Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Intervention
2.2. Anthropometric Assessments
2.3. Clinical Measurements
2.4. Bile Acids Measurement
2.5. Identification and Quantifications of Serum Proteins by Mass Spectrometry
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Dietary Intakes
3.3. Plasma Bile Acid Levels
3.4. Serum Proteomic Levels
3.5. Correlations between Total or Individual Serum Bile Acid Levels and Glycemic or Lipid Profiles in AD vs. HD Groups after Adjustments for Age, Sex and BMI
3.6. Correlations between Serum 7αC4 and Serum Proteins before and after AD and HD Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, A.M.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Bardini, G.; Rotella, C.M.; Giannini, S. Dyslipidemia and diabetes: Reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro-and macrovascular complications. Rev. Diabet. Stud. RDS 2012, 9, 82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Wei, F.; Song, J.; Cao, Z.; Chen, C.; Zhang, K.; Feng, S.; Wang, Y.; Li, W.-D. Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. J. Transl. Med. 2019, 17, 403. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y. Bile acids as metabolic regulators. Curr. Opin. Gastroenterol. 2015, 31, 159. [Google Scholar] [CrossRef]
- Prawitt, J.; Caron, S.; Staels, B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr. Diabetes Rep. 2011, 11, 160–166. [Google Scholar] [CrossRef]
- Šarenac, T.M.; Mikov, M. Bile acid synthesis: From nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front. Pharmacol. 2018, 9, 939. [Google Scholar] [CrossRef]
- González-Regueiro, J.A.; Moreno-Castañeda, L.; Uribe, M.; Chávez-Tapia, N.C. The role of bile acids in glucose metabolism and their relation with diabetes. Ann. Hepatol. 2018, 16, 15–20. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Ferrell, J.M. Bile acids as metabolic regulators and nutrient sensors. Annu. Rev. Nutr. 2019, 39, 175. [Google Scholar] [CrossRef]
- Bourrie, B.C.; Willing, B.P.; Cotter, P.D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 2016, 7, 647. [Google Scholar] [CrossRef]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A. The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef]
- Aljutaily, T.; Huarte, E.; Martinez-Monteagudo, S.; Gonzalez-Hernandez, J.L.; Rovai, M.; Sergeev, I.N. Probiotic-enriched milk and dairy products increase gut microbiota diversity: A comparative study. Nutr. Res. 2020, 82, 25–33. [Google Scholar] [CrossRef]
- Shuai, M.; Miao, Z.; Gou, W.; Xu, F.; Jiang, Z.; Ling, C.-W.; Fu, Y.; Xiong, F.; Chen, Y.-M.; Zheng, J.-S. Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health. EBioMedicine 2021, 66, 103284. [Google Scholar] [CrossRef] [PubMed]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Gheshlaghi, Z.B.; Vahedjabbari, M. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Iran. J. Public Health 2015, 44, 228. [Google Scholar]
- Chen, Z.-Z.; Gerszten, R.E. Metabolomics and proteomics in type 2 diabetes. Circ. Res. 2020, 126, 1613–1627. [Google Scholar] [CrossRef]
- Katamay, S.W.; Esslinger, K.A.; Vigneault, M.; Johnston, J.L.; Junkins, B.A.; Robbins, L.G.; Sirois, I.V.; Jones-McLean, E.M.; Kennedy, A.F.; Bush, M.A. Eating well with Canada’s Food Guide (2007): Development of the food intake pattern. Nutr. Rev. 2007, 65, 155–166. [Google Scholar] [CrossRef]
- O’Connor, S.; Turcotte, A.-F.; Gagnon, C.; Rudkowska, I. Increased dairy product intake modifies plasma glucose concentrations and glycated hemoglobin: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2019, 10, 262–279. [Google Scholar] [CrossRef] [PubMed]
- Goulet, J.; Nadeau, G.; Lapointe, A.; Lamarche, B.; Lemieux, S. Validity and reproducibility of an interviewer-administered food frequency questionnaire for healthy French-Canadian men and women. Nutr. J. 2004, 3, 13. [Google Scholar] [CrossRef]
- Canada, H. Eating Well with Canada’s Food Guide: A Resource for Educators and Communicators; Publications Health Canada: Ottawa, ON, Canada, 2011. [Google Scholar]
- O’Connor, S.; Greffard, K.; Leclercq, M.; Julien, P.; Weisnagel, S.J.; Gagnon, C.; Droit, A.; Bilodeau, J.F.; Rudkowska, I. Increased dairy product intake alters serum metabolite profiles in subjects at risk of developing type 2 diabetes. Mol. Nutr. Food Res. 2019, 63, 1900126. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- McNamara, J.R.; Schaefer, E.J. Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin. Chim. Acta 1987, 166, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Burstein, M.; Samaille, J. On a rapid determination of the cholesterol bound to the serum alpha-and beta-lipoproteins. Clin. Chim. Acta Int. J. Clin. Chem. 1960, 5, 609. [Google Scholar] [CrossRef]
- Ash, K.O.; Hentschel, W.M. High-density lipoproteins estimated by an enzymatic cholesterol procedure, with a centrifugal analyzer. Clin. Chem. 1978, 24, 2180–2184. [Google Scholar] [CrossRef]
- Albers, J.J.; Warnick, G.; Wiebe, D.; King, P.; Steiner, P.; Smith, L.; Breckenridge, C.; Chow, A.; Kuba, K.; Weidman, S. Multi-laboratory comparison of three heparin-Mn2+ precipitation procedures for estimating cholesterol in high-density lipoprotein. Clin. Chem. 1978, 24, 853–856. [Google Scholar] [CrossRef]
- Daniel, N.; Le Barz, M.; Mitchell, P.L.; Varin, T.V.; Julien, I.B.; Farabos, D.; Pilon, G.; Gauthier, J.; Garofalo, C.; Kang, J.X. Comparing transgenic production to supplementation of ω-3 PUFA reveals distinct but overlapping mechanisms underlying protection against metabolic and hepatic disorders. Function 2023, 4, zqac069. [Google Scholar] [CrossRef]
- Mahdavi, A.; Leclercq, M.; Bodein, A.; Gotti, C.; Greffard, K.; Bilodeau, J.-F.; Droit, A.; Lebel, M.; Rudkowska, I. High dairy products intake modifies the correlation between α-tocopherol levels and serum proteins related to lipid metabolism in subjects at risk of type 2 diabetes. J. Funct. Foods 2023, 100, 105375. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, W.; Weng, S.; Luo, M.; Fu, J.; Zadroga, J.A.; Spolitu, S.; Peng, D. The association of serum total bile acid with non-alcoholic fatty liver disease in Chinese adults: A cross sectional study. Lipids Health Dis. 2020, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, D.; Wang, Z.; Sun, J.; Xu, B.; Chen, Y.; Ding, L.; Huang, X.; Lv, X.; Lu, J. Insulin resistance is associated with total bile acid level in type 2 diabetic and nondiabetic population: A cross-sectional study. Medicine 2016, 95, e2778. [Google Scholar] [CrossRef]
- Smushkin, G.; Sathananthan, M.; Piccinini, F.; Dalla Man, C.; Law, J.H.; Cobelli, C.; Zinsmeister, A.R.; Rizza, R.A.; Vella, A. The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes 2013, 62, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, R60. [Google Scholar] [CrossRef]
- Brevik, A.; Veierød, M.; Drevon, C.; Andersen, L. Evaluation of the odd fatty acids 15: 0 and 17: 0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur. J. Clin. Nutr. 2005, 59, 1417–1422. [Google Scholar] [CrossRef]
- Pushpass, R.-A.G.; Alzoufairi, S.; Jackson, K.G.; Lovegrove, J.A. Circulating bile acids as a link between the gut microbiota and cardiovascular health: Impact of prebiotics, probiotics and polyphenol-rich foods. Nutr. Res. Rev. 2021, 35, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Govers, M.J.; Termont, D.S.; Lapré, J.A.; Kleibeuker, J.H.; Vonk, R.J.; Van der Meer, R. Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res. 1996, 56, 3270–3275. [Google Scholar]
- Hjerpsted, J.B.; Dragsted, L.O.; Tholstrup, T. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion. J. Nutr. Intermed. Metab. 2016, 3, 12–17. [Google Scholar] [CrossRef]
- Jong, M.C.; Hofker, M.H.; Havekes, L.M. Role of ApoCs in lipoprotein metabolism: Functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 472–484. [Google Scholar] [CrossRef]
- O’Toole, J.F.; Bruggeman, L.A.; Madhavan, S.; Sedor, J.R. The cell biology of APOL1. In Seminars in Nephrology; WB Saunders: Philadelphia, PA, USA, 2017; pp. 538–545. [Google Scholar]
- Johansson, M.; DeNardo, D.G.; Coussens, L.M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 2008, 222, 145–154. [Google Scholar] [CrossRef]
- Gonda, A.; Kabagwira, J.; Senthil, G.N.; Wall, N.R. Internalization of exosomes through receptor-mediated endocytosis. Mol. Cancer Res. 2019, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Aflakian, N.; Ravichandran, S.; Jamal, M.S.; Jarvenpaa, H.; Lahesmaa, R.; Rao, K.V. Integration of signals from the B-cell antigen receptor and the IL-4 receptor leads to a cooperative shift in the cellular response axis. Mol. BioSyst. 2009, 5, 1661–1671. [Google Scholar] [CrossRef]
- Copple, B.L.; Li, T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol. Res. 2016, 104, 9–21. [Google Scholar] [CrossRef]
- Wammers, M.; Schupp, A.-K.; Bode, J.G.; Ehlting, C.; Wolf, S.; Deenen, R.; Köhrer, K.; Häussinger, D.; Graf, D. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci. Rep. 2018, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Wisse, B.E. The inflammatory syndrome: The role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol. 2004, 15, 2792–2800. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004, 27, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Garruti, G.; Liu, M.; Portincasa, P.; Wang, D.Q. Cholesterol and lipoprotein metabolism and atherosclerosis: Recent advances in reverse cholesterol transport. Ann. Hepatol. 2018, 16, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Favari, E.; Chroni, A.; Tietge, U.J.; Zanotti, I.; Escolà-Gil, J.C.; Bernini, F. Cholesterol efflux and reverse cholesterol transport. In High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; Springer: Cham, Switzerland, 2015; pp. 181–206. [Google Scholar]
- Sun, R.; Xu, C.; Feng, B.; Gao, X.; Liu, Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Ther. Adv. Gastroenterol. 2021, 14, 17562848211018098. [Google Scholar] [CrossRef] [PubMed]
Variables | AD | p * | HD | p * | p ** | p *** | ||
---|---|---|---|---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | |||||||
0 Week | 6 Weeks | 0 Week | 6 Weeks | |||||
Body weight (kg) | 90.44 ± 15.60 | 90.31 ± 15.72 | 0.73 | 89.85 ± 15.43 | 90.27 ± 15.43 | 0.1 | 0.17 | 0.99 |
BMI (kg/m2) | 31.37 ± 3.39 | 31.32 ± 3.39 | 0.85 | 31.15 ± 3.18 | 31.30 ± 3.25 | 0.1 | 0.96 | 0.96 |
HDL (mmol/L) | 1.12 ± 0.23 | 1.10 ± 0.24 | 0.43 | 1.12 ± 0.26 | 1.09 ± 0.27 | 0.23 | 0.92 | 0.87 |
LDL (mmol/L) | 2.72 ± 0.85 | 2.60 ± 0.90 | 0.05 | 2.71 ± 0.86 | 2.60 ± 0.99 | 0.33 | 0.95 | 0.97 |
Cholesterol total (mmol/L) | 4.63 ± 0.96 | 4.46 ± 0.95 | 0.04 | 4.57 ± 1.00 | 4.49 ± 1.16 | 0.56 | 0.93 | 0.93 |
Ratio cholesterol total/HDL | 4.37 ± 1.69 | 4.26 ± 1.47 | 0.36 | 4.30 ± 1.66 | 4.38 ± 1.98 | 0.54 | 0.91 | 0.91 |
Ratio LDL/HDL | 2.55 ± 1.01 | 2.44 ± 0.93 | 0.16 | 2.57 ± 1.12 | 2.54 ± 1.25 | 0.9 | 0.8 | 0.8 |
Fasting blood glucose (mmol/L) | 5.26 ± 0.48 | 5.24 ± 0.55 | 0.85 | 5.19 ± 0.45 | 5.32 ± 0.59 | 0.35 | 0.44 | 0.7 |
Fasting insulin (pmol/L) | 119.95 ± 57.25 | 127.43 ± 74.07 | 0.23 | 113.54 ± 54.69 | 133.34 ± 73.44 | 0.02 | 0.45 | 0.67 |
Insulin resistance, HOMAIR | 4.95 ± 2.59 | 5.24 ± 3.92 | 0.96 | 4.43 ± 2.35 | 5.26 ± 3.47 | 0.02 | 0.73 | 0.83 |
TG (mmol/L) | 1.72 ± 1.13 | 1.68 ± 1.15 | 0.60 | 1.57 ± 0.95 | 1.73 ± 1.01 | 0.05 | 0.5 | 0.57 |
Dietary Intake | ||||||||
Dairy products (servings/d) | 2.95 ± 2.16 | 2.27 ± 1.21 | 0.20 | 2.5 ± 1.74 | 5.94 ± 1.78 | <0.001 | 0.24 | <0.001 |
Calcium intake (mg/d) | 1388.16 ± 765.75 | 1155.20 ± 405.66 | 0.18 | 1236.04 ± 628.14 | 2228.36 ± 588.05 | <0.001 | 0.42 | <0.001 |
Total energy intake (kcal/d) | 2355.27 ± 1094.34 | 2100.94 ± 792.24 | 0.28 | 2174.68 ± 1054.06 | 2493.83 ± 896.82 | 0.03 | 0.28 | 0.11 |
Total carbohydrate intake (g/d) | 263.35 ± 116.37 | 235.96 ± 97.40 | 0.08 | 246.27 ± 128.44 | 278.69 ± 111.75 | 0.05 | 0.32 | 0.16 |
Total protein intake (g/d) | 104.23 ± 50.37 | 92.66 ± 33.57 | 0.28 | 94.58 ± 42.81 | 119.40 ± 33.83 | <0.001 | 0.31 | 0.007 |
Total fat intake (g/d) | 96.17 ± 52.64 | 83.87 ± 33.83 | 0.43 | 88.81 ± 46.53 | 97.71 ± 39.20 | 0.21 | 0.3 | 0.19 |
Cholesterol intake (mg/d) | 316.98 ± 176.86 | 281.74 ± 110.82 | 0.51 | 278.61 ± 129.39 | 332.05 ± 140.60 | 0.04 | 0.24 | 0.17 |
Total Saturated Fat (SFA) intake (g/d) | 34.5 ± 23.76 | 28.13 ± 12.40 | 0.41 | 31.05 ± 18.15 | 39.42 ± 17.10 | 0.01 | 0.32 | 0.01 |
Total Monounsaturated Fat (MUFA) intake (g/d) | 38 ± 19.81 | 33.86 ± 14.22 | 0.29 | 35.11 ± 18.41 | 36.54 ± 15.04 | 0.61 | 0.61 | 0.52 |
Total Polyunsaturated Fat (PUFA) intake (g/d) | 16.44 ± 6.85 | 15.45 ± 5.86 | 0.32 | 15.87 ± 8.07 | 14.78 ± 5.90 | 0.4 | 0.23 | 0.69 |
Arachidonic acid (AA) intake (g/d) | 0.15 ± 0.08 | 0.14 ± 0.06 | 0.84 | 0.14 ± 0.07 | 0.13 ± 0.06 | 0.17 | 0.29 | 0.29 |
Eicosapentaenoic acid (EPA) intake (g/d) | 0.22 ± 0.30 | 0.24 ± 0.30 | 0.86 | 0.19 ± 0.24 | 0.19 ± 0.29 | 0.07 | 0.55 | 0.17 |
Docosapentaenoic acid (DPA) intake (g/d) | 0.04 ± 0.04 | 0.04 ± 0.03 | 0.96 | 0.04 ± 0.03 | 0.03 ± 0.03 | 0.01 | 0.82 | 0.1 |
Docosahexaenoic acid (DHA) intake (g/d) | 0.27 ± 0.28 | 0.28 ± 0.26 | 0.8 | 0.24 ± 0.22 | 0.22 ± 0.24 | 0.07 | 0.88 | 0.17 |
Total Trans-Fat intake (g/d) | 4.00 ± 2.61 | 3.43 ± 1.97 | 0.18 | 3.64 ± 2.89 | 3.92 ± 2.37 | 0.03 | 0.82 | 0.43 |
% calories from protein | 18.05 ± 4.14 | 18.08 ± 4.11 | 0.82 | 17.97 ± 3.12 | 19.76 ± 3.13 | <0.001 | 0.15 | 0.04 |
% calories from carbohydrate | 44.81 ± 6.88 | 44.83 ± 8.12 | 0.88 | 45.55 ± 7.65 | 44.66 ± 6.58 | 0.41 | 0.78 | 0.61 |
% calories from fat | 36.45 ± 4.96 | 35.97 ± 5.92 | 0.61 | 36.37 ± 6.11 | 34.98 ± 4.80 | 0.19 | 0.67 | 0.52 |
% calories from SFA | 12.7 ± 2.97 | 11.99 ± 3.10 | 0.25 | 12.45 ± 3.19 | 14.15 ± 3.36 | 0.003 | 0.45 | 0.02 |
% calories from MUFA | 14.52 ± 2.14 | 14.47 ± 2.56 | 0.89 | 14.41 ± 2.54 | 13.04 ± 1.97 | 0.01 | 0.49 | 0.03 |
% calories from PUFA | 6.44 ± 1.45 | 6.73 ± 1.37 | 0.16 | 6.71 ± 1.88 | 5.29 ± 0.84 | <0.001 | 0.29 | <0.001 |
AD | p * | HD | p * | p ** | p *** | |||
---|---|---|---|---|---|---|---|---|
Parameters | (Mean ± SD) | (Mean ± SD) | ||||||
0 Week | 6 Weeks | 0 Week | 6 Weeks | |||||
CA (Cholic acid) | 169.26 ± 276.87 | 197.87 ± 303.71 | 0.47 | 172.35 ± 236.13 | 196.91 ± 344 72 | 0.94 | 0.95 | 0.65 |
CDCA (Chenodeoxycholic acid) | 234.33 ± 373.26 | 227.56 ± 298.77 | 0.61 | 230.77 ± 337.40 | 226.58 ± 342.57 | 0.58 | 0.63 | 0.73 |
DCA (Deoxycholic acid) | 257.91 ± 206.98 | 283.62 ± 174.13 | 0.56 | 304.71 ± 214.47 | 321.50 ± 251 | 0.79 | 0.35 | 0.93 |
HDCA (Hyodeoxycholic acid) | 1.12 ± 1.01 | 1.37 ± 1.56 | 0.42 | 1.85 ± 2.8 | 0.99 ± 1.45 | 0.08 | 0.50 | 0.30 |
UDCA (Ursodeoxycholic acid) | 68.42 ± 117.56 | 53.95 ± 75.39 | 0.46 | 52.78 ± 74.43 | 45.98 ± 55.01 | 0.66 | 0.65 | 0.98 |
HCA (Hyo-cholic acid) | 7.57 ± 10.72 | 10.32 ± 15.21 | 0.12 | 9.77 ± 12.51 | 7.17 ± 8.01 | 0.21 | 0.25 | 0.72 |
LCA (lithocholic acid) | 9.74 ± 7.58 | 10.47 ± 11.45 | 0.47 | 11.26 ± 7.33 | 11.15 ± 7.41 | 0.64 | 0.34 | 0.23 |
GCA (Glyco-cholic acid) | 131.95 ± 136.58 | 98.71 ± 79.03 | 0.41 | 92.45 81.40 | 114.13 ± 147.78 | 0.29 | 0.18 | 0.85 |
GCDCA (Glyco-cheno-deoxycholic acid) | 366.63 ± 303.73 | 283.05 ± 182.01 | 0.37 | 320.07 ± 193.92 | 327.84 ± 360.01 | 0.70 | 0.93 | 0.91 |
GDCA (Glyco-deoxycholic acid) | 222.75 ± 335.45 | 183.75 ± 145.93 | 0.82 | 222.80 ± 254.63 | 183.85 ± 193.80 | 0.31 | 0.85 | 0.61 |
GUDCA (Glycoursodeoxycholic acid) | 74.94 ± 87.63 | 62.13 ± 59.91 | 0.92 | 59.82 ± 49.49 | 68.09 ± 58.72 | 0.17 | 0.95 | 0.67 |
GLCA (Glycolithocholic acid) | 7.87 ± 8.68 | 8.20 ± 9.13 | 0.81 | 10 ± 13.14 | 8.26 ± 8.29 | 0.31 | 0.49 | 0.40 |
TCA (Taurocholic acid) | 42.99 ± 55.99 | 34.75 ± 54.17 | 0.37 | 25.79 ± 21.88 | 31.01 ± 38.80 | 0.56 | 0.64 | 0.85 |
TCDCA (Tauro-cheno-deoxycholic acid) | 77.85 ± 98.18 | 59.90 ± 55.61 | 0.88 | 56.76 ± 48.28 | 59.94 68.93 | 0.70 | 0.62 | 0.89 |
TDCA (Tauroursodeoxycholic acid) | 49.30 ± 103.17 | 34.91 ± 38.23 | 0.78 | 36.33 ± 49.47 | 31.61 ± 37.16 | 0.99 | 0.93 | 0.91 |
TUDCA (Tauroursodeoxycholic acid) | 2.77 ± 3.34 | 2.53 2.22 | 0.39 | 1.95 ± 1.82 | 2 ± 1.87 | 0.71 | 0.66 | 0.28 |
TLCA (Taurolithocholic acid) | 1.38 ± 2.5 | 1.27 ± 1.57 | 0.77 | 1.57 ± 2.51 | 1.02 ± 1.04 | 0.26 | 0.48 | 0.88 |
3dhLCA (3-dehydroxycholic acid) | 0.49 ± 0.78 | 0.49 ± 0.78 | 1 | 0.43 ± 0.75 | 0.59 ± 1.04 | 0.36 | 0.76 | 0.93 |
7aC4_177 (7α-hydroxy-4-cholesten-3-one 177) | 75.51 ± 53.88 | 67.94 ± 60.05 | 0.24 | 67.92 ± 53.44 | 92.2 ± 91.33 | 0.03 | 0.56 | 0.32 |
TOTAL Primary bile acids | 1023.03 ± 828.74 | 900.87 ± 757.18 | 0.73 | 898.22 ± 562.36 | 956.44 ± 955.38 | 0.51 | 0.73 | 1 |
TOTAL Secondary bile acids | 695.12 ± 614.26 | 640.73 ± 339.22 | 0.75 | 701.20 ± 472.49 | 673.50 ± 444.88 | 0.51 | 0.75 | 0.64 |
TOTAL CA | 344.21 ± 306.98 | 331.34 ± 386.24 | 0.42 | 290.60 ± 233.22 | 342.06 ± 408.01 | 0.86 | 0.42 | 0.70 |
TOTAL CDCA | 678.8 ± 550.95 | 569.52 ± 403.71 | 0.51 | 607.61 ± 371.31 | 614.37 ± 573.24 | 0.42 | 0.51 | 0.79 |
FBG (mmol/L) | Fasting Insulin (pmol/L) | HOMA-IR | HDL (mmol/L) | LDL (mmol/L) | TC (mmol/L) | Ratio TC/HDL | Ratio LDL/HDL | TG (mmol/L) | |
---|---|---|---|---|---|---|---|---|---|
Pre-AD | |||||||||
Correlation | −0.05 | 0.1 | 0.26 | −0.26 | 0.21 | 0.36 | 0.38 | 0.31 | 0.44 |
Significant | 0.78 | 0.61 | 0.20 | 0.21 | 0.30 | 0.07 | 0.06 | 0.12 | 0.03 * |
Post-AD | |||||||||
Correlation | −0.01 | 0.282 | 0.27 | −0.12 | 0.14 | 0.26 | 0.24 | 0.14 | 0.25 |
Significant | 0.93 | 0.18 | 0.19 | 0.57 | 0.49 | 0.20 | 0.24 | 0.49 | 0.22 |
Pre-HD | |||||||||
Correlation | 0.18 | 0.16 | 0.19 | −0.19 | 0.22 | 0.33 | 0.28 | 0.23 | 0.32 |
Significant | 0.38 | 0.43 | 0.37 | 0.35 | 0.28 | 0.11 | 0.17 | 0.27 | 0.12 |
Post-HD | |||||||||
Correlation | 0.01 | 0.28 | 0.2 | −0.22 | 0.07 | 0.18 | 0.22 | 0.1 | 0.42 |
Significant | 0.94 | 0.18 | 0.32 | 0.28 | 0.73 | 0.37 | 0.28 | 0.61 | 0.04 * |
Correlations (Pre-AD) Rho | p-Value | ||
---|---|---|---|
SERPINA7 | Serpin Family A Member 7 | 0.59 | 0.002 |
IGLV2-8 | Immunoglobulin Lambda Variable 2–8 | 0.42 | 0.003 |
IGKV3-20 | Immunoglobulin Kappa Variable 3–20 | 0.41 | 0.004 |
SERPINA6 | Serpin Family A Member 6 | 0.55 | 0.004 |
KNG1 | Kininogen 1 | 0.54 | 0.005 |
IGKV1-12 | Immunoglobulin Lambda Variable 1–12 | 0.50 | 0.009 |
APOE | Apolipoprotein E | 0.50 | 0.011 |
CFI | Complement factor I | 0.49 | 0.013 |
APOC1 | Apolipoprotein C1 | 0.48 | 0.014 |
LUM | Lumican | 0.48 | 0.014 |
C3 | Complement component 3 | 0.47 | 0.015 |
IGHV3-15 | Immunoglobulin heavy variable 3–15 | 0.47 | 0.017 |
CNDP1 | Beta-Ala-His dipeptidase | 0.45 | 0.022 |
APOL1 | Apolipoprotein L-1 | 0.43 | 0.029 |
TF | Transferrin | 0.42 | 0.034 |
F10 | coagulation factor X | 0.42 | 0.036 |
CLU | Clusterin | 0.42 | 0.036 |
IGFALS | Insulin like growth factor binding protein acid labile subunit | −0.41 | 0.038 |
IGHV6-1 | Immunoglobulin heavy variable 6-1 | −0.41 | 0.039 |
APOB | Apolipoprotein B | −0.41 | 0.039 |
AMBP | A1M (α1-microglobulin)/bikunin precursor | −0.53 | 0.006 |
ITIH3 | Inter-alpha-trypsin inhibitor heavy chain 3 | −0.49 | 0.012 |
EFEMP1 | fibulin-like extracellular matrix protein 1 | −0.46 | 0.016 |
GC | Guanine-cytosine content | −0.43 | 0.028 |
SHBG | Sex hormone binding globulin | −0.4 | 0.046 |
Correlations (post-AD) | |||
IGHV3-15 | Immunoglobulin heavy variable 3–15 | 0.53 | 0.006 |
IGKV3-20 | Immunoglobulin Kappa Variable 3–20 | 0.43 | 0.03 |
IGKV1-12 | Immunoglobulin Kappa Variable 1–12 | 0.42 | 0.033 |
IGKV1D-16 | Immunoglobulin Kappa Variable 1D-16 | 0.42 | 0.033 |
IGHV3-23 | Immunoglobulin heavy variable 3–23 | 0.42 | 0.036 |
IGHG1 | Immunoglobulin Heavy Constant Gamma 1 | 0.40 | 0.045 |
IGKV1-16 | Immunoglobulin Kappa Variable 1–16 | 0.39 | 0.049 |
ECM1 | Extracellular matrix protein 1 | 0.39 | 0.05 |
CA1 | Carbonic anhydrase 1 | −0.46 | 0.019 |
HBD | Hemoglobin Subunit Delta | −0.39 | 0.003 |
AMBP | A1M (α1-microglobulin)/bikunin precursor | −0.48 | 0.014 |
APOA4 | Apolipoprotein A4 | −0.57 | 0.025 |
AZGP1 | Alpha-2-Glycoprotein 1, Zinc-Binding | −0.39 | 0.048 |
ITIH3 | Inter-alpha-trypsin inhibitor heavy chain 3 | −0.46 | 0.049 |
ITIH4 | Inter-alpha-trypsin inhibitor heavy chain 4 | ||
Correlation (pre-HD) | |||
APOC3 | Apolipoprotein C3 | 0.57 | 0.003 |
C1R | Complement C1r subcomponent | 0.48 | 0.015 |
TF | Transferrin | 0.48 | 0.015 |
IGKV1-16 | Immunoglobulin Kappa Variable 1–16 | 0.43 | 0.031 |
CFI | Complement factor I | 0.42 | 0.033 |
IGFBP3 | Insulin-like growth factor (IGF)-binding protein-3 | 0.41 | 0.039 |
PCYOX1 | Prenylcysteine Oxidase 1 | 0.39 | 0.049 |
FGA | Fibrinogen alpha chain | −0.47 | 0.017 |
AMBP | A1M (α1-microglobulin)/bikunin precursor | −0.60 | 0.001 |
GC | Guanine-cytosine content | −0.58 | 0.002 |
SHBG | Sex hormone binding globulin | −0.59 | 0.002 |
CLEC3B | C-Type Lectin Domain Family 3 Member B | −0.55 | 0.004 |
C8B | Complement C8 Beta Chain | −0.48 | 0.014 |
C8G | Complement C8 Gamma Chain | −0.48 | 0.014 |
AZGP1 | Alpha-2-Glycoprotein 1, Zinc-Binding | −0.45 | 0.022 |
B2M | Beta2-microglobulin | −0.44 | 0.024 |
ITIH3 | Inter-alpha-trypsin inhibitor heavy chain 3 | −0.44 | 0.025 |
EFEMP1 | fibulin-like extracellular matrix protein 1 | −0.42 | 0.036 |
ITIH4 | Inter-alpha-trypsin inhibitor heavy chain 4 | −0.40 | 0.043 |
Correlation (post-HD) | |||
IGLV8-61 | Immunoglobulin Lambda Variable 8–61 | 0.42 | 0.036 |
ATRN | Attractin | 0.60 | 0.001 |
PROC | Protein C | 0.57 | 0.002 |
IGLV1-40 | Immunoglobulin Lambda Variable 1–40 | 0.51 | 0.008 |
IGLV2-8 | Immunoglobulin Lambda Variable 2–8 | 0.51 | 0.009 |
LCAT | Lecithin-cholesterol acyltransferase | 0.49 | 0.012 |
C6 | Complement component 6 | 0.49 | 0.012 |
FCN2 | Ficolin | 0.49 | 0.013 |
APOE | Apolipoprotein E | 0.48 | 0.014 |
APOC3 | Apolipoprotein C3 | 0.46 | 0.026 |
HGFAC | Hepatocyte growth factor activator | 0.42 | 0.032 |
FETUB | Fetuin B | 0.42 | 0.034 |
SERPINA10 | Serpin Family A Member 10 | 0.42 | 0.035 |
CP | Ceruloplasmin | −0.40 | 0.047 |
C9 | Complement component 9 | −0.55 | 0.004 |
CD14 | cluster of differentiation 14 | −0.48 | 0.014 |
CFD | Complement Factor D | −0.44 | 0.026 |
C8B | Complement C8 Beta Chain | −0.41 | 0.037 |
PPBP | Pro-platelet basic protein | −0.41 | 0.038 |
Biological Process | Bonferroni p-Value | Proteins | |
---|---|---|---|
Pre-AD | |||
Positive correlation | complement activation, classical pathway | 0.0015 | C3, IGHV6-1, CFI, IGHV3-15, CLU |
cholesterol metabolic process | 0.0181 | APOC1, APOE, APOB, APOL1 | |
lipoprotein metabolic process | 0.0483 | APOC1, APOE, APOL1 | |
Pre-AD | |||
Negative correlation | no significant biological process uncovered | ||
Post-AD | |||
Positive correlation | adaptive immune response | <0.0001 | IGHG1, IGKV1-16, IGHV3-23, IGKV1-12, IGHV3-15, IGKV1D-16, IGKV3-20 |
immune response | <0.0001 | IGKV1-16, IGHV3-23, IGKV1-12, IGKV1D-16, IGKV3-20 | |
immunoglobulin production | 0.0136 | IGKV1-16, IGKV1-12, IGKV3-20 | |
positive regulation of B cell activation | 0.0168 | IGHG1, IGHV3-23, IGHV3-15 | |
phagocytosis, recognition | 0.0172 | IGHG1, IGHV3-23, IGHV3-15 | |
phagocytosis, engulfment | 0.023 | IGHG1, IGHV3-23, IGHV3-15 | |
complement activation, classical pathway | 0.0267 | IGHG1, IGHV3-23, IGHV3-15 | |
B cell receptor signaling pathway | 0.0315 | IGHG1, IGHV3-23, IGHV3-15 | |
Post-AD | |||
Negative correlation | negative regulation of peptidase activity | 0.014 | ITIH4, ITIH3, AMBP |
Pre-HD | |||
Positive correlation | No discernible significant biological process revealed | ||
Pre-HD | |||
Negative correlation | positive regulation of immune response | 0.0179 | C8G, C8B, B2M |
Post-HD | |||
Positive correlation | high-density lipoprotein particle remodeling | 0.0074 | APOC3, LCAT, APOE |
reverse cholesterol transport | 0.0094 | APOC3, LCAT, APOE | |
Post-HD | |||
Negative correlation | complement activation, alternative pathway | <0.0001 | CFD, C9, C8B |
complement activation | 0.0013 | CFD, C9, C8B | |
killing of cells of other organism | 0.0172 | C9, PPBP, C8B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdavi, A.; Trottier, J.; Barbier, O.; Lebel, M.; Rudkowska, I. Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients 2023, 15, 4707. https://doi.org/10.3390/nu15224707
Mahdavi A, Trottier J, Barbier O, Lebel M, Rudkowska I. Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients. 2023; 15(22):4707. https://doi.org/10.3390/nu15224707
Chicago/Turabian StyleMahdavi, Atena, Jocelyn Trottier, Olivier Barbier, Michel Lebel, and Iwona Rudkowska. 2023. "Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia" Nutrients 15, no. 22: 4707. https://doi.org/10.3390/nu15224707
APA StyleMahdavi, A., Trottier, J., Barbier, O., Lebel, M., & Rudkowska, I. (2023). Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients, 15(22), 4707. https://doi.org/10.3390/nu15224707