SnackTrack—An App-Based Tool to Assess the Influence of Digital and Physical Environments on Snack Choice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Procedure
2.3. Sample Size
2.4. Measures
2.5. Data Analysis
3. Results
3.1. Participants
3.2. Feasibility Outcomes
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stok, F. Marijn; Renner Britta; Hoffmann Stefan; Volkert Dorothee DONE (Determinants of Nutrition and Eating) Framework. Available online: https://www.uni-konstanz.de/DONE/ (accessed on 3 January 2020).
- Story, M.; Kaphingst, K.M.; Robinson-O’Brien, R.; Glanz, K. Creating Healthy Food and Eating Environments: Policy and Environmental Approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucher, T.; Collins, C.; Rollo, M.E.; McCaffrey, T.A.; De Vlieger, N.; Van der Bend, D.; Truby, H.; Perez-Cueto, F.J. Nudging Consumers towards Healthier Choices: A Systematic Review of Positional Influences on Food Choice. Br. J. Nutr. 2016, 115, 2252–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucher, T.; van der Horst, K.; Siegrist, M. Improvement of Meal Composition by Vegetable Variety. Public Health Nutr. 2011, 14, 1357–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenhuis, I.H.; Vermeer, W.M. Portion Size: Review and Framework for Interventions. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaler, R.H.; Sunstein, C.R. NUDGE: Improving Decisions about Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA; London, UK, 2008; ISBN 9780300122237. [Google Scholar]
- Valenčič, E.; Beckett, E.; Collins, C.E.; Seljak, B.K.; Bucher, T. Digital Nudging in Online Grocery Stores: A Scoping Review on Current Practices and Gaps. Trends Food Sci. Technol. 2022, 131, 151–163. [Google Scholar] [CrossRef]
- Papies, E.K. Health Goal Priming as a Situated Intervention Tool: How to Benefit from Nonconscious Motivational Routes to Health Behaviour. Health Psychol. Rev. 2016, 10, 408–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.S.B. Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.A.; Babey, S.H. Contextual Influences on Eating Behaviours: Heuristic Processing and Dietary Choices. Obes. Rev. 2012, 13, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M. Store Atmospherics as a Prime to Nudge Shoppers toward Healthier Food Choices. Ph.D. Thesis, Auckland University of Technology, Auckland, New Zealand, 2017. [Google Scholar]
- Vermeir, I.; Roose, G. Visual Design Cues Impacting Food Choice: A Review and Future Research Agenda. Foods 2020, 9, 1495. [Google Scholar] [CrossRef]
- Geise, S.; Baden, C. Putting the Image Back Into the Frame: Modeling the Linkage Between Visual Communication and Frame-Processing Theory. Commun. Theory 2015, 25, 46–69. [Google Scholar] [CrossRef]
- Rendell, A.; Adam, M.; Eidels, A. Towards Understanding the Influence of Nature Imagery in User Interface Design: A Review of the Literature. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Stöckli, S.; Stämpfli, A.E.; Messner, C.; Brunner, T.A. An (Un) Healthy Poster: When Environmental Cues Affect Consumers’ Food Choices at Vending Machines. Appetite 2016, 96, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Moon, J.; Rhee, C.; Cho, D.; Cho, J. The Effect of Visual and Auditory Elements on Patrons’ Liquor-Ordering Behavior: An Empirical Study. Int. J. Hosp. Manag. 2016, 55, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Papies, E.K.; Hamstra, P. Goal Priming and Eating Behavior: Enhancing Self-Regulation by Environmental Cues. Health Psychol. 2010, 29, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.; Meiselman, H.L.; Pierson, B.J.; Reeve, W.G. Effects of Adding an Italian Theme to a Restaurant on the Perceived Ethnicity, Acceptability, and Selection of Foods. Appetite 1994, 22, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.M.; Hart, W.; Gilmer, D.O.; Lloyd-Richardson, E.E.; Burton, K.A. Concrete Images of the Sugar Content in Sugar-Sweetened Beverages Reduces Attraction to and Selection of These Beverages. Appetite 2014, 83, 10–18. [Google Scholar] [CrossRef]
- Weinmann, M.; Schneider, C.; Brocke, J. vom Digital Nudging. Bus. Inf. Syst. Eng. 2016, 58, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Piper, J.; Adam Marc, T.P.; De Vlieger, N.; Collins, C.E.; Bucher, T. A Bibliometric Review of Digital Nudging within Digital Food Choice Environments. In Proceedings of the 32nd Australasian Conference on Information Systems, Sydney, Australia, 6–10 December 2021; Volume 63, pp. 1–12. [Google Scholar]
- Bucher, T.; Keller, C. The Web-Buffet–Development and Validation of an Online Tool to Measure Food Choice. Public Health Nutr. 2015, 18, 1950–1959. [Google Scholar] [CrossRef] [Green Version]
- Hunter, S.R.; Mattes, R.D. The Role of Eating Frequency and Snacking on Energy Intake and BMI. In Handbook of Eating and Drinking; Springer: Cham, Switzerland, 2020; pp. 659–678. [Google Scholar]
- Wang, D.; Van der Horst, K.; Jacquier, E.F.; Afeiche, M.C.; Eldridge, A.L. Snacking Patterns in Children: A Comparison between Australia, China, Mexico, and the US. Nutrients 2018, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Vatanparast, H.; Islam, N.; Patil, R.P.; Shafiee, M.; Smith, J.; Whiting, S. Snack Consumption Patterns among Canadians. Nutrients 2019, 11, 1152. [Google Scholar] [CrossRef] [Green Version]
- Myhre, J.B.; Løken, E.B.; Wandel, M.; Andersen, L.F. The Contribution of Snacks to Dietary Intake and Their Association with Eating Location among Norwegian Adults—Results from a Cross-Sectional Dietary Survey. BMC Public Health 2015, 15, 369. [Google Scholar] [CrossRef]
- Chaplin, K.; Smith, A.P. Definitions and Perceptions of Snacking. Curr. Top. Nutraceuticals Res. Coppell 2011, 9, 53–59. [Google Scholar] [CrossRef]
- Potter, M.; Vlassopoulos, A.; Lehmann, U. Snacking Recommendations Worldwide: A Scoping Review. Adv. Nutr. 2018, 9, 86–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological Momentary Assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Valenčič, E.; Novak, P.; Ogrinc, M.; Simčič, A.; Modic, R.; Ispirova, G.; Mezgec, S.; Koroušić-Seljak, B. Design, Implementation and Validation of the SnackTrac Mobile Application; JSI Technical Report: Boston, Mam USA, 2022. [Google Scholar]
- Nutri-Score. Available online: https://www.santepubliquefrance.fr/en/nutri-score (accessed on 30 May 2022).
- Chantal, J.; Hercberg, S.; World Health Organization. Development of a New Front-of-Pack Nutrition Label in France: The Five-Colour Nutri-Score. Public Health Panor. 2017, 3, 712–725. [Google Scholar]
- Julia, C.; Etilé, F.; Hercberg, S. Front-of-Pack Nutri-Score Labelling in France: An Evidence-Based Policy. Lancet Public Health 2018, 3, e164. [Google Scholar] [CrossRef] [Green Version]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; Sage publications: London, UK; Thousand Oaks, CA, USA; New Delhi, India; Singapore, 2012; ISBN 1-4462-0046-9. [Google Scholar]
- Burke, L.E.; Wang, J.; Sevick, M.A. Self-Monitoring in Weight Loss: A Systematic Review of the Literature. J. Am. Diet. Assoc. 2011, 111, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Ducrot, P.; Méjean, C.; Aroumougame, V.; Ibanez, G.; Allès, B.; Kesse-Guyot, E.; Hercberg, S.; Péneau, S. Meal Planning Is Associated with Food Variety, Diet Quality and Body Weight Status in a Large Sample of French Adults. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 12. [Google Scholar] [CrossRef]
- Hanson, A.J.; Kattelmann, K.K.; McCormack, L.A.; Zhou, W.; Brown, O.N.; Horacek, T.M.; Shelnutt, K.P.; Kidd, T.; Opoku-Acheampong, A.; Franzen-Castle, L.D.; et al. Cooking and Meal Planning as Predictors of Fruit and Vegetable Intake and BMI in First-Year College Students. Int. J. Environ. Res. Public Health 2019, 16, 2462. [Google Scholar] [CrossRef] [Green Version]
- Laska, M.N.; Hearst, M.O.; Lust, K.; Lytle, L.A.; Story, M. How We Eat What We Eat: Identifying Meal Routines and Practices Most Strongly Associated with Healthy and Unhealthy Dietary Factors among Young Adults. Public Health Nutr. 2015, 18, 2135–2145. [Google Scholar] [CrossRef] [Green Version]
- Chae, W.; Ju, Y.J.; Shin, J.; Jang, S.-I.; Park, E.-C. Association between Eating Behaviour and Diet Quality: Eating Alone vs. Eating with Others. Nutr. J. 2018, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Żarnowski, A.; Jankowski, M.; Gujski, M. Public Awareness of Diet-Related Diseases and Dietary Risk Factors: A 2022 Nationwide Cross-Sectional Survey among Adults in Poland. Nutrients 2022, 14, 3285. [Google Scholar] [CrossRef]
- Charlton, K.; Kowal, P.; Soriano, M.M.; Williams, S.; Banks, E.; Vo, K.; Byles, J. Fruit and Vegetable Intake and Body Mass Index in a Large Sample of Middle-Aged Australian Men and Women. Nutrients 2014, 6, 2305–2319. [Google Scholar] [CrossRef] [Green Version]
- Vandevijvere, S.; De Ridder, K.; Fiolet, T.; Bel, S.; Tafforeau, J. Consumption of Ultra-Processed Food Products and Diet Quality among Children, Adolescents and Adults in Belgium. Eur. J. Nutr. 2019, 58, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2015; p. 421.
- World Health Organization. Healthy Diet; No. WHO-EM/NUT/282/E; World Health Organization: Nasr City, Egypt, 2019. [Google Scholar]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916, ISBN 92-4-120916-X. [Google Scholar]
- De Vlieger, N.M.; Collins, C.; Bucher, T. What Is a Nutritious Snack? Level of Processing and Macronutrient Content Influences Young Adults’ Perceptions. Appetite 2017, 114, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, C.; Siegrist, M.; Horst, K. van der Snack Frequency: Associations with Healthy and Unhealthy Food Choices. Public Health Nutr. 2013, 16, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Si Hassen, W.; Castetbon, K.; Tichit, C.; Péneau, S.; Nechba, A.; Ducrot, P.; Lampuré, A.; Bellisle, F.; Hercberg, S.; Méjean, C. Energy, Nutrient and Food Content of Snacks in French Adults. Nutr. J. 2018, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, S.A.; Leech, R.; Worsley, A. Does the Nutrient Profile of Snacks Vary According to the Time of Day of Consumption? FASEB J. 2016, 30, 677.20. [Google Scholar] [CrossRef]
- Sunstein, C.R.; Thaler, R. Libertarian Paternalism. Am. Econ. Rev. 2003, 93, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, K.; Vallen, B.; Block, L.; Fitzsimons, G.J. Vicarious Goal Fulfillment: When the Mere Presence of a Healthy Option Leads to an Ironically Indulgent Decision. J. Consum. Res. 2009, 36, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Chiou, W.-B.; Yang, C.-C.; Wan, C.-S. Ironic Effects of Dietary Supplementation: Illusory Invulnerability Created by Taking Dietary Supplements Licenses Health-Risk Behaviors. Psychol. Sci. 2011, 22, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- BuildFire Mobile App Download Statistics & Usage Statistics (2022). Available online: https://buildfire.com/app-statistics/ (accessed on 30 November 2022).
- Mezgec, S.; Koroušić Seljak, B. NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment. Nutrients 2017, 9, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezgec, S.; Eftimov, T.; Bucher, T.; Koroušić Seljak, B. Mixed Deep Learning and Natural Language Processing Method for Fake-Food Image Recognition and Standardization to Help Automated Dietary Assessment. Public Health Nutr. 2019, 22, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
Food Group | Examples of Foods in the Food Group |
---|---|
Fruits | Fresh fruits, fruit-only containing smoothies, dried fruits |
Vegetables | Fresh and pickled vegetables |
Salty snacks | Chips, tortilla chips, popcorn, salty crackers, salty sticks/pretzels |
Sweets | Chocolate bars, cookies, candy, granola/muesli/protein/nut/fruit bar, sweet pastries, cakes, waffles, etc. |
Grains | Bread bun, sour pastries, rice cakes, etc. |
Dairy and dairy substitutes | Yoghurt (natural or flavoured), quark, puddings, plant-based yoghurt |
Meat, fish & egg | Cold cuts, jerky, salmon, eggs |
Beverage | Juices, coffee/tea (with milk), carbonated drinks, energy drinks, alcoholic beverages |
Nut | Nuts (plain, roasted, salted), nuts with dried fruits |
Mixed dishes and other foods | Sandwich, toast with spread, soup, pizza, fries, porridge, breaded vegetables, pancakes with spreads, peanut butter, honey, etc. |
Nutri-Score (NS) | Dietitian’s Assessment Score (DA) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conditions | n | Mean (SD) | df | χ2 | p | Comparison condition | Mean (SD) | df | χ2 | p | Comparison condition | |
4 | 21.418 | <0.001 | 4 | 18.392 | 0.001 | |||||||
Healthy conditions | Fruit | 441 | 2.7 (1.6) | 0.59 | Vegetable | 2.4 (1.5) | 0.39 | Vegetable | ||||
0.34 | Salty snacks | 0.30 | Salty snacks | |||||||||
0.06 | Sweets | 0.29 | Sweets | |||||||||
Vegetable | 297 | 2.6 (1.7) | 0.17 | Salty snacks | 2.4 (1.6) | 0.10 | Salty snacks | |||||
0.04 * | Sweets | 0.10 | Sweets | |||||||||
Unhealthy conditions | Salty snacks | 354 | 2.8 (1.7) | 0.30 | Sweets | 2.6 (1.6) | 0.98 | Sweets | ||||
Sweets | 318 | 2.9 (1.7) | 2.7 (1.6) | |||||||||
Control condition | Control | 353 | 2.4 (1.5) | 0.04 * | Fruit | 2.2 (1.5) | 0.03 * | Fruit | ||||
0.16 | Vegetable | 0.25 | Vegetable | |||||||||
0.004 ** | Salty snacks | 0.003 ** | Salty snacks | |||||||||
<0.001 *** | Sweets | 0.002 ** | Sweets | |||||||||
Total | 1763 | 2.7 (1.6) | 2.5 (1.6) |
Healthy Conditions | Unhealthy Conditions | Control Condition | ||||
---|---|---|---|---|---|---|
All photos n (%) | Fruit n (%) np = 47 (AU = 13; SI = 34) | Vegetable n (%) np = 34 (AU = 11; SI = 23) | Salty snacks n (%) np = 36 (AU = 9; SI = 27) | Sweets n (%) np = 35 (AU = 9; SI = 26) | Control n (%) np = 36 (AU = 10; SI = 26) | |
Fruits | 412 | 103 (25) | 67 (16.3) | 92 (22.3) | 82 (19.9) | 68 (16.5) |
Vegetables | 35 | 5 (14.3) | 8 (22.9) | 5 (14.3) | 13 (37.1) | 4 (11.4) |
Dairy | 169 | 50 (29.6) | 25 (14.8) | 44 (26.0) | 35 (20.7) | 15 (8.9) |
Grains | 41 | 11 (26.8) | 6 (14.6) | 13 (31.7) | 4 (9.8) | 7 (17.1) |
Meat, fish and eggs | 18 | 4 (22.2) | 1 (5.6) | 7 (38.9) | 0 (0.0) | 6 (33.3) |
Nut | 130 | 26 (20.0) | 16 (12.3) | 27 (20.8) | 38 (29.2) | 23 (17.7) |
Salty snacks | 158 | 33 (20.9) | 40 (25.3) | 31 (19.6) | 15 (9.5) | 39 (24.7) |
Sweets | 770 | 190 (24.7) | 129 (16.8) | 136 (17.7) | 141 (18.3) | 174 (22.6) |
Beverages | 94 | 23 (24.5) | 7 (7.4) | 15 (16.0) | 31 (33.0) | 18 (19.1) |
Mixed meals and other | 166 | 64 (38.6) | 21 (12.7) | 28 (16.9) | 20 (12.0) | 33 (19.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenčič, E.; Beckett, E.; Collins, C.E.; Koroušić Seljak, B.; Bucher, T. SnackTrack—An App-Based Tool to Assess the Influence of Digital and Physical Environments on Snack Choice. Nutrients 2023, 15, 349. https://doi.org/10.3390/nu15020349
Valenčič E, Beckett E, Collins CE, Koroušić Seljak B, Bucher T. SnackTrack—An App-Based Tool to Assess the Influence of Digital and Physical Environments on Snack Choice. Nutrients. 2023; 15(2):349. https://doi.org/10.3390/nu15020349
Chicago/Turabian StyleValenčič, Eva, Emma Beckett, Clare E. Collins, Barbara Koroušić Seljak, and Tamara Bucher. 2023. "SnackTrack—An App-Based Tool to Assess the Influence of Digital and Physical Environments on Snack Choice" Nutrients 15, no. 2: 349. https://doi.org/10.3390/nu15020349
APA StyleValenčič, E., Beckett, E., Collins, C. E., Koroušić Seljak, B., & Bucher, T. (2023). SnackTrack—An App-Based Tool to Assess the Influence of Digital and Physical Environments on Snack Choice. Nutrients, 15(2), 349. https://doi.org/10.3390/nu15020349