Insulin Resistance: A Marker for Fat-to-Lean Body Composition in Japanese Adults
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients and Body Composition Analysis
2.2. Our Study
3. Statistics
4. Results
4.1. Baseline Characteristics
4.2. The Correlation between HOMA-IR and Body Composition Parameters in Men and Women
4.3. Subgroup Analysis 1: The Correlation between HOMA-IR and Body Composition Parameters in Men and Women According to Age
4.4. Subgroup Analysis 2: The Correlation between HOMA-IR and Body Composition Parameters in Men and Women According to the Presence of FL
4.5. Subgroup Analysis 3: The Correlation between HOMA-IR and Body Composition Parameters in Men and Women According to BMI
4.6. The Correlation between the F Index and FF Index
4.7. Univariate and Multivariate Analyses of Factors Linked to HOMA-IR
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [PubMed]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109, S135–S148. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988, 37, 667–687. [Google Scholar] [CrossRef]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Ohama, H.; Nishiguchi, S.; Higuchi, K. Sarcopenia, frailty and type 2 diabetes mellitus (Review). Mol. Med. Rep. 2021, 24, 854. [Google Scholar] [CrossRef]
- Fink, J.; Schoenfeld, B.J.; Nakazato, K. The role of hormones in muscle hypertrophy. Physician Sportsmed. 2018, 46, 129–134. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kadowaki, T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013, 17, 185–196. [Google Scholar] [CrossRef]
- Seo, Y.G.; Song, H.J.; Song, Y.R. Fat-to-muscle ratio as a predictor of insulin resistance and metabolic syndrome in Korean adults. J. Cachexia Sarcopenia Muscle 2020, 11, 710–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Hayashi, F.; Momoki, C.; Yuikawa, M.; Simotani, Y.; Kawamura, E.; Hagihara, A.; Fujii, H.; Kobayashi, S.; Iwai, S.; Morikawa, H.; et al. Nutritional status in relation to lifestyle in patients with compensated viral cirrhosis. World J. Gastroenterol. 2012, 18, 5759–5770. [Google Scholar] [CrossRef]
- Kawakami, R.; Tanisawa, K.; Ito, T.; Usui, C.; Miyachi, M.; Torii, S.; Midorikawa, T.; Ishii, K.; Muraoka, I.; Suzuki, K.; et al. Fat-Free Mass Index as a Surrogate Marker of Appendicular Skeletal Muscle Mass Index for Low Muscle Mass Screening in Sarcopenia. J. Am. Med. Dir. Assoc. 2022, 23, 1955–1961.e3. [Google Scholar] [CrossRef]
- World Health Organization. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 September 2023).
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, S176–S185. [Google Scholar]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Eun, Y.; Lee, S.N.; Song, S.W.; Kim, H.N.; Kim, S.H.; Lee, Y.A.; Kang, S.G.; Rho, J.S.; Yoo, K.D. Fat-to-muscle Ratio: A New Indicator for Coronary Artery Disease in Healthy Adults. Int. J. Med. Sci. 2021, 18, 3738–3743. [Google Scholar] [CrossRef]
- Mizuno, N.; Seko, Y.; Kataoka, S.; Okuda, K.; Furuta, M.; Takemura, M.; Taketani, H.; Hara, T.; Umemura, A.; Nishikawa, T.; et al. Increase in the skeletal muscle mass to body fat mass ratio predicts the decline in transaminase in patients with nonalcoholic fatty liver disease. J. Gastroenterol. 2019, 54, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, H.J.; Chen, S.; Chen, L.; Wang, X.; Zhang, L.Y.; Pan, L.; Wang, L.; Feng, K.; Wang, K.; et al. Fat-to-muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomed. Environ. Sci. 2018, 31, 261–271. [Google Scholar]
- Nonaka, K.; Murata, S.; Shiraiwa, K.; Abiko, T.; Nakano, H.; Iwase, H.; Naito, K.; Horie, J. Effect of Skeletal Muscle and Fat Mass on Muscle Strength in the Elderly. Healthcare 2018, 6, 72. [Google Scholar] [CrossRef]
- Kottlors, J.; Zopfs, D.; Fervers, P.; Bremm, J.; Abdullayev, N.; Maintz, D.; Tritt, S.; Persigehl, T. Body composition on low dose chest CT is a significant predictor of poor clinical outcome in COVID-19 disease—A multicenter feasibility study. Eur. J. Radiol. 2020, 132, 109274. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, Y.; Zhuang, Z.; Song, Z.; Huang, N.; Li, Y.; Dong, X.; Xiao, W.; Zhao, Y.; Huang, T. Total and regional fat-to-muscle mass ratio and risks of incident all-cause dementia, Alzheimer’s disease, and vascular dementia. J. Cachexia Sarcopenia Muscle 2022, 13, 2447–2455. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pan, L.; Wang, D.; Liu, F.; Du, J.; Pa, L.; Wang, X.; Cui, Z.; Ren, X.; Wang, H.; et al. Fat-to-Muscle Ratio Is Independently Associated with Hyperuricemia and a Reduced Estimated Glomerular Filtration Rate in Chinese Adults: The China National Health Survey. Nutrients 2022, 14, 4193. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Sun, Y.; Du, X.; Zhang, H.; Chen, C.; Tan, X.; Yang, Z.; Lu, Y.; Wang, N. Age-specific and sex-specific associations of visceral adipose tissue mass and fat-to-muscle mass ratio with risk of mortality. J. Cachexia Sarcopenia Muscle 2023, 14, 406–417. [Google Scholar] [CrossRef]
- Xue, H.; Du, H.; Xie, Y.; Zhai, Y.; Song, S.; Luo, B.; Qiu, H.; Wang, K.; Cui, J.; Song, C.; et al. Investigation on Nutrition Status and Its Clinical Outcome of Common Cancers (INSCOC) Group. Association Between Fat Mass to Lean Body Mass Ratio and All-Cause Mortality Among Middle-Aged and Elderly Cancer Patients Without Obesity: A Multi-Center Observational Study in China. Front. Nutr. 2022, 9, 914020. [Google Scholar]
- Ito, T.; Ishigami, M.; Zou, B.; Tanaka, T.; Takahashi, H.; Kurosaki, M.; Maeda, M.; Thin, K.N.; Tanaka, K.; Takahashi, Y.; et al. The epidemiology of NAFLD and lean NAFLD in Japan: A meta-analysis with individual and forecasting analysis, 1995–2040. Hepatol. Int. 2021, 15, 366–379. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Caslin, H.L.; Bhanot, M.; Bolus, W.R.; Hasty, A.H. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol. Rev. 2020, 295, 101–113. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, Y.; He, B. New Insights into Adipose Tissue Macrophages in Obesity and Insulin Resistance. Cells 2022, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Galvão-Moreira, L.V.; Nascimento, A.C.B.; D’Albuquerque, I.M.S.C.; Sousa, M.A.S.; Brito, H.O.; Nascimento, M.D.D.S.B.; da Costa Chein, M.B.; Brito, L.M.O. Hormonal, metabolic and inflammatory circulating biomarker profiles in obese and non-obese Brazilian middle-aged women. PLoS ONE 2019, 14, e0222239. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, Z.; Kelishadi, R.; Hosseinzadeh-Attar, M.J. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents. Diabetes Metab. Syndr. 2016, 10, S43–S46. [Google Scholar] [CrossRef] [PubMed]
- Azizian, M.; Mahdipour, E.; Mirhafez, S.R.; Shoeibi, S.; Nematy, M.; Esmaily, H.; Ferns, G.A.; Ghayour-Mobarhan, M. Cytokine profiles in overweight and obese subjects and normal weight individuals matched for age and gender. Ann. Clin. Biochem. 2016, 53, 663–668. [Google Scholar] [CrossRef]
- Kamada, Y.; Takahashi, H.; Shimizu, M.; Kawaguchi, T.; Sumida, Y.; Fujii, H.; Seko, Y.; Fukunishi, S.; Tokushige, K.; Nakajima, A.; et al. Japan Study Group of NAFLD (JSG-NAFLD). Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: An expert review. J. Gastroenterol. 2021, 56, 1045–1061. [Google Scholar] [CrossRef]
- Tokushige, K.; Ikejima, K.; Ono, M.; Eguchi, Y.; Kamada, Y.; Itoh, Y.; Akuta, N.; Yoneda, M.; Iwasa, M.; Yoneda, M.; et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J. Gastroenterol. 2021, 56, 951–963. [Google Scholar] [CrossRef]
- Rondanelli, M.; Klersy, C.; Perna, S.; Faliva, M.A.; Montorfano, G.; Roderi, P.; Colombo, I.; Corsetto, P.A.; Fioravanti, M.; Solerte, S.B.; et al. Effects of two-months balanced diet in metabolically healthy obesity: Lipid correlations with gender and BMI-related differences. Lipids Health Dis. 2015, 14, 139. [Google Scholar] [CrossRef]
Men (n = 1186) | Women (n = 1441) | p Value | |
---|---|---|---|
Age (years) | 67 (25–89) | 63 (20–90) | <0.0001 |
Body mass index (kg/m2) | 23.0 (14.3–45.7) | 21.2 (13.3–37.5) | <0.0001 |
Systolic blood pressure (mmHg) | 125 (80–190) | 120 (78–192) | <0.0001 |
Diastolic blood pressure (mmHg) | 79 (45–121) | 73 (38–110) | <0.0001 |
Fatty liver on ultrasonography, yes/no | 582/604 | 385/1056 | <0.0001 |
HbA1c (%) | 5.7 (4.8–10.8) | 5.7 (4.6–10.9) | 0.1100 |
HOMA-IR | 1.54 (0.24–18.45) | 1.30 (0.13–8.95) | <0.0001 |
Fasting blood sugar (mg/dL) | 93 (67–298) | 89 (63–111) | <0.0001 |
Platelet count (×104/μL) | 22.6 (7.2–64.5) | 24.3 (7.8–51.7) | <0.0001 |
Serum albumin (g/dL) | 4.3 (3.4–5.1) | 4.3 (3.3–5.3) | 0.1101 |
AST (IU/L) | 22 (11–115) | 21 (10–87) | <0.0001 |
ALT (IU/L) | 20 (6–181) | 16 (5–146) | <0.0001 |
ALP (IU/L) | 67 (24–187) | 65 (19–218) | 0.1587 |
GGT (IU/L) | 27 (8–314) | 18 (3–209) | <0.0001 |
eGFR (mL/min/1.73 m2) | 65.9 (29.4–110.8) | 68.8 (23.9–139.7) | <0.0001 |
Uric acid (mg/dL) | 6.1 (2.2–10.4) | 4.8 (0.7–9.4) | <0.0001 |
Total cholesterol (mg/dL) | 206 (90–326) | 220 (129–356) | <0.0001 |
Triglyceride (mg/dL) | 93.5 (33–826) | 76 (20–360) | <0.0001 |
Habitual smoking, yes/no | 194/992 | 60/1381 | <0.0001 |
Habitual drinking, yes/no | 500/686 | 270/1171 | <0.0001 |
Fat mass index (kg/m2) | 4.9 (0.45–23.2) | 6.1 (0.39–20.2) | <0.0001 |
Free fat mass index (kg/m2) | 18.2 (13.4–23.7) | 15.1 (12.1–18.4) | <0.0001 |
F-FF ratio | 0.272 (0.031–1.023) | 0.405 (0.030–1.169) | <0.0001 |
(A) | |||
Men | r | p Value | |
Age | −0.098 | 0.0008 | |
Body mass index | 0.57 | <0.0001 | |
Systolic blood pressure | 0.18 | <0.0001 | |
Diastolic blood pressure | 0.22 | <0.0001 | |
Fasting blood sugar | 0.35 | <0.0001 | |
Platelet count | 0.16 | <0.0001 | |
Serum albumin | 0.14 | <0.0001 | |
AST | 0.25 | <0.0001 | |
ALT | 0.43 | <0.0001 | |
ALP | 0.14 | <0.0001 | |
GGT | 0.22 | <0.0001 | |
eGFR | −0.049 | 0.0899 | |
Uric acid | 0.15 | <0.0001 | |
Total cholesterol | 0.045 | 0.1228 | |
Triglyceride | 0.38 | <0.0001 | |
F index | 0.58 | <0.0001 | |
FF index | 0.45 | <0.0001 | |
F-FF ratio | 0.55 | <0.0001 | |
(B) | |||
Multivariate | Estimates | Standard Error | p Value |
Age | 0.0013 | 0.0030 | 0.6623 |
Body mass index | 0.102 | 1.020 | 0.9203 |
Systolic blood pressure | 0.00052 | 0.0028 | 0.8527 |
Diastolic blood pressure | 0.0018 | 0.0039 | 0.6520 |
Fasting blood sugar | 0.0273 | 0.0023 | <0.0001 |
Platelet count | 0.0099 | 0.0056 | 0.0793 |
Serum albumin | 0.2885 | 0.1238 | 0.020 |
AST | −0.0094 | 0.0061 | 0.1230 |
ALT | 0.0177 | 0.0038 | <0.0001 |
ALP | 0.0027 | 0.0017 | 0.1022 |
GGT | −0.0024 | 0.0010 | 0.0191 |
Uric acid | 0.0106 | 0.0260 | 0.6847 |
Triglyceride | 0.0043 | 0.0005 | <0.0001 |
F index | 1.474 | 1.030 | 0.1537 |
FF index | −0.418 | 1.022 | 0.6827 |
F-FF ratio | −24.109 | 3.084 | <0.0001 |
(A) | |||
Women | r | p Value | |
Age | 0.038 | 0.1542 | |
Body mass index | 0.56 | <0.0001 | |
Systolic blood pressure | 0.25 | <0.0001 | |
Diastolic blood pressure | 0.21 | <0.0001 | |
Fasting blood sugar | 0.44 | <0.0001 | |
Platelet count | 0.15 | <0.0001 | |
Serum albumin | 0.056 | 0.0344 | |
AST | 0.17 | <0.0001 | |
ALT | 0.37 | <0.0001 | |
ALP | 0.20 | <0.0001 | |
GGT | 0.25 | <0.0001 | |
eGFR | 0.012 | 0.6418 | |
Uric acid | 0.27 | <0.0001 | |
Total cholesterol | −0.065 | 0.0131 | |
Triglyceride | 0.36 | <0.0001 | |
F index | 0.57 | <0.0001 | |
FF index | 0.42 | <0.0001 | |
F-FF ratio | 0.56 | <0.0001 | |
(B) | |||
Multivariate | Estimates | Standard Error | p Value |
Body mass index | 0.6792 | 0.6904 | 0.3254 |
Systolic blood pressure | 0.0018 | 0.0018 | 0.3255 |
Diastolic blood pressure | 0.00034 | 0.0027 | 0.8998 |
Fasting blood sugar | 0.0264 | 0.0020 | <0.0001 |
Platelet count | 0.0027 | 0.0037 | 0.4649 |
Serum albumin | 0.3819 | 0.0852 | <0.0001 |
AST | −0.0136 | 0.0056 | 0.0164 |
ALT | 0.0222 | 0.0036 | <0.0001 |
ALP | 0.0021 | 0.0011 | 0.0562 |
GGT | −0.00024 | 0.0013 | 0.8560 |
Uric acid | 0.0031 | 0.0223 | 0.8911 |
Total cholesterol | −0.0034 | 0.00062 | <0.0001 |
Triglyceride | 0.0032 | 0.00052 | <0.0001 |
F index | 0.1557 | 0.6975 | 0.8234 |
FF index | −0.9230 | 0.6937 | 0.1836 |
F-FF ratio | −10.9951 | 1.8862 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, M.; Fukuda, A.; Onishi, S.; Ushiro, K.; Nishikawa, T.; Asai, A.; Kim, S.K.; Nishikawa, H. Insulin Resistance: A Marker for Fat-to-Lean Body Composition in Japanese Adults. Nutrients 2023, 15, 4724. https://doi.org/10.3390/nu15224724
Matsui M, Fukuda A, Onishi S, Ushiro K, Nishikawa T, Asai A, Kim SK, Nishikawa H. Insulin Resistance: A Marker for Fat-to-Lean Body Composition in Japanese Adults. Nutrients. 2023; 15(22):4724. https://doi.org/10.3390/nu15224724
Chicago/Turabian StyleMatsui, Masahiro, Akira Fukuda, Saori Onishi, Kosuke Ushiro, Tomohiro Nishikawa, Akira Asai, Soo Ki Kim, and Hiroki Nishikawa. 2023. "Insulin Resistance: A Marker for Fat-to-Lean Body Composition in Japanese Adults" Nutrients 15, no. 22: 4724. https://doi.org/10.3390/nu15224724
APA StyleMatsui, M., Fukuda, A., Onishi, S., Ushiro, K., Nishikawa, T., Asai, A., Kim, S. K., & Nishikawa, H. (2023). Insulin Resistance: A Marker for Fat-to-Lean Body Composition in Japanese Adults. Nutrients, 15(22), 4724. https://doi.org/10.3390/nu15224724