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Abstract: The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the
gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore,
utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill
patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses
on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness
by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota
transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies
are all effective treatments for critical illness. However, different treatments are appropriate for
different conditions, and more evidence is needed to support the selection of optimal gut microbiota-
related treatments for different diseases. This narrative review summarizes the curative effects
and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to
provide possible directions for gut microbiome-based therapeutics for critically ill patients such as
ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.

Keywords: gut microbiota; critically ill patients; fecal microbiota transplantation; short-chain fatty
acid; gut microbiome-based therapeutics

1. Introduction

Intestinal dysbiosis, endotoxemia, and systemic inflammation are major factors con-
tributing to pathophysiological alterations in critically ill patients. Critical illness is char-
acterized by the loss of commensal microbiota and an excessive growth of potentially
pathogenic bacteria, resulting in reduced production of short-chain fatty acids (SCFAs) or
an inflammatory reaction induced by the gut microbiota [1], leading to prolonged immuno-
suppression and a high susceptibility to hospital-acquired infections [2,3]. In addition,
prophylactic use of broad-spectrum antibiotics to treat infection is a common clinical ap-
proach, which aggravates the imbalance between the host immune system and the gut
microbiota, suppressing the microbiota [4,5]. Thus, the ability of the original gut microbiota
to prevent pathogen colonization is impaired, increasing the risk of infection [6,7]. In a
critically ill mouse model, the upregulation of intestinal epithelial apoptosis and the en-
hancement of barrier hyperpermeability have been reported [8]. Moreover, an association
between reduced gut microbiota diversity and increased relative abundance of potentially
pathogenic bacteria, including aerobic gram-negative bacteria, has been found in several
prospective cohort studies in critically ill patients with sepsis [9–11].

The intestinal microbiota inhibits the colonization of potential pathogens in the in-
testinal epithelium by stimulating the production of IgA, defensins, and antimicrobial
peptides in the host, as well as competition for preferred resources among bacteria within
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specific ecological niches [12–14]. However, the increased colonization of pathogens and
the disruption of the gut barrier can be affected by the collapse of microbiota diversity [14].
In addition, the intestinal microbiota can communicate with extraintestinal organs (e.g.,
lung, kidney, and heart, etc.) via bacterial extracellular vesicles [15]. Therefore, the repair
of the gut microbiota and its metabolites may be suggested as a direction for the treatment
or prevention of critical illness.

In this narrative review, we categorize the therapeutic approaches related to the gut
microbiome into three groups: fecal microbiota transplantation (FMT), selective digestive
decontamination (SDD), and microbiome-directed therapies including probiotics, prebiotics,
synbiotics, and microbiota-derived metabolites and proteins (e.g., SCFAs and flavonoid)
(Figure 1). We also summarize the application of different gut microbiome-based therapeu-
tics in different critical illnesses, such as ventilator-associated pneumonia (VAP), sepsis,
acute respiratory distress syndrome (ARDS), COVID-19, and other diseases (Table 1).
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Figure 1. Summary of mechanism of different gut microbiome-based therapeutic approaches.

Gut microbiome-based therapies include FMT, SDD, supplementation of probiotics,
prebiotics, synbiotics, and directly providing microbiota-associated metabolites and pro-
teins. FMT plays a role by regulating gut microbiota and affecting SCFAs. Moreover,
SDD mainly affects the colonization of G-bacteria, Staphylococcus aureus, and yeasts in the
intestines. Microbiome-directed therapies play roles via decreasing pathogenic bacteria,
increasing beneficial bacteria, and regulating the level of SCFAs. SCFAs could increase
the expression of intestinal epithelial tight junction proteins and promote anti-microbial
peptides (AMPs) secreted by intestinal epithelial cells (IECs), which move into peripheral
capillaries and inhibit oxidative stress. FMT, fecal microbiota transplantation; SDD, selec-
tively digestive decontamination; SCFAs, short-chain fatty acids; IECs, intestinal epithelial
cells; and AMPs, anti-microbial peptides.
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Table 1. The application of gut microbiome-based therapeutics in critically ill adult patients.

The Gut Mcirobiome-Based
Therapeutics Disease

FMT Critically ill patients without CDI [16], antibiotic-resistant
bacteria [17,18], CDI [19], MI [20], SAH-ACLF [21]

SDD VAP [22,23]

Probiotics
Diarrhea and acquired infections in critically ill patients [24,25],

VAP [26,27], COVID-19 [28,29], ARDS [30–32], uremia [33],
heart failure [34]

Prebiotics Sepsis [35], COVID-19 [36,37], uremia [38]

Synbiotics
Sepsis [39], systemic inflammatory response syndrome (SIRS)
[40], high-risk hepatectomy and major surgeries [41], uremia

[42], VAP [43], ARDS [44]
SCFAs COVID-19 [45], MI [20]

Flavonoid Sepsis [46], COVID-19 [47]
CDI, clostridium difficile infection; MI, myocardial infarction; SAH-ACLF, severe alcoholic hepatitis presenting as
acute on chronic liver failure; VAP, ventilator-associated pneumonia; ARDS, acute respiratory distress syndrome;
SIRS, systemic inflammatory response syndrome.

2. Methods/Data Search

The literature search included English-language articles published before September
2023 that belonged to Pubmed-index journals. We also searched the reference lists of the
original papers for further relevant articles.

3. FMT

FMT is a therapeutic approach to transfer the micro-manipulated microbiota from
healthy donor feces to the patient’s intestine, recovering intestinal diversity, inhibiting
the growth of pathogenic bacterial communities in the gut environment, and driving
competitive rejection of pathogenic bacteria among the local intestinal microbiota.

FMT reduces the levels of local or foreign bacterial pathogens in the intestinal mi-
crobiota of mice and restores the normal function of intestinal microbiota [48–51]. Early
application of FMT reduces mortality in mice with myocardial infarction caused by chronic
left anterior descending artery ligation [20]. It has been reported that FMT can alleviate
lung inflammation and acute lung injury (ALI) in mice through modulating gut microbiota
and metabolic disturbance [52]. In a sepsis mouse model, FMT can regulate the abundance
of bacteria such as Firmicutes, Proteobacteria, Escherichia Shigella, and Lactobacillus to a
level comparable to that of healthy mice, and downregulate the expression of the NOD-like
receptor protein 3 (NLRP3) and Gasdermin-D (GSDMD)-N proteins and the release of
inflammatory factors to inhibit cell pyroptosis [53]. Additionally, FMT restores immune
homeostasis via providing specific colonies of bacteria which produce SCFAs (e.g., butyrate,
etc.) with histone deacetylases inhibitory (HDACi) activity that can be amplified in inflam-
mation and infection-induced systemic immune response, thereby restoring the interferon
regulatory factor 3 (IRF3) signaling pathway [50]. In a mouse model of ALI, FMT restored
the gut microbiota to reduce oxidative stress and impair the TLR4/NF-κB pathway in the
lung, ameliorating lung damage [54]. In addition, in an ALI rat model, FMT could allevi-
ate LPS-induced lung injury by modulating the TGF-β1/Smad/ERK pathway, and was
able to regulate gut microbiota, inhibit immune-inflammation, and reduce inflammatory
cytokines [55].

FMT application in healthy volunteers revealed a transient suppression of systemic
immune cytotoxicity, with decreased T-cytotoxic CD8+ lymphocytes and natural killer cells
in circulation, increased T-helper CD4+ cells, and an increased CD4+ to CD8+ ratio [56].
Clinical trials have demonstrated the ability of FMT in melanoma treatment. FMT can effec-
tively shift the intestinal microbiota composition toward taxa favoring anti-programmed
death-1 (PD-1) efficacy which is associated with increased intra-tumoral and peripheral an-
titumor immunity [57,58]. Moreover, FMT may act against antibiotic-resistant CDI [17,59]
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and contribute to recovery from immunotherapy for colitis and the eradication of colo-
nized antibiotic-resistant bacteria in patients with hematological malignancies [18,60]. In
addition, in a study of FMT for critically ill patients with antibiotic-associated diarrhea,
good clinical outcomes were observed without infectious complications [61]. With the
increasing importance of the microbiota in health, FMT treatment has been further inves-
tigated for application in autoimmune diseases, metabolic syndrome, sepsis, and other
critical illnesses [62]. Moreover, clinical trials have shown that FMT applied to patients with
severe alcoholic hepatitis presenting as acute-on-chronic liver failure (SAH-ACLF) rapidly
improves the patients’ clinical severity scores, abnormal liver dysfunction and ascites,
reduces pro-inflammatory cytokines levels, and is expected to significantly improve patient
survival and the prognosis of hepatic encephalopathy [21]. Taken together, it can clearly be
seen that FMT treatment may be a potential therapeutic option for critical illnesses.

4. SDD

For more than 30 years, SDD has been proposed as a measure to prevent infection
in intensive care unit (ICU) patients, who mostly have respiratory failure, mechanism
ventilation, reversible multiple organ failure, or are there after major surgery, a coma, or
shock [63].Currently, SDD is only considered as a standard therapy in the Netherlands and
is sporadically used in ICUs in other countries [64]. The main aim of SDD is to reduce ICU-
acquired infections via eradicating and preventing colonization of the digestive tract by
gram-negative bacteria, Staphylococcus aureus, and yeasts, thereby promoting the prognosis
of ICU patients [65].

In a randomized controlled trial with 5939 enrolled patients, SDD has been demon-
strated to be effective in reducing the mortality rate in ICU patients [66]. In addition, an
SDD strategy in ICUs could reduce the clinically relevant infections caused by multidrug-
resistant bacteria and decrease colistin- and tobramycin-resistant colonization with a non-
significant, increasing rate of ICU colonization resistance [67]. A large, well-conducted,
cluster, crossover, randomized trial showed that the hospital mortality of critically ill pa-
tients receiving mechanism ventilation with SDD was 27.0%, the hospital mortality of other
patients without SDD was 29.1%. Although the result had no statistical significance, the
authors conclude that the confidence interval includes a clinically relevant benefit [68].
Recently, a meta-analysis comparing the use of SDD with standard care in ICU patients,
demonstrated that SDD contributed to a reduced risk of VAP, ICU-acquired bacteremia,
and lower hospital mortality [69]. Furthermore, studies associating SDD strategy with
COVID-19 have shown that SDD strategies have a beneficial effect on decreasing ICU
mortality in mechanically ventilated patients with severe COVID-19 [22,23].

5. Microbiome-Directed Therapies

Loss of commensal microbiota and excessive growth of potentially pathogenic bacteria
are the main features of the gut microbiota in critically ill adult patients [2]. Gut microbiota
imbalance can increase the risk of secondary infection, immunosuppression, and even
organ dysfunction, leading to an increased incidence of opportunistic infections and sepsis,
aggravated various target organ damage, and worsened patient condition. Additionally,
even after recovery from sepsis, the slow recolonization of patients’ normal microbiota may
lead to long-term immunosuppression and poor prognosis. Therefore, different strategies
related to the gut microbiota, such as using probiotics and prebiotics alone or in combination
(synthetic preparations), have been proposed in order to prevent the further growth of
pathogens and improve the outcomes of critically ill patients [25,70–72].

5.1. Probiotics

The International Scientific Association for Probiotics and Prebiotics defines probiotics
as “live microorganisms that, when given in sufficient amounts, have a beneficial effect
on the health of the host” [73]. They protect the intestinal barrier, attenuate pathogen
overgrowth, decrease bacterial translocation, reduce serum pro-inflammatory cytokine
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concentrations while increasing the serum anti-inflammatory cytokine concentrations, and
induce host immunomodulation to prevent infection [74–77]. In addition, probiotics also
act through pharmacokinetics. For example, gut Actinobacterium Eggerthella lenta could
affect the pharmacokinetic of digoxin and reduce its toxicity in treating congestive heart fail-
ure [78]. Moreover, the probiotic E. coli strain Nissle 1917 influences the pharmacokinetics
of the antiarrhythmic amiodarone and increases drug absorption [79].

Several probiotics play a role in adult intensive care [80]. Probiotic therapy signif-
icantly reduces the incidence of diarrhea, acquired infections, and VAP in critically ill
patients [24,26,81]. In sepsis-induced, severe ALI, Akkermansia muciniphila (A. muciniphila)
was significantly negatively correlated with TNF-α, IL-1β and IL-6, suggesting that Gut A.
muciniphila plays an important role in ALI and that supplementation with A. muciniphila
may be a possible therapy for ALI [82]. In addition, the combination of probiotics Bifidobac-
terium longum, Lactobacillus bulgaricus and Streptococcus thermophilus was more effective
as an adjuvant therapy for severe and critically ill patients with COVID-19, shortening
the nucleic acid conversion time, and reducing the inflammatory index such as procalci-
tonin and C-reactive protein [83]. Another probiotic, L. reuteri., can reduce lung inflam-
mation and mortality of ARDS [30]. In uremic dialysis patients, oral administration of
Lactobacillus acidophilus led to a decrease in serum dimethylamine, a potential uremic
toxin [84]. The administration of probiotics (e.g., Bifidobacterium bifidum, Bifidobacterium
catenulatum, Bifidobacterium longum, Lactobacillus plantarum) can also significantly reduce
serum proinflammatory endotoxin, decrease cytokine levels, and improve life quality [85].
A double-blind clinical study has shown that the probiotics Lactobacillus rhamnosus GG or a
combination application of probiotics (including streptococcus thermophiles, lactobacillus aci-
dophilus, lactobacillus delbrueckii ssp. bulgaricus, lactobacillus paracasei, lactobacillus plantarum,
Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium breve) has beneficial ef-
fects on heart failure caused by adverse cardiac remodeling after myocardial infarction
(MI). These probiotics play roles through decreasing the levels of intestinal metabolite
trimethylamine N-oxide (TMAO) [34,86].

5.2. Prebiotics

Prebiotics are substrates that can be selectively utilized by host microbes to maintain
gut homeostasis and improve health outcomes. Dietary fiber (DF) is a powerful beneficial
prebiotic that promotes the production of SCFAs [87].

Several prospective cohort studies have found that the use of DF in critically ill patients
is effective in enhancing intestinal barrier function, reducing the systemic inflammatory
response, modulating gut microbiota: increasing the abundance of the SCFAs-producing
bacteria, and decreasing the level of potentially pathogenic microbiota [35]. The use of DF
also improves the clinical outcomes, shortening hospital days, and reducing morbidity
and mortality in critically ill patients [35]. Researchers have also found that prebiotics may
ameliorate the prognosis of COVID-19 by offering anti-inflammatory nutrition, improving
malnutrition, and enhancing immunity through the gut–lung microbial axis [36,37,88].
More importantly, DF-fermented SCFAs increase the production of CD103+DCs, promote
the differentiation of activated CD8+T cells to effector cells with a memory phenotype,
and improve the outcomes of anti-PD-1 immune checkpoint inhibitor therapy in patients
with melanoma [89,90]. Similarly, the SCFAs produced by DF provide energy to the gut
microbiota and promote the amino acids to reach the colon for absorption into the body
rather than fermenting into uremic solutes [38].

In addition, flavonoid is an important class of natural products widely found in fruits
which belongs to a class of plant secondary metabolites [91]. Clinical trials have demon-
strated that flavonoids can upregulate the abundance of probiotics, such as Bifidobaterium
and Lactobacillus, while downregulating the abundance of some pathogenic bacteria such
as Staphylococcus aureus and Clostridium histolyticum [92,93]. Moreover, flavonoids can also
promote the production of SCFAs [94].
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5.3. Synbiotics

Synbiotics are mixtures of probiotics and prebiotics that exert beneficial effects on
the host in two main ways: enhancing the viability of probiotic microorganisms and
providing specific health effects [95,96]. Probiotics stimulated by prebiotics could regulate
the metabolic activity of the gut, maintain the intestinal biostructure, and promote the
growth and multiplication of probiotics and its resistance to reactive oxygen species and bile
salts/acids [97]. In addition, synbiotic agents modulate the innate and adaptive immune
systems to reduce systemic inflammation and promote extraintestinal organ function [71,97].
Synbiotics lead to lower concentrations of adverse metabolites which results in significantly
increased SCFAs levels, which may contribute to a positive effect on the host health [95].

A double-blinded controlled clinical trial demonstrates that a combination of antibiotic
intervention led to a significant reduction in pharyngeal aspiration in critically ill patients
and an increased level of patient consciousness [98]. In addition, for hospital-acquired in-
fections in critically ill patients, synbiotics may be a safer and more effective way to reduce
endotoxin and inflammatory markers in serum and the complications of sepsis [76,81].
Studies have shown that prophylactic synbiotics (e.g., Bifidobacterium breve strain Yakult
combined with Lactobacillus casei strain Shiorta, and galactooligosaccharides) increases
the number of probiotics (e.g., Bifidobacterium, Lactobacillus) in fecal bacteria and intestinal
SCFA levels, especially acetate. These may modulate the gut microbiota and environment,
and have preventive effects on the incidence of enterocolitis and VAP in sepsis patients [25].
Moreover, synbiotics are used to maintain a stable intestinal microbiota after SIRS and
major surgery including high-risk hepatectomy, colorectal resection surgery, Roux-en-Y
gastric bypass (RYGB), and sepsis-associated encephalitis (SAE) [40,99]. Synbiotics could
also reduce the incidence of diseases such as VAP and healthcare-associated pneumonia,
and shorten ICU length of stay [100,101]. In the late stage of intestinal disorders, supple-
mentation with synbiotics can accelerate the recovery of the microbiota, thus preventing
the development of sepsis and the onset and progression of critical diseases such as ARDS
to some extent [44]. Synbiotics intake has been demonstrated to reduce plasma levels of
uremic toxin and may exert nephroprotective effects [84].

Based on the above literature, we briefly summarize the different scenarios in which
FMT, SDD, probiotics, prebiotics, and synbiotics act directly by regulating the gut micro-
biota (Table 2).

Table 2. Appropriate situations for different therapeutic approaches.

Mirobiome-Based
Therapeutics Appropriate Situations References

FMT Post-antibiotics; CDI; the possible eradication of colonization and recurrent infections
due to different species of MDROs. [102–104]

SDD Wards with low rates of resistant bacteria; patients colonized with Staphylococcus
aureus or aerobic gram-negative bacteria. [103,105]

Probiotics, prebiotics
and synbiotics

Available as food supplements; most situations with gut microbiota dysbiosis except
post-antibiotics. [73,102]

FMT, fecal microbiota transplantation, SDD, selectively digestive decontamination, CDI, Clostridium difficile
infection, MDROs, multidrug-resistant organisms.

5.4. Microbiota-Derived Metabolites and Proteins

Transfer of sterile filtrates from donor feces, rather than fecal microbiota, has been
shown to be sufficient to restore normal bowel habits and eliminate symptoms [106].
Therefore, researchers speculate that gut metabolites may contribute to critical illness
and dysbiosis. There is observational data that correlates critical illness, dysbiosis, and
altered gut metabolites, including SCFAs, flavonoids, indole derivations, amines, bile acids,
etc. [107]. In this section, several microbiota-derived metabolites and proteins therapies
will be summarized.
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5.4.1. Short-Chain Fatty Acid

Typically, undigested DF, as well as proteins and peptides, can be fermented by gut
bacteria in the cecum and colon. The main products of these fermentative reactions are
SCFAs, consisting of groups of fatty acids with less than six carbons. SCFAs include formic
acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), and valeric acid (C5).
The major SCFAs in the gut are C2, C3, and C4, accounting for more than 95% of all SC-
FAs [108]. SCFAs are key mediators in the regulation of myocardial tissue repair by gut
microbiota [20]. Decreased microbiota abundance has been shown to alter immune cell
responses to infectious damage, usually resulting in a pro-inflammatory phenotype [109],
which further aggravates disease progression. Normal levels of SCFAs support the activity
of innate lymphocytes, T cells, and B cells in the gut, thereby improving immune toler-
ance in the gut, strengthening the gut immune barrier, and enhancing its ability to clear
pathogens [14,110]. Furthermore, a large proportion of gut-derived SCFAs are transported
out of the gut to affect other organs through the gut–lung axis, gut–brain axis, gut–liver
axis, gut–kidney axis, gut–bone axis, gut–skin axis, gut–fat axis, gut–heart axis, and so
on [111–116]. Available studies have shown that gut microbiota dysbiosis and a lack of
SCAFs are significantly associated with the severity of COVID-19 [45]. Therefore, main-
taining healthy gut microbiota and normal levels of SCFAs contribute to critical illness
prevention and prognosis. However, little is known about their therapeutic mechanism in
critically ill patients, except for mouse models, so verifying the therapeutic mechanism of
SCFAs in clinical trials may be a possible direction in subsequent research. In the following
sections, we introduce the beneficial role that major SCFAs play in critical illness.

Butyrate

Previous work on mouse models has shown that butyrate, a specific type of SCFAs
readily produced from fiber-rich diets through microbial fermentation, is critical for the
maintenance of intestinal homeostasis [117]. Thus, we speculate that butyrate acid plays a
crucial role in critically ill patients.

In a mouse model of sepsis-associated encephalitis, butyrate is a major metabolite of
intestinal microbiota and may have a neuroprotective effect in the process of sepsis through
the GPR109A/Nrf2/HO-1 pathway [118].

Butyrate acid promotes the proliferation and differentiation of intestinal epithelial cells
(IECs) and the synthesis of intestinal epithelial tight junction protein, such as the increased
expression of Zo-1 and Occludin, reduces cell apoptosis, and inhibits intestinal permeability,
resulting in enhanced intestinal mucosa mechanical barrier function [119,120]. In addition,
butyrate acid enhances the intestinal mucosal immune barrier. It can maintain immune
homeostasis by restoring the IRF3 signaling pathway [50]. Moreover, butyrate acid pro-
motes the production of anti-microbial peptides (AMPs) [121]. AMPs are small molecular
peptides produced by IECs with broad-spectrum antimicrobial activities, such as butyrate
acid which promotes RegIIIγ and β-defensins in a GPR43-dependent manner, which
play important roles in limiting bacteria and manipulating species composition [122,123].
Furthermore, butyrate acid strengthens the intestinal biological barrier function. Elevated
levels of butyrate acid lowers colonic PH and inhibits the growth and colonization of
pathogenic bacteria [124]. It also prevents bacterial translocation across the intestinal
barrier by promoting the antimicrobial activity of intestinal macrophages [125].

As a histone deacetylase inhibitor, it affects the gene expression profile of intestinal
epithelial cells and immune cells through histone deacetylases [126–128]. It can alter the
gene expression profile of immune cells such as Treg cells, intestinal macrophages, and bone
marrow-derived macrophages through G protein-coupled receptors (GPCR), affecting their
response to microbial stimulation [125,129]. Butyrate acid can relieve inflammation and
clinical symptoms in critically ill patients by activating Treg cells [130]. In addition to di-
rectly affecting the function of the intestine itself, butyrate acid can also affect the organs via
the gut–lung axis and gut–brain axis. Studies have shown that the GPCR overlap with each
other in extraintestinal or intestinal organs [131]. For example, GPR109A viewed as GPCR
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common to both lung and intestine can be activated by butyrate [108]. Butyrate acid affects
the intestinal epithelial barrier function and immune function regulation through GPR109A,
with similar effects on lung tissue (Table 3). Intraperitoneal injection of sodium butyrate
acid can decrease the expression of hypermobility protein 1 (HP-1), pro-inflammatory
cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and inhibit the
activation of the NF-κB signaling pathway in an ALI/ARDS mouse model [60,132].

Table 3. Association of G protein-coupled receptor with SCFAs.

GPCR Association with SCFAs References

GPR41

Activated by SCFAs such as propionate, butyrate and valerate.
SCFAs enhance the cellular metabolism and adaptive immunity function through
GPR41 and maintain intestinal homeostasis. Propionate activated GPR41 alleviates
inflammation in allergy.

[133–135]

GPR43

GPR43 can be activated by SCFAs such as acetate, propionate, butyrate.
SCFAs promote intestinal epithelial cells to produce AMPs, stimulates the migration
of neutrophils, and modulates the production of reactive oxygen species (ROS) and
phagocytosis through a GPR43-relate manner. Elevated SCFAs level enhances luminal
immunoglobulin A production and strengthen the intestinal mucosa barrier.

[123,136–140]

GPR40 GPR40 receptor activation promotes tight junction assembly in airway epithelial cells
via AMPK-dependent mechanisms. [141]

GPR109A Butyrate-mediated GPR109A activation suppresses inflammation and regulates lipid
metabolism by regulating macrophages. [108,142,143]

GPCR/GPR, G protein-coupled receptor; SCFA, short-chain fatty acid; AMP, anti-microbiota peptide.

Propionate

Propionate is mainly produced by Bacteroides spp. and is used as a gluconeogenic
substrate in the liver and intestinal to provide energy to the body [124]. Propionic acid is
an anti-inflammatory cytokine, its level in serum may predict the severity and prognosis in
critically ill patients and may be a cytokine regulatory marker for critical illnesses such as
sepsis [144].

Acetate

Acetate is mainly derived from gut microbes and is a metabolite released into the
intestinal lumen by anaerobic bacteria from the gut microbiota, which is then absorbed
by IEC and distributed to peripheral capillaries [145]. In recent years, studies in mice
have found that acetate inhibits the permeability of the alveolar–capillary barrier, reduces
pulmonary edema, inhibits oxidative stress, suppresses inflammatory cell recruitment
and inflammatory mediator production, and regulates MAPK pathway activation; thus
leading to amelioration of ALI and ARDS [146]. Elevated levels of acetate may prevent
IEC translocation by inhibiting endotoxin and increasing claudin, thereby reducing the
incidence of sepsis [25,71,147].

5.4.2. Flavonoid Metabolites

Researchers have found that flavonoids ingested with food enter the circulatory sys-
tem through the intestines to exert their beneficial effects [148]. Generally, flavonoids
are absorbed as metabolites, and gut microbiota participate in this metabolism [149,150].
Flavonoid metabolites can shape the gut microbiota by inhibiting the growth of various
pathogens and increasing beneficial genera; these could reduce the endotoxin, maintain
gut immune homeostasis, and promote nutrients absorption [151,152]. Flavonoids metabo-
lites have anti-inflammatory effects and play a part in local and systemic immunity. In
mouse models, flavonoid metabolites can improve intestinal barrier function by reducing
intestinal mucosal inflammation and maintaining the intestinal tight junction barrier and
structure [46,153,154]. In addition, flavonoid metabolites regulate inflammatory mediators,
such as through inhibiting endothelial activation, NLRP3 inflammasome, toll-like receptors
(TLRs), or bromodomain-containing protein 4 (BRD4), as well as activating nuclear factor
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erythroid-derived 2-related factor 2 (Nrf2), thereby restoring cytokine storm in critical
illness including SARS-CoV-2 infection [47]. DAT, a kind of flavonoid metabolite, has
been shown to treat upper respiratory tract infections in mice and protect mice from bac-
terial endotoxin-induced septic shock [155,156]. Therefore, the researchers suggest that
flavonoid metabolites produced by intestinal microbial metabolism play important roles
when critically ill patients and hosts are infected with viruses and lethal bacterial infections.

5.4.3. Others

Other than SCFAs and flavonoid metabolites, other microbiota-derived metabolites
and proteins also play a critical role in maintaining the balance of intestinal mucosa
and contributing to the treatment of critical illness. Indole-3-propionic acid (IPA) could
modulate gut microbiota in normal mice, increase the levels of some probiotics (e.g.,
Akkermansiaceae, Bifidobacteriaceae), strengthen the mucus barrier, and attenuate LPS-
induced inflammatory factors in sepsis by increasing mucins and goblet cell secretion
products [157]. Studies on mouse models of sepsis suggest that the anti-inflammatory
activity of IPA may associated with the increased abundance of Bifidobacteriaceae and
inhibited expansion of Enterobacteriaceae, contributing to an improvement in mortality
in sepsis [158]. Aromatic microbial metabolites (AMMs), such as phenyl lactic and 4-
hydroxyphenyllactic acids, have been observed at a much higher level than normal in the
serum of septic patients [159]. A prospective observational pilot study found that high level
of AMMs were associated with severity and mortality in critically ill patients, and may
become a possible direction to improve the prognosis of critical illness [160]. TMAO has
been found to be higher in individuals with heart failure than in controls, suggesting that
TMAO is a new and novel risk factor in heart failure development and can lead to cardiac
hypertrophy and cardiac fibrosis [161]. Beta-lactamase, produced primarily by extended-
spectrum β-lactam Enterobacteriaceae, has been shown to reduce the jejunal concentration
of antibiotics and to prevent antibiotics from reaching the colon, thus alleviating the effect
of antibiotics on gut microbiota disturbance [162,163].

6. Limitations

The gut microbiome has been recognized as a potential tool for the prevention and
treatment of critical illness. However, although different microbiome-based therapeutics
have proven to be effective in the treatment of critical illness, there remain limitations and
challenges for future development (Figure 2).

6.1. Limitations of FMT

Adverse events in FMT include excessive flatulence, reflux, and the requirement of
discontinuation of antibiotics in patients, which greatly increase complications such as E.
coli bacteremia, lactobacillus bacteremia, and bacterial peritonitis [62,164,165]. More impor-
tantly, it is not entirely clear which bacteria are inhibited after FMT, and there is no suitable
method to screen for potentially pathogenic bacteria in donor samples [14]. In addition, the
lack of large randomized clinical trials remains a non-negligible limitation [103].

6.2. Limitations of SDD

Although SDD has been reported as an effective strategy to reduce ICU inpatient
mortality, there are still some barriers to its widespread clinical use. One of the barriers is the
concern that the widespread use of broad-spectrum antibiotics might promote antimicrobial-
resistant organisms [166]. Additionally, it has been noted that, in patients on prolonged
ventilation in the ICU, dosing procedures can be optimized due to the discomforting nature
of oral creams and the reduced access of gastric suspensions to the upper gastrointestinal
tract, which may bias in clinical trials [68]. Indeed, little data is available in centers with
high rates of resistance and without long-term follow-ups, and the effect of SDD on the
incidence of antimicrobial-resistant organisms is still unsolved [69]. Further studies will
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also need to assess the impact on secondary resistance and disruption patterns in the
gut microbiome.
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6.3. Limitations of Probiotics, Prebiotics and Synbiotics Therapies

Not all studies have shown optimistic results for microbiome-directed therapies [165,167,168],
and there are also several risk factors in critical illness. On the one hand, the current clinical
trial results of microbiota-directed therapy do not fully support their preventive role in
critically ill patients [168–170]. The suitable probiotics for each dysbiosis situation are
difficult to find and using them alone reduces their efficacy. Thus, combinations with
other components are needed, but the specific formulation used for probiotics have not
been extensively clinically validated [171]. On the other hand, overuse of synbiotics in
microbiome-directed therapy not only fails to treat nosocomial infections in critically ill
patients, but also leads to additional infectious complications [75].

6.4. Limitations of Intestinal Microbial Metabolite Therapy

High levels of SCFAs may have direct cytotoxic effects on pathogens and contribute
to the development of MODS [144,172]. Moreover, after rectal administration or oral
administration of butyrate acid, the proportion of Bacteroidetes phylum increases but the
proportion of the thick-walled phylum decreases, which is detrimental to the restoration of
gut microbiota homeostasis in critically ill patients [173,174]. In a variety of diseases, such
as influenza, DAT treatment activates the immune system; however, it was only effective
when DAT was given before the onset of infection. If it was given after the infection, it may
exacerbate the progression of the disease [155].
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7. Conclusions and Further Directions

FMT and SDD, as well as probiotics, prebiotics, and synbiotics, can restore the original
intestinal microecology in critically ill patients, reduce the inflammatory response, and
decrease the incidence of infectious complications. Gut microbial metabolites may improve
the clinical condition of critically ill patients by enhancing immune tolerance and alleviating
inflammatory response. Therefore, gut microbiome-based therapeutics may be applicable
to critically ill adult patients.

Although current evidence suggests that gut microbiome-based therapeutics are ben-
eficial for critically ill adult patients, there are still some issues that need to be validated
in further studies in human and mouse models to continue exploring mechanisms. In
our view, firstly, the toxicity and appropriate therapeutic doses of probiotics, prebiotics,
synbiotics, and gut microbiota metabolites should be evaluated. Second, the appropriate
composition of FMT grafts should be determined to ensure patient safety. Third, more clini-
cal trials should be conducted for more types of critical illness, and the number of patients
or cases needs to be expanded. Fourth, further molecular mechanisms of action need to
be explored, which may contribute to the new therapy targets. Finally, the application of
gut microbiome-based therapeutics for prevention of critical illness may be more desirable
than the treatment of critical illness.

In addition to deeper discussions about the mechanisms and studies that need to be
validated by mouse models, further studies of new and useful materials, technologies,
and methodologies, such as lactomodulin, symbiotic microbial consortia, and engineered
symbiotic bacteria, may also be a direction in gut microbiome-based therapeutics of critical
illness [175].

Author Contributions: S.H. wrote the initial manuscript. X.H. and F.L. participated in reviewing
and critically correcting the manuscript. P.P. contributed to the manuscript structure and supervised
the work. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by a grant from The Scientific Research Program of FuRong
Laboratory (No. 2023SK2101); The national key clinical specialist construction programs of China
(Grant Number z047-02); the National Natural Science Foundation of China (No. 82200039); Natural
Science Foundation of ChangSha (No. kq2208368); Natural Science Foundation of Hunan Province of
China (No. 2023JJ30930, No. 2023JJ40982).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamada, T.; Shimizu, K.; Ogura, H.; Asahara, T.; Nomoto, K.; Yamakawa, K.; Hamasaki, T.; Nakahori, Y.; Ohnishi, M.; Kuwagata,

Y.; et al. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic
Inflammatory Response Syndrome. J. Parenter. Enter. Nutr. 2015, 39, 569–577. [CrossRef]

2. Wolff, N.S.; Hugenholtz, F.; Wiersinga, W.J. The emerging role of the microbiota in the ICU. Crit. Care 2018, 22, 78. [CrossRef]
[PubMed]

3. Shimizu, K.; Ojima, M.; Ogura, H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients.
Nutrients 2021, 13, 2439. [CrossRef]

4. Mittal, R.; Coopersmith, C.M. Redefining the gut as the motor of critical illness. Trends Mol. Med. 2014, 20, 214–223. [CrossRef]
[PubMed]

5. Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative
approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [CrossRef]

6. Baggs, J.; Jernigan, J.A.; Halpin, A.L.; Epstein, L.; Hatfield, K.M.; McDonald, L.C. Risk of Subsequent Sepsis Within 90 Days After
a Hospital Stay by Type of Antibiotic Exposure. Clin. Infect. Dis. 2018, 66, 1004–1012. [CrossRef]

7. Guidry, C.A.; Shah, P.M.; Dietch, Z.C.; Elwood, N.R.; Krebs, E.D.; Mehaffey, J.H.; Sawyer, R.G. Recent Anti-Microbial Exposure Is
Associated with More Complications after Elective Surgery. Surg. Infect. 2018, 19, 473–479. [CrossRef] [PubMed]

8. Otani, S.; Coopersmith, C.M. Gut integrity in critical illness. J. Intensive Care 2019, 7, 17. [CrossRef]

https://doi.org/10.1177/0148607114529596
https://doi.org/10.1186/s13054-018-1999-8
https://www.ncbi.nlm.nih.gov/pubmed/29559006
https://doi.org/10.3390/nu13072439
https://doi.org/10.1016/j.molmed.2013.08.004
https://www.ncbi.nlm.nih.gov/pubmed/24055446
https://doi.org/10.1186/s13073-016-0294-z
https://doi.org/10.1093/cid/cix947
https://doi.org/10.1089/sur.2018.031
https://www.ncbi.nlm.nih.gov/pubmed/29883278
https://doi.org/10.1186/s40560-019-0372-6


Nutrients 2023, 15, 4734 12 of 19

9. Adelman, M.W.; Woodworth, M.H.; Langelier, C.; Busch, L.M.; Kempker, J.A.; Kraft, C.S.; Martin, G.S. The gut microbiome’s role
in the development, maintenance, and outcomes of sepsis. Crit. Care 2020, 24, 278. [CrossRef]

10. Chernevskaya, E.; Klimenko, N.; Pautova, A.; Buyakova, I.; Tyakht, A.; Beloborodova, N. Host-Microbiome Interactions Mediated
by Phenolic Metabolites in Chronically Critically Ill Patients. Metabolites 2021, 11, 122. [CrossRef]

11. Ravi, A.; Halstead, F.D.; Bamford, A.; Casey, A.; Thomson, N.M.; van Schaik, W.; Snelson, C.; Goulden, R.; Foster-Nyarko, E.;
Savva, G.M.; et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb.
Genom. 2019, 5, e000293. [CrossRef]

12. Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and
inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [CrossRef] [PubMed]

13. Sorbara, M.T.; Pamer, E.G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome
them. Mucosal Immunol. 2019, 12, 840. [CrossRef] [PubMed]

14. Keskey, R.; Cone, J.T.; DeFazio, J.R.; Alverdy, J.C. The use of fecal microbiota transplant in sepsis. Transl. Res. 2020, 226, 12–25.
[CrossRef] [PubMed]

15. Díaz-Garrido, N.; Badia, J.; Baldomà, L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J.
Extracell. Vesicles 2021, 10, e12161. [CrossRef] [PubMed]

16. Wei, Y.; Yang, J.; Wang, J.; Yang, Y.; Huang, J.; Gong, H.; Cui, H.; Chen, D. Successful treatment with fecal microbiota trans-
plantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit. Care 2016, 20, 332.
[CrossRef]

17. van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.;
Tijssen, J.G.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415.
[CrossRef] [PubMed]

18. Bilinski, J.; Grzesiowski, P.; Sorensen, N.; Madry, K.; Muszynski, J.; Robak, K.; Wroblewska, M.; Dzieciatkowski, T.; Dulny, G.;
Dwilewicz-Trojaczek, J.; et al. Fecal Microbiota Transplantation in Patients With Blood Disorders Inhibits Gut Colonization With
Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study. Clin. Infect. Dis. 2017, 65, 364–370. [CrossRef]

19. Ianiro, G.; Murri, R.; Sciumè, G.D.; Impagnatiello, M.; Masucci, L.; Ford, A.C.; Law, G.R.; Tilg, H.; Sanguinetti, M.; Cauda, R.; et al.
Incidence of Bloodstream Infections, Length of Hospital Stay, and Survival in Patients With Recurrent Clostridioides difficile
Infection Treated With Fecal Microbiota Transplantation or Antibiotics: A Prospective Cohort Study. Ann. Intern. Med. 2019, 171,
695–702. [CrossRef]

20. Ho, K.M.; Kalgudi, S.; Corbett, J.M.; Litton, E. Gut microbiota in surgical and critically ill patients. Anaesth. Intensive Care 2020, 48,
179–195. [CrossRef]

21. Sharma, A.; Roy, A.; Premkumar, M.; Verma, N.; Duseja, A.; Taneja, S.; Grover, S.; Chopra, M.; Dhiman, R.K. Fecal microbiota
transplantation in alcohol-associated acute-on-chronic liver failure: An open-label clinical trial. Hepatol. Int. 2022, 16, 433–446.
[CrossRef] [PubMed]

22. Peñuelas, O.; Del Campo-Albendea, L.; de Aledo, A.L.G.; Añón, J.M.; Rodríguez-Solís, C.; Mancebo, J.; Vera, P.; Ballesteros, D.;
Jiménez, J.; Maseda, E.; et al. Long-term survival of mechanically ventilated patients with severe COVID-19: An observational
cohort study. Ann. Intensive Care 2021, 11, 143. [CrossRef] [PubMed]

23. van der Meer, S.B.; Figaroa, G.; van der Voort, P.H.J.; Nijsten, M.W.; Pillay, J. Ventilator-associated pneumonia in critically-ill
patients with COVID-19 in a setting of selective decontamination of the digestive tract. Crit. Care 2021, 25, 445. [CrossRef]
[PubMed]

24. Shimizu, K.; Hirose, T.; Ogura, H. Efficacy of probiotics in the prevention of diarrhea in ventilated critically ill ICU patients:
Meta-analysis of randomized control trials. J. Intensive Care 2021, 9, 62. [CrossRef] [PubMed]

25. Shimizu, K.; Yamada, T.; Ogura, H.; Mohri, T.; Kiguchi, T.; Fujimi, S.; Asahara, T.; Yamada, T.; Ojima, M.; Ikeda, M.; et al.
Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: A
randomized controlled trial. Crit. Care 2018, 22, 239. [CrossRef]

26. Batra, P.; Soni, K.D.; Mathur, P. Efficacy of probiotics in the prevention of VAP in critically ill ICU patients: An updated systematic
review and meta-analysis of randomized control trials. J. Intensive Care 2020, 8, 81. [CrossRef]

27. Mahmoodpoor, A.; Hamishehkar, H.; Asghari, R.; Abri, R.; Shadvar, K.; Sanaie, S. Effect of a Probiotic Preparation on Ventilator-
Associated Pneumonia in Critically Ill Patients Admitted to the Intensive Care Unit: A Prospective Double-Blind Randomized
Controlled Trial. Nutr. Clin. Pract. 2019, 34, 156–162. [CrossRef]

28. Mullish, B.H.; Marchesi, J.R.; McDonald, J.A.K.; Pass, D.A.; Masetti, G.; Michael, D.R.; Plummer, S.; Jack, A.A.; Davies, T.S.;
Hughes, T.R.; et al. Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults:
Should we be considering probiotics during viral pandemics? Gut Microbes 2021, 13, 1900997. [CrossRef] [PubMed]

29. Ceccarelli, G.; Borrazzo, C.; Pinacchio, C.; Santinelli, L.; Innocenti, G.P.; Cavallari, E.N.; Celani, L.; Marazzato, M.; Alessandri, F.;
Ruberto, F.; et al. Oral Bacteriotherapy in Patients With COVID-19: A Retrospective Cohort Study. Front. Nutr. 2020, 7, 613928.
[CrossRef]

30. Alghetaa, H.; Mohammed, A.; Zhou, J.; Singh, N.; Nagarkatti, M.; Nagarkatti, P. Resveratrol-mediated attenuation of superantigen-
driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacol. Res. 2021, 167, 105548.
[CrossRef]

https://doi.org/10.1186/s13054-020-02989-1
https://doi.org/10.3390/metabo11020122
https://doi.org/10.1099/mgen.0.000293
https://doi.org/10.1111/imr.12567
https://www.ncbi.nlm.nih.gov/pubmed/28856738
https://doi.org/10.1038/s41385-019-0151-7
https://www.ncbi.nlm.nih.gov/pubmed/30796335
https://doi.org/10.1016/j.trsl.2020.07.002
https://www.ncbi.nlm.nih.gov/pubmed/32649987
https://doi.org/10.1002/jev2.12161
https://www.ncbi.nlm.nih.gov/pubmed/34738337
https://doi.org/10.1186/s13054-016-1491-2
https://doi.org/10.1056/NEJMoa1205037
https://www.ncbi.nlm.nih.gov/pubmed/23323867
https://doi.org/10.1093/cid/cix252
https://doi.org/10.7326/M18-3635
https://doi.org/10.1177/0310057X20903732
https://doi.org/10.1007/s12072-022-10312-z
https://www.ncbi.nlm.nih.gov/pubmed/35349076
https://doi.org/10.1186/s13613-021-00929-y
https://www.ncbi.nlm.nih.gov/pubmed/34601646
https://doi.org/10.1186/s13054-021-03869-y
https://www.ncbi.nlm.nih.gov/pubmed/34930419
https://doi.org/10.1186/s40560-021-00567-3
https://www.ncbi.nlm.nih.gov/pubmed/34654482
https://doi.org/10.1186/s13054-018-2167-x
https://doi.org/10.1186/s40560-020-00487-8
https://doi.org/10.1002/ncp.10191
https://doi.org/10.1080/19490976.2021.1900997
https://www.ncbi.nlm.nih.gov/pubmed/33764850
https://doi.org/10.3389/fnut.2020.613928
https://doi.org/10.1016/j.phrs.2021.105548


Nutrients 2023, 15, 4734 13 of 19

31. Li, L.; Fang, Z.; Liu, X.; Hu, W.; Lu, W.; Lee, Y.K.; Zhao, J.; Zhang, H.; Chen, W. Lactobacillus reuteri attenuated allergic
inflammation induced by HDM in the mouse and modulated gut microbes. PLoS ONE 2020, 15, e0231865. [CrossRef]

32. Neamah, W.H.; Busbee, P.B.; Alghetaa, H.; Abdulla, O.A.; Nagarkatti, M.; Nagarkatti, P. AhR Activation Leads to Alterations in
the Gut Microbiome with Consequent Effect on Induction of Myeloid Derived Suppressor Cells in a CXCR2-Dependent Manner.
Int. J. Mol. Sci. 2020, 21, 9613. [CrossRef]

33. Tungsanga, S.; Katavetin, P.; Panpetch, W.; Udompornpitak, K.; Saisorn, W.; Praditpornsilpa, K.; Eiam-Ong, S.; Tungsanga,
K.; Tumwasorn, S.; Leelahavanichkul, A. Lactobacillus rhamnosus L34 attenuates chronic kidney disease progression in a 5/6
nephrectomy mouse model through the excretion of anti-inflammatory molecules. Nephrol. Dial. Transplant. 2022, 37, 1429–1442.
[CrossRef] [PubMed]

34. Moludi, J.; Saiedi, S.; Ebrahimi, B.; Alizadeh, M.; Khajebishak, Y.; Ghadimi, S.S. Probiotics Supplementation on Cardiac
Remodeling Following Myocardial Infarction: A Single-Center Double-Blind Clinical Study. J. Cardiovasc. Transl. Res. 2021, 14,
299–307. [CrossRef] [PubMed]

35. Fu, Y.; Moscoso, D.I.; Porter, J.; Krishnareddy, S.; Abrams, J.A.; Seres, D.; Chong, D.H.; Freedberg, D.E. Relationship Between
Dietary Fiber Intake and Short-Chain Fatty Acid-Producing Bacteria During Critical Illness: A Prospective Cohort Study. J.
Parenter. Enter. Nutr. 2020, 44, 463–471. [CrossRef] [PubMed]

36. Conte, L.; Toraldo, D.M. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-
inflammatory effects in COVID-19 infection. Ther. Adv. Respir. Dis. 2020, 14, 1753466620937170. [CrossRef] [PubMed]

37. Hawryłkowicz, V.; Lietz-Kijak, D.; Kaźmierczak-Siedlecka, K.; Sołek-Pastuszka, J.; Stachowska, L.; Folwarski, M.; Parczewski,
M.; Stachowska, E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021, 13, 3385.
[CrossRef] [PubMed]

38. Cigarran Guldris, S.; González Parra, E.; Cases Amenós, A. Gut microbiota in chronic kidney disease. Nefrologia 2017, 37, 9–19.
[CrossRef] [PubMed]

39. Wang, K.; Zeng, Q.; Li, K.X.; Wang, Y.; Wang, L.; Sun, M.W.; Zeng, J.; Jiang, H. Efficacy of probiotics or synbiotics for critically ill
adult patients: A systematic review and meta-analysis of randomized controlled trials. Burn. Trauma 2022, 10, tkac004. [CrossRef]
[PubMed]

40. Rohith, G.; Sureshkumar, S.; Anandhi, A.; Kate, V.; Rajesh, B.S.; Abdulbasith, K.M.; Nanda, N.; Palanivel, C.; Vijayakumar, C.
Effect of Synbiotics in Reducing the Systemic Inflammatory Response and Septic Complications in Moderately Severe and Severe
Acute Pancreatitis: A Prospective Parallel-Arm Double-Blind Randomized Trial. Dig. Dis. Sci. 2023, 68, 969–977. [CrossRef]
[PubMed]

41. Kahn, J.; Pregartner, G.; Schemmer, P. Effects of both Pro- and Synbiotics in Liver Surgery and Transplantation with Special Focus
on the Gut-Liver Axis-A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2461. [CrossRef]

42. Lopes, R.; Theodoro, J.M.V.; da Silva, B.P.; Queiroz, V.A.V.; de Castro Moreira, M.E.; Mantovani, H.C.; Hermsdorff, H.H.; Martino,
H.S.D. Synbiotic meal decreases uremic toxins in hemodialysis individuals: A placebo-controlled trial. Food Res. Int. 2019, 116,
241–248. [CrossRef]

43. Shimizu, K.; Ogura, H.; Kabata, D.; Shintani, A.; Tasaki, O.; Ojima, M.; Ikeda, M.; Shimazu, T. Association of prophylactic
synbiotics with reduction in diarrhea and pneumonia in mechanically ventilated critically ill patients: A propensity score analysis.
J. Infect. Chemother. 2018, 24, 795–801. [CrossRef]

44. Haak, B.W.; Prescott, H.C.; Wiersinga, W.J. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis.
Front. Immunol. 2018, 9, 2042. [CrossRef]

45. Zhang, F.; Wan, Y.; Zuo, T.; Yeoh, Y.K.; Liu, Q.; Zhang, L.; Zhan, H.; Lu, W.; Xu, W.; Lui, G.C.Y.; et al. Prolonged Impairment of
Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology 2022, 162,
548–561.e544. [CrossRef]

46. Wei, Y.; Gao, J.; Kou, Y.; Liu, M.; Meng, L.; Zheng, X.; Xu, S.; Liang, M.; Sun, H.; Liu, Z.; et al. The intestinal microbial metabolite
desaminotyrosine is an anti-inflammatory molecule that modulates local and systemic immune homeostasis. FASEB J. 2020, 34,
16117–16128. [CrossRef]

47. Liskova, A.; Samec, M.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Al-Ishaq, R.K.; Abotaleb, M.; Nosal, V.; Kajo, K.; Ashrafizadeh,
M.; et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed. Pharmacother. 2021, 138, 111430. [CrossRef]
[PubMed]

48. Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13,
790–801. [CrossRef] [PubMed]

49. Khoruts, A.; Sadowsky, M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol.
2016, 13, 508–516. [CrossRef]

50. Kim, S.M.; DeFazio, J.R.; Hyoju, S.K.; Sangani, K.; Keskey, R.; Krezalek, M.A.; Khodarev, N.N.; Sangwan, N.; Christley, S.; Harris,
K.G.; et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat.
Commun. 2020, 11, 2354. [CrossRef] [PubMed]

51. Gai, X.; Wang, H.; Li, Y.; Zhao, H.; He, C.; Wang, Z.; Zhao, H. Fecal Microbiota Transplantation Protects the Intestinal Mucosal
Barrier by Reconstructing the Gut Microbiota in a Murine Model of Sepsis. Front. Cell. Infect. Microbiol. 2021, 11, 736204.
[CrossRef] [PubMed]

https://doi.org/10.1371/journal.pone.0231865
https://doi.org/10.3390/ijms21249613
https://doi.org/10.1093/ndt/gfac032
https://www.ncbi.nlm.nih.gov/pubmed/35138387
https://doi.org/10.1007/s12265-020-10052-1
https://www.ncbi.nlm.nih.gov/pubmed/32681453
https://doi.org/10.1002/jpen.1682
https://www.ncbi.nlm.nih.gov/pubmed/31385326
https://doi.org/10.1177/1753466620937170
https://www.ncbi.nlm.nih.gov/pubmed/32600125
https://doi.org/10.3390/nu13103385
https://www.ncbi.nlm.nih.gov/pubmed/34684384
https://doi.org/10.1016/j.nefro.2016.05.008
https://www.ncbi.nlm.nih.gov/pubmed/27553986
https://doi.org/10.1093/burnst/tkac004
https://www.ncbi.nlm.nih.gov/pubmed/35291228
https://doi.org/10.1007/s10620-022-07618-1
https://www.ncbi.nlm.nih.gov/pubmed/35857241
https://doi.org/10.3390/nu12082461
https://doi.org/10.1016/j.foodres.2018.08.024
https://doi.org/10.1016/j.jiac.2018.06.006
https://doi.org/10.3389/fimmu.2018.02042
https://doi.org/10.1053/j.gastro.2021.10.013
https://doi.org/10.1096/fj.201902900RR
https://doi.org/10.1016/j.biopha.2021.111430
https://www.ncbi.nlm.nih.gov/pubmed/33662680
https://doi.org/10.1038/nri3535
https://www.ncbi.nlm.nih.gov/pubmed/24096337
https://doi.org/10.1038/nrgastro.2016.98
https://doi.org/10.1038/s41467-020-15545-w
https://www.ncbi.nlm.nih.gov/pubmed/32393794
https://doi.org/10.3389/fcimb.2021.736204
https://www.ncbi.nlm.nih.gov/pubmed/34631604


Nutrients 2023, 15, 4734 14 of 19

52. Wen, L.; Shi, L.; Kong, X.L.; Li, K.Y.; Li, H.; Jiang, D.X.; Zhang, F.; Zhou, Z.G. Gut Microbiota Protected Against pseudomonas
aeruginosa Pneumonia via Restoring Treg/Th17 Balance and Metabolism. Front. Cell. Infect. Microbiol. 2022, 12, 856633. [CrossRef]

53. Lou, X.; Xue, J.; Shao, R.; Yang, Y.; Ning, D.; Mo, C.; Wang, F.; Chen, G. Fecal microbiota transplantation and short-chain fatty
acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances. Front. Immunol. 2022, 13, 1063543.
[CrossRef] [PubMed]

54. Tang, J.; Xu, L.; Zeng, Y.; Gong, F. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB
signaling pathway. Int. Immunopharmacol. 2021, 91, 107272. [CrossRef] [PubMed]

55. Li, B.; Yin, G.F.; Wang, Y.L.; Tan, Y.M.; Huang, C.L.; Fan, X.M. Impact of fecal microbiota transplantation on TGF-β1/Smads/ERK
signaling pathway of endotoxic acute lung injury in rats. 3 Biotech. 2020, 10, 52. [CrossRef]

56. Goloshchapov, O.V.; Olekhnovich, E.I.; Sidorenko, S.V.; Moiseev, I.S.; Kucher, M.A.; Fedorov, D.E.; Pavlenko, A.V.; Manolov, A.I.;
Gostev, V.V.; Veselovsky, V.A.; et al. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiol. 2019, 19, 312.
[CrossRef] [PubMed]

57. Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.;
et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609.
[CrossRef]

58. Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.;
Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021, 371,
595–602. [CrossRef]

59. Moore, T.; Rodriguez, A.; Bakken, J.S. Fecal microbiota transplantation: A practical update for the infectious disease specialist.
Clin. Infect. Dis. 2014, 58, 541–545. [CrossRef] [PubMed]

60. Li, N.; Liu, X.X.; Hong, M.; Huang, X.Z.; Chen, H.; Xu, J.H.; Wang, C.; Zhang, Y.X.; Zhong, J.X.; Nie, H.; et al. Sodium butyrate
alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int. Immunopharmacol. 2018, 56, 242–248.
[CrossRef] [PubMed]

61. Dai, M.; Liu, Y.; Chen, W.; Buch, H.; Shan, Y.; Chang, L.; Bai, Y.; Shen, C.; Zhang, X.; Huo, Y.; et al. Rescue fecal microbiota
transplantation for antibiotic-associated diarrhea in critically ill patients. Crit. Care 2019, 23, 324. [CrossRef]

62. Giles, E.M.; D’Adamo, G.L.; Forster, S.C. The future of faecal transplants. Nat. Rev. Microbiol. 2019, 17, 719. [CrossRef] [PubMed]
63. Stoutenbeek, C.P.; van Saene, H.K.; Miranda, D.R.; Zandstra, D.F. The effect of selective decontamination of the digestive tract on

colonisation and infection rate in multiple trauma patients. Intensive Care Med. 1984, 10, 185–192. [CrossRef] [PubMed]
64. Francis, J.J.; Duncan, E.M.; Prior, M.E.; Maclennan, G.; Marshall, A.P.; Wells, E.C.; Todd, L.; Rose, L.; Campbell, M.K.; Webster, F.;

et al. Comparison of four methods for assessing the importance of attitudinal beliefs: An international Delphi study in intensive
care settings. Br. J. Health Psychol. 2014, 19, 274–291. [CrossRef] [PubMed]

65. Bonten, M. Selective Decontamination of the Digestive Tract: An Answer at Last? Jama 2022, 328, 2310–2311. [CrossRef]
66. de Smet, A.M.; Kluytmans, J.A.; Cooper, B.S.; Mascini, E.M.; Benus, R.F.; van der Werf, T.S.; van der Hoeven, J.G.; Pickkers, P.;

Bogaers-Hofman, D.; van der Meer, N.J.; et al. Decontamination of the digestive tract and oropharynx in ICU patients. N. Engl. J.
Med. 2009, 360, 20–31. [CrossRef] [PubMed]

67. Sánchez-Ramírez, C.; Hípola-Escalada, S.; Cabrera-Santana, M.; Hernández-Viera, M.A.; Caipe-Balcázar, L.; Saavedra, P.; Artiles-
Campelo, F.; Sangil-Monroy, N.; Lübbe-Vázquez, C.F.; Ruiz-Santana, S. Long-term use of selective digestive decontamination in
an ICU highly endemic for bacterial resistance. Crit. Care 2018, 22, 141. [CrossRef] [PubMed]

68. Myburgh, J.A.; Seppelt, I.M.; Goodman, F.; Billot, L.; Correa, M.; Davis, J.S.; Gordon, A.C.; Hammond, N.E.; Iredell, J.; Li, Q.; et al.
Effect of Selective Decontamination of the Digestive Tract on Hospital Mortality in Critically Ill Patients Receiving Mechanical
Ventilation: A Randomized Clinical Trial. Jama 2022, 328, 1911–1921. [CrossRef]

69. Hammond, N.E.; Myburgh, J.; Seppelt, I.; Garside, T.; Vlok, R.; Mahendran, S.; Adigbli, D.; Finfer, S.; Gao, Y.; Goodman, F.; et al.
Association Between Selective Decontamination of the Digestive Tract and In-Hospital Mortality in Intensive Care Unit Patients
Receiving Mechanical Ventilation: A Systematic Review and Meta-analysis. Jama 2022, 328, 1922–1934. [CrossRef]

70. Haak, B.W.; Levi, M.; Wiersinga, W.J. Microbiota-targeted therapies on the intensive care unit. Curr. Opin. Crit. Care 2017, 23,
167–174. [CrossRef] [PubMed]

71. Davison, J.M.; Wischmeyer, P.E. Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition 2019, 59, 29–36.
[CrossRef]

72. McClave, S.A.; Patel, J.; Bhutiani, N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care 2018, 24,
105–111. [CrossRef] [PubMed]

73. Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert
consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and
appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [CrossRef] [PubMed]

74. Manzanares, W.; Lemieux, M.; Langlois, P.L.; Wischmeyer, P.E. Probiotic and synbiotic therapy in critical illness: A systematic
review and meta-analysis. Crit. Care 2016, 19, 262. [CrossRef]

75. Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [CrossRef]
[PubMed]

https://doi.org/10.3389/fcimb.2022.856633
https://doi.org/10.3389/fimmu.2022.1063543
https://www.ncbi.nlm.nih.gov/pubmed/36713461
https://doi.org/10.1016/j.intimp.2020.107272
https://www.ncbi.nlm.nih.gov/pubmed/33360370
https://doi.org/10.1007/s13205-020-2062-4
https://doi.org/10.1186/s12866-019-1689-y
https://www.ncbi.nlm.nih.gov/pubmed/31888470
https://doi.org/10.1126/science.abb5920
https://doi.org/10.1126/science.abf3363
https://doi.org/10.1093/cid/cit950
https://www.ncbi.nlm.nih.gov/pubmed/24368622
https://doi.org/10.1016/j.intimp.2018.01.017
https://www.ncbi.nlm.nih.gov/pubmed/29414658
https://doi.org/10.1186/s13054-019-2604-5
https://doi.org/10.1038/s41579-019-0271-9
https://www.ncbi.nlm.nih.gov/pubmed/31534208
https://doi.org/10.1007/BF00259435
https://www.ncbi.nlm.nih.gov/pubmed/6470306
https://doi.org/10.1111/bjhp.12066
https://www.ncbi.nlm.nih.gov/pubmed/24112280
https://doi.org/10.1001/jama.2022.18623
https://doi.org/10.1056/NEJMoa0800394
https://www.ncbi.nlm.nih.gov/pubmed/19118302
https://doi.org/10.1186/s13054-018-2057-2
https://www.ncbi.nlm.nih.gov/pubmed/29843808
https://doi.org/10.1001/jama.2022.17927
https://doi.org/10.1001/jama.2022.19709
https://doi.org/10.1097/MCC.0000000000000389
https://www.ncbi.nlm.nih.gov/pubmed/28092309
https://doi.org/10.1016/j.nut.2018.07.017
https://doi.org/10.1097/MCC.0000000000000489
https://www.ncbi.nlm.nih.gov/pubmed/29432297
https://doi.org/10.1038/nrgastro.2014.66
https://www.ncbi.nlm.nih.gov/pubmed/24912386
https://doi.org/10.1186/s13054-016-1434-y
https://doi.org/10.1038/s41591-019-0439-x
https://www.ncbi.nlm.nih.gov/pubmed/31061539


Nutrients 2023, 15, 4734 15 of 19

76. Seifi, N.; Sedaghat, A.; Nematy, M.; Khadem-Rezaiyan, M.; Shirazinezhad, R.; Ranjbar, G.; Safarian, M. Effects of synbiotic
supplementation on the serum endotoxin level, inflammatory status, and clinical outcomes of adult patients with critical illness:
A randomized controlled trial. Nutr. Clin. Pract. 2022, 37, 451–458. [CrossRef] [PubMed]

77. Milajerdi, A.; Mousavi, S.M.; Sadeghi, A.; Salari-Moghaddam, A.; Parohan, M.; Larijani, B.; Esmaillzadeh, A. The effect of
probiotics on inflammatory biomarkers: A meta-analysis of randomized clinical trials. Eur. J. Nutr. 2020, 59, 633–649. [CrossRef]
[PubMed]

78. Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and manipulating cardiac drug
inactivation by the human gut bacterium Eggerthella lenta. Science 2013, 341, 295–298. [CrossRef] [PubMed]

79. Matuskova, Z.; Anzenbacherova, E.; Vecera, R.; Tlaskalova-Hogenova, H.; Kolar, M.; Anzenbacher, P. Administration of a
probiotic can change drug pharmacokinetics: Effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS ONE 2014,
9, e87150. [CrossRef]

80. Sudeep, K.C.; Angurana, S.K. Probiotic therapy in critical illness: Does it hold water? Intensive Care Med. 2021, 47, 922–923.
[CrossRef]

81. Li, C.; Liu, L.; Gao, Z.; Zhang, J.; Chen, H.; Ma, S.; Liu, A.; Mo, M.; Wu, C.; Chen, D.; et al. Synbiotic Therapy Prevents Nosocomial
Infection in Critically Ill Adult Patients: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials
Based on a Bayesian Framework. Front. Med. 2021, 8, 693188. [CrossRef] [PubMed]

82. Wu, X.; Xuan, W.; Yang, X.; Liu, W.; Zhang, H.; Jiang, G.; Cao, B.; Jiang, Y. Ficolin A knockout alleviates sepsis-induced severe
lung injury in mice by restoring gut Akkermansia to inhibit S100A4/STAT3 pathway. Int. Immunopharmacol. 2023, 121, 110548.
[CrossRef]

83. Wang, H.; Wang, Y.; Lu, C.; Qiu, L.; Song, X.; Jia, H.; Cui, D.; Zhang, G. The efficacy of probiotics in patients with severe COVID-19.
Ann. Palliat. Med. 2021, 10, 12374–12380. [CrossRef] [PubMed]
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