Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Foods
2.2. Proximate Analysis
2.3. In Vitro Digestion
2.4. In Vivo Glycemic and Insulin Response
2.5. Power Calculation
2.6. Statistical Analysis
3. Results
3.1. Nutrient Composition
3.2. In Vitro Glucose and Starch Digestibility
3.3. In Vivo Glycemic Responses
3.3.1. The ¼ Cup Servings
3.3.2. The ½ Cup Servings
3.4. Insulin Responses
3.5. Palatability
3.6. Relationships between Food Components and between In Vitro and In Vivo Variables
3.7. Minimum Effective Dose
3.8. Prediction of eGR from Carbohydrate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trinidad, T.P.; Mallillin, A.C.; Loyola, A.S.; Sagum, R.S.; Encabo, R.R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 2010, 103, 569–574. [Google Scholar] [CrossRef]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, S3–S10. [Google Scholar] [CrossRef]
- Ramdath, D.; Renwick, S.; Duncan, A.M. The Role of Pulses in the Dietary Management of Diabetes. Can. J. Diabetes 2016, 40, 355–363. [Google Scholar] [CrossRef]
- Hutchins, A.M.; Winham, D.M.; Thompson, S.V. Phaseolus beans: Impact on glycaemic response and chronic disease risk in human subjects. Br. J. Nutr. 2012, 108, S52–S65. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; Kendall, C.W.C.; Esfahani, A.; Wong, J.M.W.; Carleton, A.J.; Jiang, H.Y.; Bazinet, R.P.; Vidgen, E.; Jenkins, D.J.A. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 2009, 52, 1479–1495. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108, S27–S36. [Google Scholar] [CrossRef] [PubMed]
- EFSA: European Food Safety Authority PoDP; Nutrition and Allergies (NDA). Scientific Opinion. Guidance on the scientific requirements for health claims related to appetite ratings, weight management and blood glucose concentrations. EFSA J. 2012, 10, 2604–2614. [Google Scholar]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to resistant starch and reduction of post-prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J. 2011, 9, 2024. [Google Scholar]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.A.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef]
- Sugiyama, M.; Tang, A.C.; Wakaki, Y.; Koyama, W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur. J. Clin. Nutr. 2000, 57, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-I.; Apostolidis, E.; Kim, Y.-C.; Shetty, K. Health Benefits of Traditional Corn, Beans, and Pumpkin: In Vitro Studies for Hyperglycemia and Hypertension. J. Med. Food 2007, 10, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Welsch, C.A.; Lachance, P.A.; Wasserman, B.P. Dietary Phenolic Compounds: Inhibition of Na+-Dependent D-Glucose Uptake in Rat Intestinal Brush Border Membrane Vesicles. J. Nutr. 1989, 119, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Robin, F. Slowly digestible starch—Its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Liu, Q.; Donner, E.; Hawke, A.; Kalinga, D.; Winberg, J.; Wolever, T.M.S. Investigating the relationship between lentil carbohydrate fractions and in vivo postprandial blood glucose response by use of the natural variation in starch fractions among 20 lentil varieties. Food Funct. 2017, 8, 3783–3791. [Google Scholar] [CrossRef]
- Brummer, Y.; Kaviani, M.; Tosh, S.M. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 2015, 67, 117–125. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Wolever, T.M.; Jenkins, D.J. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am. J. Clin. Nutr. 1986, 43, 167–172. [Google Scholar] [CrossRef]
- Mollard, R.C.; Zykus, A.; Luhovyy, B.L.; Nunez, M.F.; Wong, C.L.; Anderson, G.H. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2012, 108, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Liu, Y.; Smith, C.E.; Liu, T.T.; Nunez, M.F.; Mollard, R.C.; Luhovyy, B.L. The acute effect of commercially available pulse powders on postprandial glycaemic response in healthy young men. Br. J. Nutr. 2014, 112, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-E.; Simsek, S.; Reuhs, B.L.; Yao, Y. Glucose Release of Water-Soluble Starch-Related α-Glucans by Pancreatin and Amyloglucosidase Is Affected by the Abundance of α-1,6-Glucosidic Linkages. J. Agric. Food Chem. 2008, 56, 10879–10886. [Google Scholar] [CrossRef] [PubMed]
- Winham, D.M.; Hutchins, A.M.; Thompson, S.V. Glycemic Response to Black Beans and Chickpeas as Part of a Rice Meal: A Randomized Cross-Over Trial. Nutrients 2017, 9, 1095. [Google Scholar] [CrossRef]
- Wolever, T.M.S. Is glycaemic index (GI) a valid measure of carbohydrate quality? Eur. J. Clin. Nutr. 2013, 67, 522–531. [Google Scholar] [CrossRef]
- Roberto, C.A.; Ng, S.W.; Ganderats-Fuentes, M.; Hammond, D.; Barquera, S.; Jauregui, A.; Taillie, L.S. The influence of front-of-package nutrition labeling on consumer behavior and product reformulation. Annu. Rev. Nutr. 2021, 41, 529–550. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Gibbs, A.L.; Spolar, M.; Hitchner, E.V.; Heimowitz, C. Equivalent glycemic load (EGL): A method for quantifying the glycemic responses elicited by low carbohydrate foods. Nutr. Metab. 2006, 3, 33. [Google Scholar] [CrossRef]
- Doma, K.M.; Dolinar, K.F.; Ramdath, D.D.; Wolever, T.M.; Duncan, A.M. Canned beans decrease serum total and LDL cholesterol in adults with elevated LDL cholesterol in a 4-wk multicenter, randomized, crossover study. J. Nutr. 2021, 151, 3701–3709. [Google Scholar] [CrossRef]
- de Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Pissini Machado Reis, S.M.; de Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Peter Pauls, K.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; Osorio-Díaz, P.; Whitney, K.; Bello-Pérez, L.A.; Simsek, S. Effect of the cooking on physicochemical and starch digestibility properties of two varieties of common bean (Phaseolus vulgaris L.) grown under different water regimes. Food Chem. 2011, 129, 358–365. [Google Scholar] [CrossRef]
- Eyaru, R.; Shrestha, A.K.; Arcot, J. Effect of various processing techniques on digestibility of starch in Red kidney bean (Phaseolus vulgaris) and two varieties of peas (Pisum sativum). Food Res. Int. 2009, 42, 956–962. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Heaton, K.W.; Marcus, S.N.; Emmett, P.M.; Bolton, C.H. Particle size of wheat, maize, and oat test meals: Effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am. J. Clin. Nutr. 1988, 47, 675–682. [Google Scholar] [CrossRef] [PubMed]
Test Meal | Serving, g | MC, g | Protein, g | Ash, g | Fat, g | Energy, kJ | CHO, g | AC, g | TDF, g |
---|---|---|---|---|---|---|---|---|---|
Beans 2 | |||||||||
Black | 89.2 | 53.9 ± 0.2 | 7.6 ± 0.0 b | 1.81 ± 0.01 a | 0.49 ± 0.03 cd | 655 ± 1 b | 25.4 ± 0.1 b | 10.0 ± 0.1 ef | 9.2 ± 0.2 b |
Cranberry | 92.0 | 58.8 ± 0.1 | 6.6 ± 0.0 e | 1.64 ± 0.01 c | 0.44 ± 0.01 e | 608 ± 1 c | 24.4 ± 0.0 c | 10.1 ± 0.1 e | 8.5 ± 0.1 c |
Great northern | 92.1 | 58.6 ± 0.1 | 8.3 ± 0.0 a | 1.80 ± 0.00 a | 0.45 ± 0.01 de | 614 ± 1 c | 23.0 ± 0.0 f | 9.7 ± 0.4 f | 8.5 ± 0.2 c |
Kidney | 85.4 | 52.7 ± 0.2 | 7.3 ± 0.0 c | 1.62 ± 0.00 c | 0.43 ± 0.02 e | 599 ± 1 d | 23.2 ± 0.0 e | 9.0 ± 0.4 g | 8.3 ± 0.4 cd |
Navy | 90.4 | 54.0 ± 0.3 | 7.2 ± 0.0 d | 1.79 ± 0.02 a | 0.67 ± 0.03 b | 673 ± 5 a | 26.8 ± 0.0 a | 12.0 ± 0.0 c | 9.8 ± 0.1 a |
Pinto | 90.7 | 59.2 ± 0.1 | 6.7 ± 0.1 e | 1.68 ± 0.01 b | 0.51 ± 0.02 c | 575 ± 1 e | 22.6 ± 0.0 g | 10.5 ± 0.3 de | 7.9 ± 0.1 d |
Controls | |||||||||
Corn | 79.9 | 58.2 ± 0.3 | 2.9 ± 0.0 g | 0.75 ± 0.01 d | 2.33 ± 0.02 a | 438 ± 1 h | 15.7 ± 0.0 i | 8.0 ± 0.1 h | 4.0 ± 0.2 e |
Macaroni | 61.0 | 36.6 ± 0.2 | 3.5 ± 0.0 f | 0.23 ± 0.00 f | 0.07 ± 0.01 f | 452 ± 1 g | 20.7 ± 0.0 h | 17.3 ± 0.2 b | 1.2 ± 0.1 f |
Potato | 115.1 | 99.5 ± 0.1 | 1.6 h | 0.58 e | 0.06 f | 247.0 i | 13.4 j | 10.9 ± 0.0 d | 1.4 ± 0.1 f |
Rice | 87.1 | 61.6 ± 1.0 | 1.1 ± 0.0 i | 0.12 ± 0.01 g | 0.05 ± 0.01 f | 458 ± 1 f | 24.2 ± 0.0 d | 21.1 ± 0.0 a | 0.5 ± 0.0 g |
Sample | Direct Assay (dwb) | In Vitro Digestion Assay (dswb) | As Eaten (Fresh Weight) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IDF, % | SDF, % | TDF, % | TS, % | AS, % | RS, % | RDS, % | SDS, % | RS, % | SHAUC, mg.min | GRAUC, mg.min | |
(n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 3) | (n = 4) | (n = 4) | (n = 4) | (n = 4) | (n = 4) | |
Beans | |||||||||||
Black | 20.8 ± 0.5 ab | 5.3 ± 0.1 c | 26.1 ± 0.6 ab | 38.9 ± 0.5 de | 1.0 ± 0.0 d | 11.5 ± 0.5 ab | 34.8 ± 1.7 f | 50.8 ± 3.7 a | 14.8 ± 3.5 abc | 7451 ± 526 f | 17,293 ± 1049 d |
Cranberry | 19.0 ± 0.4 c | 6.4 ± 0.6 ab | 25.5 ± 0.2 ab | 40.4 ± 0.5 cd | 1.5 ± 0.1 b | 11.3 ± 0.2 bc | 47.5 ± 0.5 e | 38.9 ± 1.2 bc | 13.7 ± 1.0 abc | 8456 ± 420 de | 21,532 ± 806 c |
Great northern | 19.8 ± 03 bc | 5.4 ± 0.5 bc | 25.2 ± 0.7 b | 39.7 ±0.8 cd | 1.4 ± 0.1 bc | 12.1 ± 0.5 a | 54.7 ± 2.5 d | 28.1 ± 2.5 d | 17.2 ± 0.2 a | 8347 ± 129 e | 19,818 ± 310 cd |
Kidney | 19.0 ± 1.2 c | 6.6 ± 0.3 a | 25.5 ± 1.2 ab | 36.8 ± 1.4 e | 1.4 ± 0.0 bc | 10.6 ± 0.3 c | 54.4 ± 4.1 de | 34.2 ± 3.0 bc | 11.3 ± 2.1 abc | 8710 ± 317 cde | 18,216 ± 1000 d |
Navy | 21.7 ± 0.6 a | 5.3 ± 0.3 c | 26.9 ± 0.3 a | 41.5 ± 0.6 c | 1.3 ± 0.0 c | 9.9 ± 0.3 d | 39.5 ± 4.5 f | 42.3 ± 6.6 ab | 18.2 ± 5.6 a | 7435 ± 446 f | 20,048 ± 1572 cd |
Pinto | 19.5 ± 0.1 bc | 5.5 ± 0.6 bc | 25.0 ± 0.5 b | 41.7 ±0.6 c | 1.5 ±0.1 b | 9.7 ± 0.7 d | 62.2 ± 1.6 bc | 27.3 ± 1.5 de | 10.6 ± 0.6 abc | 9197 ± 89 bcd | 19,871 ± 1876 cd |
Controls | |||||||||||
Corn | 17.1 ± 0.7 d | 1.2 ± 0.1 e | 18.3 ± 0.8 c | 25.9 ± 0.3 f | 15.1 ± 0.6 a | 4.1 ± 0.2 e | 64.8 ± 1.4 bc | 19.1 ± 4.6 e | 16.1 ± 4.4 ab | 8825 ± 328 bcde | 29,967 ± 723 b |
Macaroni | 3.3 ± 0.1 f | 1.6 ± 0.1 de | 4.9 ± 0.2 e | 72.1 ± 2.8 b | 0.5 f | 1.9 ± 0.1 f | 68.7 ± 3.2 b | 19.8 ± 3.0 e | 11.5 ± 2.5 abc | 9470 ± 261 b | 32,309 ± 1995 b |
Potato | 6.5 ± 0.2 e | 2.5 ±0.3 d | 9.0 ± 0.4 d | 71.9 ± 1.3 b | 0.7 ± 0.1 e | 2.5 ± 0.1 f | 89.1 ± 1.7 a | 2.9 ± 1.9 f | 8.0 ± 3.3 bc | 10,527 ± 265 a | 21,894 ± 817 c |
Rice | 1.9 ± 0.1 f | 0.1 ± 0.0 f | 2.0 ± 0.1 f | 83.5 ± 2.2 a | 0.1 ± 0.0 g | 0.9 ± 0.0 g | 60.7 ± 2.2 cd | 31.3 ± 2.0 cd | 8.0 ± 2.9 c | 9277 ± 310 bc | 39,052 ± 1756 a |
Sex | Ethnicity | Age, | Height, | Weight, | BMI, |
---|---|---|---|---|---|
yrs | cm | kg | kg/m2 | ||
½ cup phase | |||||
F | Caucasian | 48 | 155.5 | 67.6 | 28.0 |
M | Chinese | 54 | 170.0 | 78.9 | 27.3 |
M | Caucasian | 25 | 181.5 | 81.3 | 24.7 |
M | Caucasian | 25 | 183.5 | 79.2 | 23.5 |
M | Caucasian | 57 | 176.6 | 79.0 | 25.3 |
M | Caucasian | 56 | 170.7 | 78.4 | 26.9 |
F | Black | 47 | 158.5 | 56.0 | 22.3 |
M | Black | 28 | 174.0 | 74.5 | 24.6 |
F | Black | 49 | 170.4 | 73.5 | 25.3 |
F | Black | 37 | 162.0 | 66.9 | 25.5 |
M | Chinese | 19 | 166.0 | 86.2 | 31.3 |
F | South East Asian | 36 | 159.5 | 59.8 | 23.5 |
F | Caucasian | 27 | 166.0 | 64.2 | 23.3 |
M | Caucasian | 25 | 189.5 | 83.5 | 23.3 |
M | Caucasian | 25 | 179.0 | 82.5 | 25.7 |
M | Black | 29 | 183.0 | 86.2 | 25.7 |
F | Caucasian | 48 | 169.0 | 74.1 | 25.9 |
F | Chinese | 34 | 157.0 | 58.0 | 23.5 |
Mean | 37.2 | 170.7 | 73.9 | 25.3 | |
SD | 12.6 | 10.0 | 9.6 | 2.1 | |
¼ cup phase | |||||
F | Caucasian | 48 | 155.5 | 66.5 | 27.5 |
F | Caucasian | 41 | 159.4 | 63.5 | 25.0 |
M | Chinese | 54 | 170.4 | 78.7 | 27.1 |
M | Caucasian | 24 | 178.0 | 83.4 | 26.3 |
M | Caucasian | 24 | 183.5 | 78.2 | 23.2 |
M | Caucasian | 57 | 176.6 | 79.8 | 25.6 |
M | Caucasian | 56 | 170.7 | 79.5 | 27.3 |
F | Black | 47 | 159.5 | 57.1 | 22.4 |
M | Black | 28 | 175.1 | 75.0 | 24.5 |
F | Black | 49 | 170.4 | 73.9 | 25.5 |
F | Black | 37 | 162.7 | 68.1 | 25.7 |
M | Chinese | 19 | 166.0 | 56.2 | 20.4 |
F | Caucasian | 46 | 165.8 | 55.3 | 20.1 |
F | South East Asian | 36 | 160.0 | 59.9 | 23.4 |
F | Caucasian | 27 | 166.0 | 64.3 | 23.3 |
M | Caucasian | 33 | 182.0 | 81.3 | 24.5 |
M | Caucasian | 45 | 174.1 | 84.6 | 27.9 |
M | Caucasian | 26 | 169.3 | 69.2 | 24.1 |
M | Caucasian | 28 | 163.4 | 60.9 | 22.8 |
M | Caucasian | 25 | 189.5 | 82.0 | 22.8 |
M | Caucasian | 25 | 179.0 | 82.0 | 25.6 |
F | South Asian | 23 | 150.5 | 47.0 | 20.8 |
M | Black | 29 | 183.0 | 86.3 | 25.8 |
F | Caucasian | 48 | 168.0 | 73.1 | 25.9 |
Mean | 36.5 | 169.9 | 71.1 | 24.5 | |
SD | 12.0 | 9.7 | 11.0 | 2.2 |
Glucose, mmol/L | Insulin, pmol/L | ||||
---|---|---|---|---|---|
Food | Corn | Macaroni | Potato | Rice | Potato |
¼ cup phase | (n = 24) | (n = 16) | (n = 16) | (n = 16) | |
Control | 0.76 ± 0.07 | 0.93 ± 0.10 | 1.03 ± 0.09 | 1.09 ± 0.10 | n/a |
Black beans | 0.25 ± 0.05 * | 0.27 ± 0.07 * | 0.26 ± 0.06 * | 0.21 ± 0.06 * | n/a |
Cranberry beans | 0.36 ± 0.06 * | 0.33 ± 0.06 * | 0.35 ± 0.08 * | 0.38 ± 0.07 * | n/a |
Great northern beans | 0.34 ± 0.03 * | 0.31 ± 0.04 * | 0.35 ± 0.04 * | 0.36 ± 0.03 * | n/a |
Kidney beans | 0.31 ± 0.07 * | 0.24 ± 0.04 * | 0.32 ± 0.10 * | 0.39 ± 0.09 * | n/a |
Navy beans | 0.31 ± 0.04 * | 0.27 ± 0.04 * | 0.34 ± 0.06 * | 0.32 ± 0.05 * | n/a |
Pinto beans | 0.37 ± 0.04 * | 0.35 ± 0.07 * | 0.36 ± 0.06 * | 0.41 ± 0.05 * | n/a |
½ cup phase | (n = 18) | (n = 12) | (n = 12) | (n = 12) | (n = 12) |
Control | 1.67 ± 0.13 | 1.95 ± 0.18 | 2.05 ± 0.14 | 2.10 ± 0.23 | 8.6 [5.0, 16.7] |
Black beans | 0.62 ± 0.10 * | 0.71 ± 0.13 * | 0.54 ± 0.09 * | 0.62 ± 0.14 * | 2.8 [2.0, 4.7] † |
Cranberry beans | 0.71 ± 0.07 * | 0.77 ± 0.09 * | 0.72 ± 0.09 * | 0.66 ± 0.09 * | 3.8 [1.8, 8.5] |
Great northern beans | 0.69 ± 0.11 * | 0.73 ± 0.13 * | 0.54 ± 0.13 * | 0.81 ± 0.14 * | 4.4 [2.9, 6.0] |
Kidney beans | 0.65 ± 0.11 * | 0.66 ± 0.13 * | 0.56 ± 0.08 * | 0.73 ± 0.12 * | 3.2 [1.6, 7.6] |
Navy beans | 0.47 ± 0.06 * | 0.53 ± 0.08 * | 0.41 ± 0.05 * | 0.47 ± 0.09 * | 2.1 [0.4, 5.8] †† |
Pinto beans | 0.92 ± 0.12 * | 0.99 ± 0.16 * | 0.84 ± 0.10 * | 0.94 ± 0.19 * | 4.3 [2.4, 7.0] |
Food | Glucose | Insulin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Corn | Macaroni | Potato | Rice | Potato | ||||||
iAUC, mmol × min/L | RGR, % | iAUC, mmol × min/L | RGR, % | iAUC, mmol × min/L | RGR, % | iAUC, mmol × min/L | RGR, % | iAUC, pmol × h/L | RIR, % | |
¼ cup phase | (n = 24) | (n = 16) | (n = 16) | (n = 16) | ||||||
Control | 18.6 [13.2, 24.6] | 100 | 30.1 [17.7, 41.1] | 100 | 28.9 [22.4, 37.8] | 100 | 42.0 [26.3, 60.7] | 100 | n/a | n/a |
Black bean | 10.5 [1.5, 18.5] * | 56 | 9.3 [1.4, 16.8] ** | 31 | 11.2 [3.8, 22.8] * | 39 | 10.5 [1.0, 16.7] ** | 25 | n/a | n/a |
Cranberry bean | 12.0 [3.5, 18.8] | 65 | 11.2 [7.4, 18.5] ** | 37 | 11.7 [1.3, 18.2] ** | 40 | 16.8 [10.1, 21.0] ** | 40 | n/a | n/a |
Great northern bean | 14.8 [7.8, 21.9] | 80 | 11.9 [6.8, 19.2] ** | 40 | 16.8 [10.9, 22.4] | 58 | 16.8 [7.8, 22.4] ** | 40 | n/a | n/a |
Kidney bean | 11.0 [2.5, 17.2] * | 59 | 11.0 [2.1, 15.7] ** | 37 | 7.2 [2.2, 16.7] ** | 25 | 15.1 [7.3, 18.6] ** | 36 | n/a | n/a |
Navy bean | 13.7 [8.5, 18.8] | 74 | 10.6 [5.6, 15.7] ** | 35 | 13.8 [8.1, 20.7] | 48 | 14.3 [11.6, 18.8] ** | 34 | n/a | n/a |
Pinto bean | 15.8 [6.7, 27.1] | 85 | 15.8 [2.8, 27.4] * | 52 | 15.8 [8.3, 22.5] | 55 | 15.9 [8.4, 27.4] ** | 38 | n/a | n/a |
Mean for 6 beans | 14.1 [10.0, 20.3] † | 70 § | 12.7 [8.8, 17.5] † | 42 § | 13.0 [9.9, 21.9] † | 45 § | 15.4 [10.7, 20.9] † | 37 § | n/a | n/a |
½ cup phase | (n = 18) | (n = 12) | (n = 12) | (n = 12) | (n = 12) | |||||
Control | 54.6 ± 5.6 | 100 | 103.2 ± 11.6 | 100 | 67.4 ± 5.4 ** | 100 | 107.0 ± 10.8 | 100 | 39.0 ± 9.0 | 100 |
Black bean | 29.0 ± 5.2 ** | 53 | 36.2 ± 6.6 ** | 35 | 26.7 ± 7.0 ** | 40 | 24.0 ± 5.2 ** | 22 | 27.8 ± 9.1 | 71 |
Cranberry bean | 38.6 ± 4.1 | 71 | 41.0 ± 4.8 ** | 40 | 40.3 ± 5.4 * | 60 | 34.4 ± 4.7 ** | 32 | 32.5 ± 11.3 | 83 |
Great northern bean | 31.9 ± 5.2 ** | 58 | 33.9 ± 5.4 ** | 33 | 25.4 ± 7.0 ** | 38 | 36.3 ± 6.6 ** | 34 | 28.6 ± 7.2 | 73 |
Kidney bean | 34.3 ± 5.7 * | 63 | 33.9 ± 7.5 ** | 33 | 29.4 ± 5.6 ** | 44 | 39.6 ± 7.5 ** | 37 | 28.3 ± 6.9 | 73 |
Navy bean | 26.0 ± 3.7 ** | 48 | 29.7 ± 4.8 ** | 29 | 20.5 ± 2.5 ** | 30 | 27.9 ± 5.6 ** | 26 | 17.0 ± 6.1 | 44 |
Pinto bean | 43.5 ± 5.1 | 80 | 48.0 ± 6.0 ** | 47 | 40.3 ± 5.5 * | 60 | 42.1 ± 7.2 ** | 39 | 31.6 ± 8.7 | 81 |
Mean for 6 beans § | 33.9 ± 3.3 † | 62 § | 37.1 ± 3.6 † | 36 § | 30.4 ± 3.6 † | 45 § | 34.1 ± 6.3 † | 32 § | 27.6 ± 6.3 | 71 |
Test Foods (½ Cup Servings) | Control Foods (½ Cup Servings) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | Macaroni | Potato | Rice | |||||||||
RGR | ivRGR | Out-Come | RGR | ivRGR | Out-Come | RGR | ivRGR | Out-Come | RGR | ivRGR | Out-Come | |
Black beans | 53 | 53 | Tp | 35 | 37 | Tp | 40 | 48 | Tp | 22 | 32 | Tp |
Cranberry beans | (71) | 84 | Tn | 40 | 55 | Tp | 60 | 75 | Tp | 32 | 46 | Tp |
Great northern beans | 58 | 83 | Fn | 33 | 54 | Tp | 38 | 73 | Tp | 34 | 46 | Tp |
Kidney beans | 63 | 86 | Fn | 33 | 56 | Tp | 44 | 76 | Tp | 37 | 47 | Tp |
Navy beans | 48 | 67 | Tp | 29 | 45 | Tp | 30 | 59 | Tp | 26 | 38 | Tp |
Pinto beans | (80) | 120 | Tn | 47 | 76 | Tp | 60 | 105 | Fn | 39 | 62 | Tp |
Rice * | 56 | 60 | Tp | (99) | 92 | Tn | 72 | 67 | Tp | - | - | - |
Potato * | (82) | 100 | Tn | (74) | 82 | Tn | - | - | - | - | - | - |
Macaroni * | 48 | 73 | Tp | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramdath, D.D.; Renwick, S.; Hawke, A.; Ramdath, D.G.; Wolever, T.M.S. Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis. Nutrients 2023, 15, 4495. https://doi.org/10.3390/nu15214495
Ramdath DD, Renwick S, Hawke A, Ramdath DG, Wolever TMS. Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis. Nutrients. 2023; 15(21):4495. https://doi.org/10.3390/nu15214495
Chicago/Turabian StyleRamdath, D. Dan, Simone Renwick, Aileen Hawke, Davin G. Ramdath, and Thomas M. S. Wolever. 2023. "Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis" Nutrients 15, no. 21: 4495. https://doi.org/10.3390/nu15214495
APA StyleRamdath, D. D., Renwick, S., Hawke, A., Ramdath, D. G., & Wolever, T. M. S. (2023). Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis. Nutrients, 15(21), 4495. https://doi.org/10.3390/nu15214495