Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective
Abstract
:1. Introduction
2. Material and Methods
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inouye, S.K.; Studenski, S.; Tinetti, M.E.; Kuchel, G.A. Geriatric Syndromes: Clinical, Research and Policy Implications of a Core Geriatric Concept. J. Am. Geriatr. Soc. 2007, 55, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Inouye, S.K.; Gill, T.M.; Doucette, J.T. Shared risk factors for falls, incontinence, and functional dependence. Unifying the approach to geriatric syndromes. JAMA 1995, 273, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Tangvik, R.J.; Tell, G.S.; Guttormsen, A.B.; Eisman, J.A.; Henriksen, A.; Miodini Nilsen, R.; Hylen Ranhoff, A. Nutritional risk profile in a university hospital population. Clin. Nutr. 2015, 34, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.K.; Westendorp, R.G.; Saczynski, J.S. Delirium in elderly people. Lancet 2014, 383, 911–922. [Google Scholar] [CrossRef]
- Inouye, S.K. Delirium in older persons. N. Engl. J. Med. 2006, 354, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Leij-Halfwerk, S.; Verwijs, M.H.; van Houdt, S.; Borkent, J.W.; Guaitoli, P.R.; Pelgrim, T.; Heymans, M.W.; Power, L.; Visser, M.; Corish, C.A.; et al. Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults ≥ 65 years: A systematic review and meta-analysis. Maturitas 2019, 126, 80–89. [Google Scholar] [CrossRef]
- Naber, T.H.; Schermer, T.; deBree, A.; Nusteling, K.; Eggink, L.; Kruimel, J.W.; Bakkeren, J.; van Heereveld, H.; Katan, M.B. Prevalence of malnutrition in nonsurgical hospitalized patients and its association with disease complications. Am. J. Clin. Nutr. 1997, 66, 1232–1239. [Google Scholar] [CrossRef]
- Pirlich, M.; Schutz, T.; Norman, K.; Gastell, S.; Lukbe, H.J.; Guldenzoph, H.; Hahn, K.; Jauch, K.; Schindler, K.; Stein, J.; et al. The German hospital malnutrition study. Clin. Nutr. 2006, 25, 563–572. [Google Scholar] [CrossRef]
- Banks, M.; Ash, S.; Bauer, J.; Gaskill, D. Prevalence of malnutrition in adults in Queensland public hospitals and residential aged care facilities. Nutr. Diet. 2007, 64, 172–178. [Google Scholar] [CrossRef]
- Marcantonio, E.R. In the clinic: Delirium. Ann. Intern. Med. 2011, 154, ITC6-1. [Google Scholar] [CrossRef]
- Marcantonio, E.R. Delirium in Hospitalized Older Adults. N. Engl. J. Med. 2017, 377, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Rosted, E.; Prokofieva, T.; Sanders, S.; Schultz, M. Serious Consequences of Malnutrition and Delirium in Frail Older Patients. J. Nutr. Gerontol. Geriatr. 2018, 37, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.K.; Charpentier, P. Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationships with baseline vulnerability. JAMA 1996, 20, 852–857. [Google Scholar] [CrossRef]
- Mudge, A.M.; Ross, L.J.; Young, A.M.; Isenring, E.A.; Banks, M.D. Helping understand nutritional gaps in the elderly (HUNGER): A prospective study of patient factors associated with inadequate nutritional intake in older medical inpatients. Clin. Nutr. 2011, 30, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Sola-Miravete, E.; Lopez, C.; Martinez-Segura, E.; Adell-Lleixa, M.; Juve-Udina, M.E.; Lleixa-Fortuno, M. Nursing assessment as an effective tool for the identification of delirium risk in older in-patients: A case-control study. J. Clin. Nurs. 2018, 27, 345–354. [Google Scholar] [CrossRef]
- Namasivayam-MacDonald, A.M.; Riquelme, L.F. Presbyphagia to dysphagia: Multiple perspectives and strategies for quality care of older adults. Semin. Speech Lang 2019, 40, 227–242. [Google Scholar] [CrossRef]
- Bode, L.; Isler, F.; Fuchs, S.; Marquetand, J.; Petry, H.; Ernst, J.; Schubert, M.; Garcia Nuñez, D.; von Känel, R.; Boettger, S. The utility of nursing instruments for daily screening for delirium: Delirium causes substantial functional impairment. Palliat. Support. Care 2020, 18, 293–300. [Google Scholar] [CrossRef]
- Mudge, A.; Young, A.; Cahill, M.; Treleaven, E.; Spirgienė, L. Nutrition and Delirium. In Interdisciplinary Nutritional Management and Care for Older Adults; Springer: Cham, Switzerland, 2021; pp. 237–248. [Google Scholar]
- McDonald, A.J. Fasting periods in older patients attending a south London emergency department. J. Nutr. Gerontol. Geriatr. 2013, 32, 59–70. [Google Scholar] [CrossRef]
- Lim, S.L.; Ong, K.C.; Chan, Y.H.; Loke, W.C.; Ferguson, M.; Daniels, L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin. Nutr. 2012, 31, 345–350. [Google Scholar] [CrossRef]
- Damanti, S.; Bozzolo, E.; Franchini, S.; Frangi, C.; Ramirez, G.A.; Pedroso, C.; Di Lucca, G.; Scotti, R.; Valsecchi, D.; Cilla, M.; et al. Predictors and outcomes of delirium in the emergency department during the first wave of the COVID-19 pandemic in Milan. Emerg. Med. J. 2023, 40, 202–209. [Google Scholar] [CrossRef]
- O’Hanlon, S.; Inouye, S.K. Delirium: A missing piece in the COVID-19 pandemic puzzle. Age Ageing 2020, 49, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Otani, K.; Fukushima, H.; Matsuishia, K. COVID-19 delirium and encephalopathy: Pathophysiology assumed in the first 3 years of the ongoing pandemic. Brain Disord. 2023, 10, 100074. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef]
- Anker, M.S.; Landmesser, U.; von Haehling, S.; Butler, J.; Coats, A.J.S.; Anker, S.D. Weight loss, malnutrition, and cachexia in COVID-19: Facts and numbers. J. Cachexia Sarcopenia Muscle 2021, 12, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Bedock, D.; Bel Lassen, P.; Mathian, A.; Moreau, P.; Couffignal, J.; Ciangura, C.; Poitou-Bernert, C.; Jeannin, A.C.; Mosbah, H.; Fadlallah, J. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Sasdelli, A.S.; Ravaioli, F.; Baracco, B.; Battaiola, C.; Bocedi, G.; Brodosi, L.; Leoni, L.; Mari, G.A.; Musio, A. Malnutrition and nutritional therapy in patients with SARS-CoV-2 disease. Clin. Nutr. 2021, 40, 1330–1337. [Google Scholar] [CrossRef]
- Gérard, M.; Mahmutovic, M.; Malgras, A.; Michot, N.; Scheyer, N.; Jaussaud, R.; Nguyen-Thi, P.L.; Quilliot, D. Long-Term Evolution of Malnutrition and Loss of Muscle Strength after COVID-19: A Major and Neglected Component of Long COVID-19. Nutrients 2021, 13, 3964. [Google Scholar] [CrossRef]
- Quilliot, D.; Ge’rard, M.; Bonsack, O.; Malgras, A.; Vaillant, M.F.; Di Patrizio, P.; Jaussaud, R.; Ziegler, O.; Nguyen-Thi, P.L. Impact of severe SARS-CoV-2 infection on nutritional status and subjective functional loss in a prospective cohort of COVID-19 survivors. BMJ Open 2021, 11, e048948. [Google Scholar] [CrossRef]
- Rovere-Querini, P.; Tresoldi, C.; Conte, C.; Ruggeri, A.; Ghezzi, S.; de Lorenzo, R.; di Filippo, L.; Farina, N.; Ramirez, G.A.; Ripa, M. Biobanking for COVID-19 research. Panminerva Med. 2022, 64, 244–252. [Google Scholar] [CrossRef]
- Jeong, E.; Park, J.; Lee, J. Diagnostic Test Accuracy of the 4AT for Delirium Detection: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7515. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Marinos, E. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Parenter. Enter. Nutr. 2019, 43, 32–40. [Google Scholar]
- Rubenstein, L.Z.; Harker, J.O.; Salva, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short form mini-nutritional assessment (MNA-SF). J. Gerontol. 2001, 56, M366–M372. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A Simple Questionnaire to Rapidly Diagnose Sarcopenia. JAMDA 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef]
- Eksombatchai, D.; Wongsinin, T.; Phongnarudech, T.; Thammavaranucupt, K.; Amornputtisathaporn, N.; Sungkanuparph, S. Pulmonary function and six-minute-walk test in patients after recovery from COVID-19: A prospective cohort study. PLoS ONE 2021, 16, e0257040. [Google Scholar] [CrossRef]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef]
- Carnahan, R.M.; Lund, B.C.; Perry, P.J.; Pollock, B.G.; Culp, K.R. The anticholinergic drug scale as a measure of drug-related anticholinergic burden: Association with serum anticholinergic activity. J. Clin. Pharmacol. 2006, 46, 1481–1486. [Google Scholar] [CrossRef]
- Burn, R.; Hubbard, R.E.; Scrase, R.J.; Abey-Nesbit, R.K.; Peel, N.M.; Schluter, P.J.; Jamieson, H.A. A frailty index derived from a standardized comprehensive geriatric assessment predicts mortality and aged residential care admission. BMC Geriatr. 2018, 18, 319. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Blodgett, J.M.; Theou, O.; Sun, M.H.; Feridooni, H.A.; Mitnitski, A.; Rose, R.A.; Godin, J.; Gregson, E.; Howlett, S.E. A Frailty Index Based On Deficit Accumulation Quantifies Mortality Risk in Humans and in Mice. Sci. Rep. 2017, 7, 43068. [Google Scholar] [CrossRef]
- Song, X.; Mitnitski, A.; Rockwood, K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J. Am. Geriatr. Soc. 2010, 58, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.M.; Bakaev, I.; Chen, H.; Travison, T.G.; Berry, S.D. Risk factors, presentation, and course of coro-navirus disease 2019 in a large, academic long-term care facility. J. Am. Med. Dir. Assoc. 2020, 21, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Kalantar-Zadeh, K.; Anker, S.D. COVID-19: A major cause of cachexia and sarcopenia? J. Cachexia Sarcopenia Muscle 2020, 11, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef]
- Virgens, I.P.A.; Santana, N.M.; Lima, S.C.V.C.; Fayh, A.P.T. Can COVID-19 be a risk for cachexia for patients during intensive care? Narrative review and nutritional recommendations. Br. J. Nutr. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Agyeman, A.A.; Chin, K.L.; Landersdorfer, C.B.; Liew, D.; Ofori-Asenso, R. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clin. Proc. 2020, 95, 1621–1631. [Google Scholar] [CrossRef]
- Grund, S.; Bauer, J.M. Malnutrition and Sarcopenia in COVID-19 Survivors. Clin. Geriatr. Med. 2022, 38, 559–564. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Kruizenga, H.M.; Konings, L.A.; Krebbers, D.; Jorissen, J.R.; Joosten, M.H.I.; van Aken, L.H.; Tan, F.M.; van Bodegraven, A.A.; Soeters, M.R.; et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients dur- ing and after hospital admission. Clin. Nutr. ESPEN 2021, 43, 369–376. [Google Scholar] [CrossRef]
- Van Aerde, N.; Van den Berghe, G.; Wilmer, A.; Gosselink, R.; Hermans, G. COVID-19 Consortium. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020, 46, 2083–2085. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Calvani, R.; Marzetti, E. Frailty in Older Persons. Clin. Geriatr. Med. 2017, 33, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, K.; Gąsowski, J.; Michel, J.P.; Veronese, N. Post-COVID-19 acute sarcopenia: Physiopathology and management. Aging Clin. Exp. Res. 2021, 33, 2887–2898. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.; Masud, T.; Wilson, D.; Jackson, T.A. COVID-19 and Acute Sarcopenia. Aging Dis. 2020, 11, 1345–1351. [Google Scholar] [CrossRef]
- Damanti, S.; Cilla, M.; Tuscano, B.; De Lorenzo, R.; Manganaro, G.; Merolla, A.; Pacioni, G.; Pomaranzi, C.; Tiraferri, V.; Martinenghi, S.; et al. Evaluation of Muscle Mass and Stiffness with Limb Ultrasound in COVID-19 Survivors. Front. Endocrinol. 2022, 13, 801133. [Google Scholar] [CrossRef]
- Thoresen, L.; Frykholm, G.; Lydersen, S.; Ulveland, H.; Baracos, V.; Prado, C.M.; Birdsell, L.; Falkmer, U. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin. Nutr. 2013, 32, 65–72. [Google Scholar] [CrossRef]
- Wolters, M.; Volkert, D.; Streicher, M.; Kiesswetter, E.; Torbahn, G.; O’Connor, E.M.; O’Keeffe, M.; Kelly, M.; O’Herlihy, E.; O’Toole, P.W.; et al. Prevalence of malnutrition using harmonized definitions in older adults from different settings—A MaNuEL study. Clin. Nutr. 2019, 38, 2389–2398. [Google Scholar] [CrossRef]
- Zhu, W.; Bai, Y.; Li, S.; Zhang, M.; Chen, J.; Xie, P.; Bai, X.; Zhou, D.; Jiang, Y. Delirium in hospitalized COVID-19 patients: A prospective, multicenter, cohort study. J. Neurol. 2023, 270, 4608–4616. [Google Scholar] [CrossRef]
- Hu, L.; Wang, W.J.; Zhu, Q.J.; Yang, L. Novel coronavirus pneumonia-related liver injury: Etiological analysis and treatment strategy. Chin. J. Hepatol. 2020, 28, 97–99. [Google Scholar]
- Papagiouvanni, I.; Kotoulas, S.C.; Pataka, A.; Spyratos, D.G.; Porpodis, K.; Boutou, A.K.; Papagiouvannis, G.; Grigoriou, I.; Vettas, C.; Goulis, I. COVID-19 and liver injury: An ongoing challenge. World J. Gastroenterol. 2023, 29, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Mudge, A.M.; McRae, P.; Cruickshank, M. Eat walk engage: An interdisciplinary collaborative model to improve care of hospitalized elders. Am. J. Med. Qual. 2015, 30, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.K.; Bogardus, S.T.; Charpentier, P.; Leo-Summers, L.; Acampora, D.; Holford, T.R.; Cooney, L.M., Jr. A multicomponent intervention to prevent delirium. N. Engl. J. Med. 1999, 340, 669–676. [Google Scholar] [CrossRef] [PubMed]
All | Delirium | No Delirium | p | |
---|---|---|---|---|
N = 50 | N = 13 | N = 37 | ||
Age | 79 (IQR 73–85) | 82 (IQR 77–89) | 78 (IQR 73–84) | 0.08 |
Males | 28 (56%) | 8 (62%) | 14 (38%) | 0.20 |
Institutionalized | 2 (4%) | 1 (8%) | 1 (3%) | 0.46 |
Frailty index | 0.2 (IQR 0.13–0.24) | 0.27 (IQR 0.2–0.32) | 0.17 (IQR 0.10–0.23) | 0.003 |
Frail (FI ≥ 0.25) | 11 (22%) | 7 (54%) | 4 (11%) | 0.001 |
Hypertension | 34 (68%) | 11 (85%) | 23 (63%) | 0.18 |
Diabetes | 13 (26%) | 2 (15%) | 11 (30%) | 0.47 |
Dyslipidemia | 18 (36%) | 5 (39%) | 13 (35%) | 1 |
Coronary artery disease | 9 (18%) | 4 (31%) | 5 (14%) | 0.21 |
Atrial fibrillation | 8 (16%) | 2 (15%) | 6 (16%) | 1 |
Heart failure | 4 (8%) | 0 (0%) | 4 (11%) | 0.56 |
Previous pulmonary embolism/deep venous thrombosis | 4 (8%) | 0 (0%) | 4 (11%) | 0.56 |
Stroke/TIA | 4 (8%) | 0 (0%) | 4 (11%) | 0.56 |
Arthrosis | 4 (8%) | 1 (8%) | 3 (8%) | 1 |
Depression | 5 (10%) | 1 (8%) | 4 (11%) | 0.61 |
Hepatic disease | 1 (2%) | 0 (0%) | 1 (3%) | 1 |
Anemia | 9 (18%) | 1 (8%) | 8 (22%) | 0.41 |
Solid tumor | 10 (20%) | 0 (0%) | 10 (27%) | 0.046 |
Vaccination for SARS-CoV-2 | 0 (0%) | 0 (0%) | 0 (0%) | N.A. |
Number of chronic drugs | 4 (IQR 3–7) | 5 (IQR 3–9) | 4 (IQR 3–7) | 0.36 |
Chronic ACB score | 0 (IQR (0–1) | 1 (IQR 0–3) | 0 (IQR 0–1) | 0.17 |
Polypharmacy | 22 (44%) | 7 (54%) | 15 (41%) | 0.52 |
Chronic psychoactive drugs | 15 (30%) | 6 (46%) | 9 (24%) | 0.17 |
Psychoactive drugs during hospitalization | 19 (38%) | 8 (62%) | 11 (30%) | 0.05 |
Reported weight before hospital admission (kg) | 71 (IQR 55–81) | 64 (IQR 44–71) | 74 (IQR 60–83) | 0.03 |
Height (cm) | 165 (IQR 159–170) | 165 (IQR 156–167) | 164 (IQR 159–172) | 0.35 |
BMI before hospital admission (kg/m2) | 27 (IQR 23–30) | 23 (IQR 20–28) | 27 (IQR 24–30) | 0.12 |
MUST at hospital admission | 0.39 | |||
Low risk of malnutrition | 28 (56%) | 7 (53%) | 21 (57%) | |
Moderate risk of malnutrition | 4 (8%) | 2 (15%) | 2 (5%) | |
Elevated risk of malnutrition | 5 (10%) | 2 (15%) | 3 (8%) | |
GLIM malnutrition at hospital admission | 8 (16%) | 3 (23%) | 5 (14%) | 0.32 |
Weight variation during hospitalization (kg) | −4 (IQR −7–−3) | −4 (IQR −10–−1.5) | −4 (IQR −7–−3) | 0.83 |
Weight loss ≥ 5% | 27 (54%) | 5 (39%) | 22 (53%) | 0.54 |
Nadir weight during hospitalization (kg) | 69 (IQR 55–75) | 62 (IQR 50–76) | 70 (IQR 56–75) | 0.43 |
White blood cells at hospital admission (cells/mm3) | 7200 (IQR 4675–9625) | 7150 (IQR 5050–9700) | 7200 (IQR 4625–9425) | 0.71 |
Lymphocytes at hospital admission (cells/mm3) | 110 (IQR 775–1525) | 1350 (IQR 725–1800) | 1100 (IQR 725–1475) | 0.50 |
Hemoglobin at hospital admission (gr/dL) | 13 (IQR 12–14) | 13 (IQR 10–14) | 13 (IQR 12–15) | 0.44 |
Platelets at hospital admission (103 cells/mm3) | 195 (IQR 143–279) | 183 (IQR 155–226) | 203 (IQR 138–333) | 0.73 |
Glycemia at hospital admission (mg/dL) | 99 (IQR 82–121) | 114 (IQR 89–185) | 95 (IQR 74–112) | 0.05 |
Urea at hospital admission (mg/dL) | 45 (IQR 35–57) | 46 (IQR 40–62) | 42 (IQR 33–58) | 0.37 |
Creatinine at hospital admission (mg/dL) | 0.98 (IQR 0.77–1.23) | 0.92 (IQR 0.76–1.15) | 1.01 (IQR 0.77–1.24) | 0.73 |
Na at hospital admission (mmol/L) | 140 (IQR 137–142) | 139 (IQR 135–144) | 140 (IQR 137–142) | 0.71 |
K at hospital admission (mmol/L) | 4.2 (IQR 3.7–4.6) | 3.9 (IQR 3.6–4.3) | 4.4 (IQR 3.7–4.7) | 0.33 |
AST at hospital admission (U/L) | 42 (IQR 25–53) | 53 (IQR 35–94) | 33 (IQR 24–51) | 0.02 |
ALT at hospital admission (U/L) | 30 (IQR 18–46) | 55 (IQR 22–73) | 27 (IQR 18–36) | 0.046 |
AST/ALT | 1.39 (IQR 1.08–1.69) | 1.33 (IQR 1.08–1.74) | 1.39 (IQR 1.06–1.69) | 0.93 |
LDH at hospital admission (U/L) | 333 (IQR 239–411) | 337 (IQR 259–467) | 316 (IQR 238–398) | 0.59 |
CRP at hospital admission (mg/L) | 35 (IQR 17.4–74.8) | 32.4 (IQR 13.4–116.3) | 35.3 (IQR 18.1–66.5) | 0.82 |
Length of hospital stay (days) | 28 (IQR 15–35) | 31 (IQR 21.5–37) | 25 (IQR 13.5–32) | 0.14 |
Biologic therapies for COVID-19 | 9 (18%) | 1 (8%) | 8 (22%) | 0.86 |
Antiviral drugs | 15 (30%) | 1 (8%) | 14 (39%) | 0.58 |
Steroid treatment | 30 (60%) | 3 (23%) | 27 (73%) | 0.74 |
Antibiotics | 14 | 2 (15%) | 12 (32%) | 0.43 |
Heparin | 27 (54%) | 2 (15%) | 25 (68%) | 0.27 |
Non-invasive mechanical ventilation | 4 (%) | 0 (0%) | 4 (19%) | 0.48 |
Invasive mechanical ventilation | 0 (0%) | 0 (0%) | 0 (0%) | N.A. |
Death during COVID-19 | 8 (16%) | 5 (39%) | 3 (8%) | 0.01 |
All | Delirium | No Delirium | p | |
---|---|---|---|---|
N = 32 | N = 4 | N = 28 | ||
MNA-SF one month after hospital discharge | 8 (IQR 7–10) | 7 (IQR 5–9) | 9 (IQR 8–10) | 0.12 |
Malnourished (MNA-SF ≤ 7) | 9 (18%) | 3 (23%) | 6 (16%) | 0.007 |
GLIM malnutrition one month after hospital discharge | 29 (58%) | 5 (39%) | 24 (65%) | 0.75 |
SPPB | 11 (IQR 7.5–12) | 6 (IQR 0–12) | 11 (IQR 9–12) | 0.68 |
Hand Grip (kg) | 19 (IQR 12–25) | 14 (IQR 12–15) | 20 (IQR 13–26) | 0.32 |
Pre-sarcopenic | 23 (46%) | 3 (23%) | 20 (54%) | 0.35 |
SARC-F | 2 (IQR 1–4) | 2 (IQR 1–3) | 2 (IQR 1–5) | 0.81 |
Calf circumference (cm) | 36 (IQR 33–39) | 38 (IQR 35–41) | 36 (IQR 33–39) | 0.24 |
Waist circumference (cm) | 99 (IQR 91–103) | 99 (IQR 91–113) | 98 (IQR 90–102) | 0.69 |
Weight one month after hospital discharge (kg) | 74 (IQR 61–79) | 73 (IQR 63–80) | 74 (IQR 59–78) | 0.76 |
BMI one month after hospital discharge (kg/m2) | 27 (IQR 25–29) | 28 (IQR 23–33) | 26 (IQR 25–28) | 0.42 |
Δweight before hospitalization—one month after hospital discharge (kg) | −3 (IQR −4–−0) | −7 (IQR −10–−3) | −3 (IQR −4–0) | 0.11 |
6 MWT (m) | 420 (IQR 300–460) | 400 (IQR 400–400) | 430 (IQR 275–460) | 0.87 |
6 MWT (%) | 90 (IQR 63–98) | 90 (IQR 90–90) | 88.5 (IQR 58–98) | 1 |
MUST | MNA-SF | FI | Length of Stay | ||
---|---|---|---|---|---|
MUST | r | 1.000 | 0.19 | 0.30 | 0.50 |
p | 0.30 | 0.04 | <0.001 | ||
N | 31 | 50 | 50 | ||
MNA-SF | r | 0.19 | 1.000 | −0.42 | −0.36 |
p | 0.30 | 0.02 | 0.048 | ||
N | 31 | 31 | 31 | ||
FI | r | 0.30 | −0.42 | 1,000 | 0.44 |
p | 0.04 | 0.02 | 0.001 | ||
N | 50 | 31 | 50 | ||
Length of stay | r | 0.50 | −0.36 | 0.44 | 1.000 |
p | <0.001 | 0.048 | 0.001 | ||
N | 50 | 31 | 50 | ||
4AT(1) | r | 0.23 | −0.30 | 0.35 | 0.26 |
p | 0.11 | 0.10 | 0.02 | 0.07 | |
N | 50 | 31 | 50 | 50 | |
4AT(2) | r | 0.24 | −0.46 | 0.35 | 0.22 |
p | 0.11 | 0.01 | 0.01 | 0.14 | |
N | 48 | 29 | 48 | 48 | |
4AT(3) | r | 0.22 | −0.45 | 0.33 | 0.17 |
p | 0.14 | 0.02 | 0.03 | 0.26 | |
N | 44 | 27 | 44 | 44 | |
4AT(4) | r | 0.28 | −0.44 | 0.37 | 0.18 |
p | 0.07 | 0.02 | 0.01 | 0.24 | |
N | 45 | 27 | 45 | 45 | |
4AT(5) | r | 0.27 | −0.55 | 0.42 | 0.17 |
p | 0.70 | 0.006 | 0.006 | 0.29 | |
N | 41 | 24 | 41 | 41 | |
4AT(6) | r | 0.24 | −0.33 | 0.33 | 0.23 |
p | 0.17 | 0.14 | 0.06 | 0.19 | |
N | 35 | 21 | 35 | 35 | |
4AT(7) | r | 0.18 | −0.50 | 0.41 | 0.31 |
p | 0.34 | 0.03 | 0.02 | 0.09 | |
N | 30 | 18 | 30 | 30 | |
4AT(8) | r | 0.20 | −0.43 | 0.52 | 0.26 |
p | 0.33 | 0.11 | 0.007 | 0.20 | |
N | 26 | 15 | 26 | 26 | |
4AT(9) | r | 0.19 | −0.25 | 0.43 | 0.22 |
p | 0.38 | 0.39 | 0.03 | 0.30 | |
N | 24 | 14 | 24 | 24 | |
4AT(10) | r | 0.23 | −0.53 | 0.48 | 0.11 |
p | 0.32 | 0.07 | 0.03 | 0.63 | |
N | 21 | 12 | 21 | 21 | |
4AT(11) | r | 0.23 | −0.55 | 0.36 | −0.11 |
p | 0.34 | 0.13 | 0.14 | 0.66 | |
N | 19 | 9 | 19 | 19 | |
4AT(12) | r | 0.002 | −0.54 | 0.14 | −0.13 |
p | 0.99 | 0.18 | 0.61 | 0.65 | |
N | 15 | 8 | 15 | 15 | |
4AT(13) | r | 0.20 | −0.52 | 0.33 | −0.22 |
p | 0.58 | 0.37 | 0.35 | 0.55 | |
N | 10 | 5 | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damanti, S.; Cilla, M.; Vitali, G.; Tiraferri, V.; Pomaranzi, C.; De Rubertis, G.; De Lorenzo, R.; Di Lucca, G.; Scotti, R.; Messina, E.; et al. Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective. Nutrients 2023, 15, 4727. https://doi.org/10.3390/nu15224727
Damanti S, Cilla M, Vitali G, Tiraferri V, Pomaranzi C, De Rubertis G, De Lorenzo R, Di Lucca G, Scotti R, Messina E, et al. Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective. Nutrients. 2023; 15(22):4727. https://doi.org/10.3390/nu15224727
Chicago/Turabian StyleDamanti, Sarah, Marta Cilla, Giordano Vitali, Valeria Tiraferri, Chiara Pomaranzi, Giulia De Rubertis, Rebecca De Lorenzo, Giuseppe Di Lucca, Raffaella Scotti, Emanuela Messina, and et al. 2023. "Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective" Nutrients 15, no. 22: 4727. https://doi.org/10.3390/nu15224727
APA StyleDamanti, S., Cilla, M., Vitali, G., Tiraferri, V., Pomaranzi, C., De Rubertis, G., De Lorenzo, R., Di Lucca, G., Scotti, R., Messina, E., Dell’Acqua, R., Guffanti, M., Cinque, P., Castagna, A., Rovere-Querini, P., & Tresoldi, M. (2023). Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective. Nutrients, 15(22), 4727. https://doi.org/10.3390/nu15224727