are Differentially Regulated during Erythroid Development and by Dietary Zinc Deficiency. J. Nutr. 2008, 138, 2076–2083. [Google Scholar] [CrossRef] [Green Version]
- Faraji, B.; Swendseid, M.E. Growth Rate, Tissue Zinc Levels and Activities of Selected Enzymes in Rats Fed a Zinc-Deficient Diet by Gastric Tube. J. Nutr. 1983, 113, 447–455. [Google Scholar] [CrossRef]
- Abdulla, M.; Haeger-Aronsen, B.; Mathur, A.; Wallenius, K. Effect of Age and Diet on Delta-Aminolevulinic AcidDehydratase in Red Blood Cells. Enzyme 1978, 23, 170–175. [Google Scholar] [CrossRef] [PubMed]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Zinc Review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurnham, D.; Northrop-Clewes, C. Biomarkers for the Differentiation of Anemia and Their Clinical Usefulness. J Blood Med 2013, 4, 11–22. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Set | Sequence |
---|---|---|
Mt1 | Forward | 5′-CCTCCTGCAAGAAGAGCTGC-3′ |
Reverse | 5′-TTCGTCACATCAGGCACAGC-3′ | |
Alas2 | Forward | 5′-CAGAGGGCAGCTCCAGAAGTT-3′ |
Reverse | 5′-GCTTCGGGTGGTTGAATCC-3′ | |
Hba-a1/2 | Forward | 5′-CGTGCTGACCTCCAAGTACC-3′ |
Reverse | 5′-GGTACAGGTGCAAGGGAGAG-3′ | |
Tfrc | Forward | 5′-TCACTTCCTGTCGCCCTATGT-3′ |
Reverse | 5′-AGAGTGTGAGAGCCAGAGCC-3′ | |
Tbp | Forward | 5′-AGTTGTGCAGAAGTTGGGCT-3′ |
Reverse | 5′-TACTGAACTGCTGGTGGGTCA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, J.; Ryu, M.-S. Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors. Nutrients 2023, 15, 281. https://doi.org/10.3390/nu15020281
Kim J, Lee J, Ryu M-S. Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors. Nutrients. 2023; 15(2):281. https://doi.org/10.3390/nu15020281
Chicago/Turabian StyleKim, Juyoung, Jaekwon Lee, and Moon-Suhn Ryu. 2023. "Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors" Nutrients 15, no. 2: 281. https://doi.org/10.3390/nu15020281
APA StyleKim, J., Lee, J., & Ryu, M. -S. (2023). Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors. Nutrients, 15(2), 281. https://doi.org/10.3390/nu15020281