Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Educational and Nutritional Intervention
2.3. Anthropometric and Clinical Measurements
2.4. Questionnaires
2.5. Gene and SNP Selection
Genetic Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Lorenzo, A.; Romano, L.; Di Renzo, L.; Di Lorenzo, N.; Cenname, G.; Gualtieri, P. Obesity: A preventable, treatable, but relapsing disease. Nutrition 2020, 71, 110615. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M.; Aras, M.; Aronne, L.J.; Batterham, R.; Giorgino, F.; Ji, L.; Pietiläinen, K.H.; Schnell, O.; Tonchevska, E.; Wilding, J.P.H. New insights into the treatment of obesity. Diabetes Obes. Metab. 2023, 25, 2058–2072. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Bonetti, G.; Donato, K.; Kaftalli, J.; Herbst, K.L.; Stuppia, L.; Fioretti, F.; Nodari, S.; Perrone, M.; Chiurazzi, P.; et al. Polymorphisms, diet and nutrigenomics. J. Prev. Med. Hyg. 2022, 63 (Suppl. S3), E125–E141. [Google Scholar]
- Di Renzo, L.; Gualtieri, P.; Romano, L.; Marrone, G.; Noce, A.; Pujia, A.; Perrone, M.A.; Aiello, V.; Colica, C.; De Lorenzo, A. Role of Personalized Nutrition in Chronic-Degenerative Diseases. Nutrients 2019, 11, 1707. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, F.J.; Vera, J.; Venegas, C.; Muñoz, S.; Oyarce, S.; Muñoz, K.; Lagunas, C. Evidences of Polymorphism Associated with Circadian System and Risk of Pathologies: A Review of the Literature. Int. J. Endocrinol. 2016, 2016, 2746909. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Asensio, E.M.; Coltell, O.; Sorlí, J.V.; Estruch, R.; Martínez-González, M.Á. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 2016, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Taylor, L.; Wakaf, Z.; Vasudevan, S.R.; Foster, R.G. The genetics of circadian rhythms, sleep and health. Hum. Mol. Genet. 2017, 26, R128–R138. [Google Scholar] [CrossRef]
- Angelousi, A.; Kassi, E.; Nasiri-Ansari, N.; Weickert, M.O.; Randeva, H.; Kaltsas, G. Clock genes alterations and endocrine disorders. Eur. J. Clin. Investig. 2018, 48, e12927. [Google Scholar] [CrossRef]
- Scott, E.M.; Carter, A.M.; Grant, P.J. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. 2007, 32, 658–662. [Google Scholar] [CrossRef]
- Franzago, M.; Alessandrelli, E.; Notarangelo, S.; Stuppia, L.; Vitacolonna, E. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int. J. Mol. Sci. 2023, 24, 2571. [Google Scholar] [CrossRef]
- Garaulet, M.; Sanchez-Moreno, C.; Smith, C.E.; Lee, Y.C.; Nicolas, F.; Ordovas, J.M. Ghrelin, sleep reduction and evening preference: Relationships to CLOCK 3111 T/C SNP and weight loss. PLoS ONE 2011, 6, e17435. [Google Scholar] [CrossRef] [PubMed]
- Jaime-Lara, R.B.; Brooks, B.E.; Vizioli, C.; Chiles, M.; Nawal, N.; Ortiz-Figueroa, R.S.E.; Livinski, A.A.; Agarwal, K.; Colina-Prisco, C.; Iannarino, N.; et al. A systematic review of the biological mediators of fat taste and smell. Physiol. Rev. 2023, 103, 855–918. [Google Scholar] [CrossRef] [PubMed]
- Abumrad, N.A. CD36 may determine our desire for dietary fats. J. Clin. Investig. 2005, 115, 2965–2967. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.L.; Liang, L.C.; Sakimura, J.; May, D.; van Belle, C.; Breen, C.; Driggin, E.; Tepper, B.J.; Lanzano, P.C.; Deng, L.; et al. Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obes. Silver Spring 2012, 20, 1066–1073. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Love-Gregory, L.; Klein, S.; Abumrad, N.A. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J. Lipid Res. 2012, 53, 561–566. [Google Scholar] [CrossRef]
- Reed, D.R.; Xia, M.B. Recent advances in fatty acid perception and genetics. Adv. Nutr. 2015, 6, 353s–360s. [Google Scholar] [CrossRef]
- Karmous, I.; Plesnik, J.; Khan, A.S.; Sery, O.; Abid, A.; Mankai, A.; Aouidet, A.; Khan, N.A. Orosensory detection of bitter in fat-taster healthy and obese participants: Genetic polymorphism of CD36 and TAS2R38. Clin. Nutr. 2017, 37, 313–320. [Google Scholar] [CrossRef]
- Melis, M.; Sollai, G.; Muroni, P.; Crnjar, R.; Barbarossa, I.T. Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting. Nutrients 2015, 7, 2068–2084. [Google Scholar] [CrossRef]
- Mrizak, I.; Sery, O.; Plesnik, J.; Arfa, A.; Fekih, M.; Bouslema, A.; Zaouali, M.; Tabka, Z.; Khan, N.A. The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br. J. Nutr. 2015, 113, 1330–1337. [Google Scholar] [CrossRef]
- Burgess, B.; Melis, M.; Scoular, K.; Driver, M.; Schaich, K.M.; Keller, K.L.; Tomassini Barbarossa, I.; Tepper, B.J. Effects of CD36 Genotype on Oral Perception of Oleic Acid Supplemented Safflower Oil Emulsions in Two Ethnic Groups: A Preliminary Study. J. Food Sci. 2018, 83, 1373–1380. [Google Scholar] [CrossRef]
- Love-Gregory, L.; Sherva, R.; Schappe, T.; Qi, J.S.; McCrea, J.; Klein, S.; Connelly, M.A.; Abumrad, N.A. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 2011, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Murugesan, G.; Chen, K.; Zhang, L.; Wang, Q.; Febbraio, M.; Anselmo, R.M.; Marchant, K.; Barnard, J.; Silverstein, R.L. Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 2011, 117, 6355–6366. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Carta, G.; Pintus, S.; Pintus, P.; Piras, C.A.; Murru, E.; Manca, C.; Di Marzo, V.; Banni, S. Tomassini Barbarossa, I. Polymorphism rs1761667 in the CD36 Gene Is Associated to Changes in Fatty Acid Metabolism and Circulating Endocannabinoid Levels Distinctively in Normal Weight and Obese Subjects. Front. Physiol. 2017, 8, 1006. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, Z.; Salehi-Abargouei, A.; Mollahosseini, M.; Sheikhha, M.H.; Mirzaei, M.; Mozaffari-Khosravi, H. The cluster of differentiation 36 (CD36) rs1761667 polymorphism interacts with dietary patterns to affect cardiometabolic risk factors and metabolic syndrome risk in apparently healthy individuals. Br. J. Nutr. 2023, 130, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Trento, M.; Passera, P.; Borgo, E.; Tomalino, M.; Bajardi, M.; Cavallo, F.; Porta, M. A 5-year randomized controlled study of learning, problem solving ability, and quality of life modifications in people with type 2 diabetes managed by group care. Diabetes Care 2004, 27, 670–675. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, H.; Huang, Y.; Huang, L.; Zhang, D.A. Systematic review of application and effectiveness of health interventions for obesity and diabetes treatment and self-management. Adv. Nutr. 2017, 8, 449–462. [Google Scholar] [CrossRef]
- Trento, M.; Passera, P.; Tomalino, M.; Bajardi, M.; Pomero, F.; Allione, A.; Vaccari, P.; Psych, B. Group visits improve metabolic control in type 2 diabetes: A 2-year follow-up. Diabetes Care 2001, 24, 995–1000. [Google Scholar] [CrossRef]
- Trento, M.; Passera, P.; Bajardi, M.; Tomalino, M.; Grassi, G.; Borgo, E.; Donnola, C.; Cavallo, F.; Bondonio, P.; Porta, M. Lifestyle intervention by group care prevents deterioration of type ii diabetes: A 4-year randomized controlled clinical trial. Diabetologia 2002, 45, 1231–1239. [Google Scholar] [CrossRef]
- Franzago, M.; Di Nicola, M.; Fraticelli, F.; Marchioni, M.; Stuppia, L.; Vitacolonna, E. Nutrigenetic variants and response to diet/lifestyle intervention in obese subjects: A pilot study. Acta Diabetol. 2022, 59, 69–81. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Saslow, L.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef]
- Natale, V.; Esposito, M.J.; Martoni, M.; Fabbri, M. Validity of the reduced version of the Morningness-Eveningness Questionnaire. Sleep Biol. Rhythm. 2006, 4, 72–74. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Di Thiene, D.; Del Cimmuto, A.; Masala, D. International physical activity questionnaire: Validation and assessment in an Italian sample. Ital. J. Public Health 2010, 7, 369–376. [Google Scholar]
- Gautam, S.; Agrawal, C.G.; Banerjee, M. CD36 gene variants in early prediction of type 2 diabetes mellitus. Genet. Test. Mol. Biomark. 2015, 19, 144–149. [Google Scholar] [CrossRef]
- Sayed, A.; Šerý, O.; Plesnik, J.; Daoudi, H.; Rouabah, A.; Rouabah, L.; Khan, N.A. CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int. J. Obes. 2015, 39, 920–924. [Google Scholar] [CrossRef]
- Sookoian, S.; Gemma, C.; Gianotti, T.F.; Burgueño, A.; Castaño, G.; Pirola, C.J. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 2008, 87, 1606–1615. [Google Scholar] [CrossRef]
- Lopez-Minguez, J.; Gómez-Abellán, P.; Garaulet, M. Circadian rhythms, food timing and obesity. Proc. Nutr. Soc. 2016, 75, 501–511. [Google Scholar] [CrossRef]
- Rahati, S.; Qorbani, M.; Naghavi, A.; Nia, M.H.; Pishva, H. Association between CLOCK 3111 T/C polymorphism with ghrelin, GLP-1, food timing, sleep and chronotype in overweight and obese Iranian adults. BMC Endocr. Disord. 2022, 22, 147. [Google Scholar] [CrossRef]
- Woon, P.Y.; Kaisaki, P.J.; Bragança, J.; Bihoreau, M.-T.; Levy, J.C.; Farrall, M.; Gauguier, D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 14412–14417. [Google Scholar] [CrossRef]
- Uemura, H.; Katsuura-Kamano, S.; Yamaguchi, M.; Arisawa, K.; Hamajima, N.; Hishida, A.; Kawai, S.; Oze, I.; Shinchi, K.; Takashima, N.; et al. Variant of the clock circadian regulator (CLOCK) gene and related haplotypes are associated with the prevalence of type 2 diabetes in the Japanese population. J. Diabetes 2015, 8, 667–676. [Google Scholar] [CrossRef]
- Stevens, H.; Verdone, G.; Lang, L.; Graham, C.; Pilic, L.; Mavrommatis, Y. A systematic review of variations in circadian rhythm genes and type 2 diabetes. Nutr. Health. 2023. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Lee, Y.-C.; Shen, J.; Parnell, L.D.; Arnett, D.K.; Tsai, M.Y.; Lai, C.-Q.; Ordovas, J.M. CLOCK genetic variation and metabolic syndrome risk: Modulation by monounsaturated fatty acids. Am. J. Clin. Nutr. 2009, 90, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Corbalán, M.D.; Madrid, J.A.; Morales, E.; Baraza, J.C.; Lee, Y.C.; Ordovas, J.M. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int. J. Obes. 2010, 34, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, Y.; Ding, Q.; Li, Y.; Chen, Y.; Ruan, X.Z. CD36 senses dietary lipids and regulates lipids homeostasis in the intestine. Front. Physiol. 2021, 12, 516–523. [Google Scholar] [CrossRef]
- Abdoul-Azize, S.; Selvakumar, S.; Sadou, H.; Besnard, P.; Khan, N.A. Ca2þ signaling in taste bud cells and spontaneous preference for fat: Unresolved roles of CD36 and GPR120. Biochimie 2014, 96, 8e13. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhou, L.H.; Ban, X.; Liu, D.X.; Jiang, W.; Liu, X.M. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011, 113, 663–667. [Google Scholar] [CrossRef]
- Karthi, M.; Deepankumar, S.; Vinithra, P.; Gowtham, S.; Vasanth, K.; Praveen Raj, P.; Senthilkumar, R.; Selvakumar, S. Single nucleotide polymorphism in CD36: Correlation to peptide YY levels in obese and non-obese adults. Clin. Nutr. 2021, 40, 2707–2715. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, Z.Y.; Deng, S.B.; Du, H.A.; Yin, Y.H.; Yuan, J.; She, Q.; Chen, Y.Q. Associations between CD36 gene polymorphisms and susceptibility to coronary artery heart disease. Braz. J. Med. Biol. Res. 2014, 47, 895–903. [Google Scholar] [CrossRef]
- Boghdady, A.; Arafa, U.A.; Sabet, E.A.; Salama, E.; El Sharawy, A.; Elbadry, M.I. Association between rs1761667 polymorphism of CD36 gene and risk of coronary atherosclerosis in Egyptian population. Cardiovasc. Diagn. Ther. 2016, 6, 120–130. [Google Scholar] [CrossRef]
- Banerjee, M.; Gautam, S.; Saxena, M.; Bid, H.K.; Agrawal, C.G. Association of CD36 gene variants rs1761667 (G > A) and rs1527483 (C > T) with Type 2 diabetes in North Indian population. Int. J. Diabetes Mellit. 2010, 2, 179–183. [Google Scholar] [CrossRef]
- Bayoumy, N.M.; El-Shabrawi, M.M.; Hassan, H.H. Association of cluster of differentiation 36 gene variant rs1761667 (G > A) with metabolic syndrome in Egyptian adults. Saudi Med. J. 2012, 33, 489–494. [Google Scholar] [PubMed]
- Pioltine, M.B.; de Melo, M.E.; Santos, A.; Machado, A.D.; Fernandes, A.E.; Fujiwara, C.T.; Cercato, C.; Mancini, M.C. Genetic variation in CD36 is associated with decreased fat and sugar intake in obese children and adolescents. J Nutr. Nutr. 2016, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Solakivi, T.; Kunnas, T.; Nikkari, S.T. Contribution of fatty acid transporter (CD36) genetic variant rs1761667 to body mass index, the TAMRISK study. Scand. J. Clin. Lab. Investig. 2015, 75, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Luangrath, V.; Brodeur, M.R.; Rhainds, D.; Brissette, L. Mouse CD36 has opposite effects on LDL and oxidized LDL metabolism in vivo. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Brundert, M.; Heeren, J.; Merkel, M.; Carambia, A.; Herkel, J.; Groitl, P.; Dobner, T.; Ramakrishnan, R.; Moore, K.J.; Rinninger, F. Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J. Lipid Res. 2011, 52, 745–758. [Google Scholar] [CrossRef]
- Noel, S.E.; Lai, C.Q.; Mattei, J.; Parnell, L.D.; Ordovas, J.M.; Tucker, K.L. Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 2010, 211, 210–215. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Mozaffari-Khosravi, H.; Mirzaei, M.; Sheikhha, M.H.; Salehi-Abargouei, A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci. Rep. 2022, 12, 5916. [Google Scholar] [CrossRef]
- Rać, M.; Krupa, B.; Garanty-Bogacka, B.; Syrenicz, M.; Safranow, K.; Dziedziejko, V.; Kurzawski, G.; Olszewska, M.; Rać, M.; Chlubek, D. Polymorphism of CD36 gene, carbohydrate metabolism and plasma CD36 concentration in obese children. A preliminary study. Postep. Hig. Med. Dosw. Online 2012, 66, 954–958. [Google Scholar] [CrossRef]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Moore, C.; Nietert, S. Recommendations for planning pilot studies in clinical and translational sciences. Clin. Transl. Sci. 2011, 4, 332–337. [Google Scholar] [CrossRef]
Genetic Variants | Location | Assay |
---|---|---|
CD36 rs1984112 (A>G) | Chr.7: 80613604 on GRCh38 | C__12093946_10 |
CD36 rs1761667 (G>A) | Chr.7: 80615623 on GRCh38 | C___8314999_10 |
CLOCK rs1801260 (A>G) | Chr.4: 55435202 on GRCh38 | C___8746719_20 |
CLOCK rs4864548 (A>G) | Chr.4: 55547636 on GRCh38 | C__11821276_10 |
BMAL1 rs7950226 (G>A) | Chr.11: 13296592 on GRCh38 | C__11578388_10 |
CLOCK rs3736544 (G>A) | Chr.4: 55443825 on GRCh38 | C__22273263_10 |
Variable | Baseline |
---|---|
Age (yr) | 65.0 (57.0–66.0) |
Gender | |
- Female | 12 (52.2%) |
- Male | 11 (47.8%) |
Employment | |
- Employed | 22 (95.7%) |
- Unemployed | 1 (4.3%) |
Variable | Baseline | T6 | T12 | p-Value a |
---|---|---|---|---|
Weight (Kg) | 93.0 (78.0–103.0) | 92.0 (79.0–101.0) * | 91.5 (79.5–104.0) * | 0.002 |
BMI (kg/m2) | 31.8 (28.1–37.8) | 33.7 (27.9–37.2) * | 30.4 (26.1–36.1) * | 0.002 |
Waist circumference (cm) | 108.5 (100.0–118.0) | 107.0 (97.0–113.0) | 109.0 (93.0–116.0) | 0.152 |
Hip circumference (cm) | 113.0 (104.0–126.0) | 114.5 (101.5–123.0) | 112.0 (99.0–120.0) | 0.452 |
WHR | 1.0 (0.9–1.0) | 1.1 (1.0–1.1) | 0.9 (0.9–1.0) | 0.178 |
Systolic blood pressure (mmHg) | 130.0 (110.0–150.0) | 130.0 (120.0–140.0) | 125.0 (120.0–137.5) | 0.717 |
Diastolic blood pressure (mmHg) | 80.0 (70.0–90.0) | 80.0 (75.0–85.0) | 80.0 (70.0–80.0) | 0.494 |
PREDIMED | 7.0 (7.0–8.0) | 9.0 (9.0–10.0) * | 8.5 (8.0–10.0) * | 0.002 |
PREDIMED CLASS | 0.301 | |||
- No adherence | 5.3% | 0.0% | 0.0% | |
- Adherence | 78.9% | 58.8% | 72.2% | |
- Max adherence | 15.8% | 41.2% | 27.8% | |
IPAQ | 0.318 | |||
- Low | 52.6% | 29.4% | 22.2% | |
- Moderate | 31.6% | 47.1% | 38.9% | |
- High | 15.8% | 23.5% | 38.9% | |
Fasting blood glucose (mg/dL) | 115.0 (105.0–140.0) | 107.0 (102.0–108.0) | 110.0 (102.0–125.0) | 0.223 |
Hba1c | 6.5 (5.9–7.5) | 6.1 (6.0–6.3) | 6.3 (5.5–6.7) | 0.350 |
Total cholesterol (mg/dL) | 199.0 (183.0–217.5) | 208.5 (197.0–238.5) | 193.0 (160.0–223.0) | 0.751 |
HDL (mg/dL) | 41.0 (37.0–55.0) | 48.5 (41.0–55.0) | 46.0 (41.0–51.0) | 0.135 |
TG (mg/dL) | 139.5 (93.5–214.5) | 118.5 (94.5–187.5) | 120.4 (96.0–160.7) | 0.900 |
LDL (mg/dL) | 120.4 (101.2–138.0) | 132.7 (121.6–160.7) | 123.8 (90.8–137.0) | 0.913 |
p-Value | ||||||
---|---|---|---|---|---|---|
CD36 rs1984112 A>G | AA | AG | GG | Genotype a | Time b | Interaction c |
BMI | ||||||
Baseline | 28.6 (27.6–29.4) | 36.2 (31.9–38.0) | 29.7 (28.2–31.3) | 0.124 | 0.019 | 0.964 |
T6 | 27.8 (27.3–29.1) | 36.0 (31.6–38.0) | 29.3 (28.0–30.6) | |||
T12 | 27.9 (26.1–28.2) | 35.1 (30.0–36.9) | 29.1 (27.8–30.4) | |||
CD36 rs1761667 G>A | AA | AG | GG | |||
BMI | ||||||
Baseline | 28.0 (27.3–28.7) | 37.2 (32.4–39.9) | 31.3 (28.2–35.9) | 0.011 | 0.001 | 0.968 |
T6 | 27.6 (26.5–28.4) | 36.2 (32.7–39.3) | 30.6 (28.0–36.0) | |||
T12 | 26.1 (25.4–27.9) | 35.5 (31.9–38.3) | 29.1 (25.5–32.3) | |||
BMAL1 rs7950226 G>A | AA | AG | GG | |||
BMI | ||||||
Baseline | 34.7 (26.9–44.2) | 36.5 (28.5–37.9) | 30.5 (28.0–35.7) | 0.567 | <0.001 | 0.167 |
T6 | 40.3 (28.0–45.9) | 35.9 (27.3–37.2) | 30.6 (27.8–36.0) | |||
T12 | 32.3 (26.7–41.6) | 35.5 (29.8–36.1) | 30.0 (26.1–34.6) | |||
CLOCK rs1801260 A>G | AA | AG | GG | |||
BMI | ||||||
Baseline | 35.9 (29.4–37.9) | 29.1 (26.7–32.4) | 41.1 (27.6–41.3) | 0.081 | <0.001 | 0.214 |
T6 | 36.0 (30.6–37.2) | 28.9 (25.0–32.7) | 40.3 (27.3–40.8) | |||
T12 | 34.6 (28.2–36.0) | 26.7 (24.7–30.9) | 38.6 (36.9–40.4) | |||
CLOCK rs4864548 G>A | AA | AG | GG | |||
BMI | ||||||
Baseline | 37.9 (37.9–37.9) | 32.1 (28.7–35.9) | 30.7 (26.4–38.8) | 0.753 | 0.008 | 0.593 |
T6 | 36.5 (36.5–36.5) | 33.8 (29.1–36.0) | 31.6 (27.3–40.3) | |||
T12 | 36.0 (36.0–36.0) | 29.3 (27.0–34.9) | 30.9 (25.6–36.9) | |||
CLOCK rs3736544 G>A | AA | AG | GG | |||
BMI | ||||||
Baseline | 36.6 (31.9–42.0) | 29.7 (28.7–35.6) | 35.4 (28.4–39.9) | 0.132 | 0.003 | 0.387 |
T6 | 37.0 (31.9–42.0) | 30.6 (29.1–35.1) | 35.1 (27.7–39.3) | |||
T12 | 36.1 (27.9–46.5) | 29.1 (26.1–31.9) | 36.4 (27.8–38.3) |
p-Value | |||||
---|---|---|---|---|---|
CD36 rs1984112 A>G | GG | AA+AG | Genotype a | Time b | Interaction c |
BMI | |||||
Baseline | 29.7 (28.2–31.3) | 33.0 (28.6–37.9) | 0.438 | 0.119 | 0.781 |
T6 | 29.3 (28.0–30.6) | 35.1 (27.8–38.0) | |||
T12 | 29.1 (27.8–30.4) | 31.8 (26.1–36.1) | |||
CD36 rs1761667 G>A | AA | GG+GA | |||
BMI | |||||
Baseline | 28.0 (27.3–28.7) | 35.9 (31.2–38.0) | 0.014 | 0.001 | 0.831 |
T6 | 27.6 (26.4–28.4) | 35.9 (30.6–38.0) | |||
T12 | 26.1 (25.6–27.9) | 34.9 (30.0–36.9) | |||
BMAL1 rs7950226 G>A | AA | GG+GA | |||
BMI | |||||
Baseline | 34.8 (26.9–44.2) | 31.9 (28.5–36.7) | 0.400 | <0.001 | 0.877 |
T6 | 40.3 (28.0–45.9) | 32.7 (27.8–36.5) | |||
T12 | 32.3 (26.7–41.6) | 30.4 (26.1–36.0) | |||
CLOCK rs1801260 A>G | GG | AA+AG | |||
BMI | |||||
Baseline | 41.1 (27.6–41.3) | 31.9 (28.5–36.7) | 0.362 | <0.001 | 0.123 |
T6 | 40.3 (27.3–40.8) | 32.7 (28.0–36.5) | |||
T12 | 38.6 (36.9–40.4) | 30.2 (27.0–35.5) | |||
CLOCK rs4864548 G>A | AA | GG+GA | |||
BMI | |||||
Baseline | 37.9 (37.9–37.9) | 31.6 (28.2–36.7) | 0.462 | 0.049 | 0.699 |
T6 | 36.5 (36.5–36.5) | 32.7 (27.9–37.6) | |||
T12 | 36.0 (36.0–36.0) | 30.2 (26.1–36.1) | |||
CLOCK rs3736544 G>A | AA | GG+GA | |||
BMI | |||||
Baseline | 36.6 (31.9–42.0) | 31.2 (28.2–37.9) | 0.129 | 0.078 | 0.363 |
T6 | 37.0 (31.9–42.0) | 31.6 (28.0–36.5) | |||
T12 | 36.1 (27.9–46.5) | 30.2 (26.0–35.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzago, M.; Borrelli, P.; Di Nicola, M.; Stuppia, L.; Vitacolonna, E. Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia—A Pilot Study. Nutrients 2023, 15, 4656. https://doi.org/10.3390/nu15214656
Franzago M, Borrelli P, Di Nicola M, Stuppia L, Vitacolonna E. Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia—A Pilot Study. Nutrients. 2023; 15(21):4656. https://doi.org/10.3390/nu15214656
Chicago/Turabian StyleFranzago, Marica, Paola Borrelli, Marta Di Nicola, Liborio Stuppia, and Ester Vitacolonna. 2023. "Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia—A Pilot Study" Nutrients 15, no. 21: 4656. https://doi.org/10.3390/nu15214656
APA StyleFranzago, M., Borrelli, P., Di Nicola, M., Stuppia, L., & Vitacolonna, E. (2023). Genetic Variants in CD36 Involved in Fat Taste Perception: Association with Anthropometric and Clinical Parameters in Overweight and Obese Subjects Affected by Type 2 Diabetes or Dysglycemia—A Pilot Study. Nutrients, 15(21), 4656. https://doi.org/10.3390/nu15214656