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Abstract: Background: gastritis is a common stomach disease with a high global incidence and can
potentially develop into gastric cancer. The treatment of gastritis focuses on medication or diets
based on national guidelines. However, the specific diet that can alleviate gastritis remains largely
unknown. Methods: we propose a microbiota-directed dietary strategy that investigates potential
food factors using microbial exogenous metabolites. Given the current lack of understanding of the
repeatable characteristics of gastric microbiota, we conducted a meta-analysis to identify the features
of gastric bacteria. Local samples were collected as validation cohorts. Furthermore, RevEcoR was
employed to identify bacteria’s exogenous metabolites, and FooDB was used to retrieve foods that
can target specific bacteria. Results: Bacteroides, Weissella, Actinomyces, Atopobium, Oribacterium,
Peptostreptococcus, and Rothia were biomarkers between superficial gastritis (SG) and atrophic
gastritis (AG) (AG_N) without H. pylori infection, whereas Bacillus, Actinomyces, Cutibacterium,
Helicobacter, Novosphingobium, Pseudomonas, and Streptococcus were signatures between SG and
AG (AG_P) with H. pylori infection. According to the exogenous metabolites, adenosyloobalamin,
soybean, common wheat, dates, and barley were regarded as potential candidates for AG_N treatment,
while gallate was regarded as a candidate for AG_P treatment. Conclusions: this study firstly profiled
the gastric microbiota of AG and SG with or without H. pylori and provided a recommended diet for
global AG according to exogenous metabolites.

Keywords: atrophic gastritis; H. pylori; microbiome; dietary strategies; exogenous metabolites;
microbiota-directed food

1. Introduction

The majority of first-line food therapies are based on dietary guidelines, and these
approaches do show effectiveness; for instance, the Mediterranean diet is known to alleviate
hypertension [1,2]. However, due to substantial individual differences, the response rate
of such dietary therapies is modest. In recent years, there has been significant attention
directed towards the interaction between gut microbiota and complex dietary factors, as it
ultimately enhances their bioavailability [3]. Understanding these interactions has become
crucial for the advancement of personalized nutrition. In fact, microbiota-directed dietary
interventions that specifically focus on certain bacteria have been verified, and specific
dietary formulas can be designed to regulate malnourished microbiota in order to promote
infant development [4]. The consumption of fiber snacks can stimulate the growth of
Bacteroides and provide relief from obesity [5]. Therefore, the future holds great promise for
the development of diets that target specific biomarkers and physiological characteristics.
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Gastric carcinoma is the second most common cause of cancer-related mortality world-
wide, with more than 1 million new patients diagnosed per year. Gastric carcinoma
generally begins with the acquisition of Helicobacter pylori infection and nonmalignant
lesions in the gastric body, such as atrophic gastritis (AG) [6]. H. pylori infection releases
virulence factors that induce chronic inflammation and are risk factors for gastric carci-
noma [7]. So far, the eradication of H. pylori is a major therapy suggested by the WHO
international agency for gastric inflammation and cancer prevention. Although eradication
effectively reduces the risk of gastric cancer, previous retrospective studies have reported
that the trend of gastric carcinoma development and AG did not change [8].

It has been suggested that other factors, such as microbes, diet, and medicines, lead to
stomach inflammation and the development of AG in people without H. pylori infection [9].
Among these, microbial communities lacking H. pylori play a crucial role in gastritis [7].
Gastric carcinoma progression was affected by non-H. pylori microbiota, as previously
demonstrated in humanized mice. Transplanting gastric microbiota from patients with
gastritis into germ-free mice reproduces the main histopathological features of precancer-
ous lesions [10]. Until now, studies on H. pylori-related microbiota and gastritis-associated
microbiota without H. pylori infection have been limited [11]. A single study has hardly
identified all the microbes related to the disease due to the difference in analysis approaches,
sampling methods, and participant demographic information. Integrating public knowl-
edge to identify consistencies across studies through a meta-analysis has been employed to
determine the intestinal microbiota, which allows researchers to solve false positives and
negatives in the microbiome [12].

To explore the consistent biomarkers between superficial gastritis (SG) and AG, we
collected seven published articles about SG and AG with 16S rRNA sequencing of gastric
microbiome data, of which 367 samples were subjected to the 16S rRNA pipeline to re-
process data for systematic analysis. An integrated analysis was conducted to determine
the potential biomarkers for gastritis, thereby reducing the occurrence of gastric cancer
in the root. Additionally, we locally collected 78 gastric biopsy tissue samples from SG
and AG subjects to confirm the effects of the identified microbes on gastritis development.
Tools of reverse ecology utilize microbial genomic information to reconstruct metabolic
networks, enabling the identification of exogenous metabolites. This approach offers us a
strategy for identifying microbiota-targeted foods [13]. Based on the identified microbes,
we inferred exogenous nutrients and recommended bacteria-targeted foods through the
approach of reverse ecology. Our study, for the first time, identifies the biomarkers of global
AG with or without H. pylori infection and puts forward a recommended diet according to
the biomarkers, which can provide a preliminary basis for microbiome-directed prevention
and therapy.

2. Materials and Methods
2.1. Publicly Available Metagenomic and 16S rRNA Datasets

We identified studies on the human gastric microbiome using keywords, including
gastric microbiota, gastric microbiome, gastric microbes, gastric microflora, stomach micro-
biota, stomach microbiome, stomach microbes, stomach microflora, and gastritis (healthy
control (HC), SG, and AG) in PubMed (419) and Google Scholar (manual search) until
January 2023. Patients aged > 18 years who were provided gastric antrum tissue, body,
or stomach fluid were preliminarily considered worldwide. Cohorts that did not provide
data and did not mention gastritis were excluded. Studies with publicly available raw 16S
rRNA data covering samples from six countries were included (Table 1).
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Table 1. Cohort details of the studies included in the meta-analysis. Continuous variables were
expressed as means ± standard deviations (s.d.).

Reference

Dataset Geographic
Regions

(Data
Source)

Sequence
Accession

Codes

Samples
Used in

This Study

Age
(Average ± s.d.)

Sex
F(%)/M(%)

Wang et al., 2016 [12] Qingdao (China) SRP060550 SG (6) 55.8 ± 13.5 39.7/60.3

Eun et al., 2014 [13] Hanyang (Korea) SRP038955 SG (10) 50.4 ± 11.5 50/50

Zhang et al., 2021 [14] Nanjing (China) PRJNA634837 SG (17) 56 ± 10.6 47.1/52.9

Seekatz et al., 2019 [15] Michigan (USA) PRJNA495320 HC (49) 37.7 ± 10.2 34.7/65.3

Ferreira et al., 2017 [3] Porto (Portugal) PRJNA413125 AG (81) 43.6 ± 7 2.5/97.5

Park et al., 2019 [16] Hanyang (Korea) PRJNA389357 SG (62) 32.1 ± 10.5 58.1/41.9

Coker et al., 2018 [10] Inner Mongolia (China) PRJNA375772
SG (52) 52.8 ± 15 50/50

AG (62) 56 ± 12.3 50/50

Coker et al., 2018 [10] Xian (China) PRJNA375772
SG (20) 47.1 ± 11.7 50/50

AG (16) 50.4 ± 11.7 56.2/43.8

Filardo et al., 2022 [17] Rome (Italy) PRJNA795512 SG (18) 50.4 ± 11 77.8/22.2

Bassis et al., 2015 [18] Michigan (USA) PRJNA263948 HC (34) 41.3 ± 16.2 67.6/32.4

Wang et al., 2020 [19] Beijing (China) PRJEB26931 HC (51) 44.8 ± 13.6 53/47

Yang et al., 2016 [20] Tumaco (Columbia) PRJEB11763
SG (12) 49 ± 6.7 66.7/33.3

AG (6) 46.7 ± 2.1 66.7/33.3

Yang et al., 2016 [20] Túquerres (Columbia) PRJEB11763
SG (10) 47.1 ± 4.4 60/40

AG (8) 48.4 ± 7.5 75/25

Sung et al., 2016 [21] Seoul (Korea) GSE61493 HC (31) 58 ± 11.6 44.9/55.1

2.2. Experimental Settings for 16S rRNA Datasets

Gastric 16S rRNA sequences from 12 publicly available studies were downloaded
and imported into a pipeline, where quality control was conducted according to the first
base, with a quality score Q < 20. Data reads with quality scores of less than 20 were
discarded. We filtered out operational taxonomic units (ASVs) with < 0.1% of the data, and
the sequencing depth was limited to 4000 per sample.

2.3. Subject Recruitment and Sample Collection

A total of 100 male and female volunteers and patients (18 years of age or older)
were invited to the affiliated hospital of Jiangnan university between August 2022 and
January 2023. Subjects who had received proton pump inhibitors, antibiotics, or probiotic
treatment in the past three months as well as those with other gastric diseases were excluded.
Primary screening was based on the 13C-urea breath test to identify individuals with or
without H. pylori infection. All patients with SG or AG were invited to participate in
our experiment during their examination in the outpatient unit of the same department
and were confirmed as having SG or AG using gastroscopy according to the chronic
gastritis guidelines built in China [14]. Fresh gastric antrum tissue was obtained from
each participant during standard esophagogastroscopy by an experienced physician. The
participants were required to record information about their age, sex, and history of
antibiotic use. Informed consent was obtained from all participants prior to gastroscopy or
sample processing. Ethical approval of this study was approved by the Jiangnan University
Human Research Ethics Committee (JNU20220606IRB05) and recorded by the Chinese
Clinical Trial Registry (ChiCTR2200062661).



Nutrients 2023, 15, 4738 4 of 15

2.4. DNA Extraction of Gastric Antrum Tissue and MiSeq Sequencing

The gastric mucosal samples were gathered during endoscopy, frozen immediately
at −80 ◦C, and prepared for 16S rRNA sequencing. DNA from the antral gastric samples
was extracted and purified using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA).
The bacterial 16S rDNA V3-V4 region was amplified using V3-V4 specific primers (341F,
5′-CCTACGGGNBGCASCAG-3′; 805R, 5′-GACTACNVGGGTATCTAAT CC-3′). After
purification, the products were then paired-end (150 × 150 bp) sequenced on an Illumina
Hiseq 2500 PE250 platform. The raw Illumina read sequencing data were stored in the
National Center for Biotechnology Information database under the accession number
PRJNA932133.

2.5. ASV Construction and Taxonomic Assignment

An alpha diversity analysis of the ASVs was conducted using the R package version 3.4.0,
as shown by the ACE indices. Principal component analysis and principal coordinates
analysis were generated based on the UniFrac distance to show the dissimilarities in the
microbiome space between the group samples. Before the ASV analysis, we adjusted the
data by age and sex using multivariate logistic regression. An abundance comparison
of taxa between SG and AG was conducted using linear discriminant analysis effect size
(LEfSe). p-values were calculated using the Wilcoxon test for differences between the two
groups, and significant alterations were selected according to linear discriminant analysis
(LDA) scores larger than 2.0.

2.6. Adopted Machine Learning Methods

A random forest identified microbes with the highest predictive ability because of
intrinsic feature selection. The model was employed using the Random Forest (v4.6.12) R
package, followed by 1000 random seeds. To precisely identify the core set of microbial
markers, we randomly selected reanalyzed 16S rRNA data as training data. The random
selection was processed ten times, and the validation area under the curve (AUC) (R 3.3.0,
pROC package) was used to calculate the largest accuracy for the classifier. Furthermore, we
used a ten-fold cross-validation to evaluate the classifier accuracy of the discovery cohort.

2.7. Prediction of Metagenomic Functions

The PICRUSt (v2.0.0) pipeline with default parameters was employed to predict the
metabolic potential of microbiota according to data from the Human Microbiome Project
using the ancestral state reconstruction algorithm. Differential functional orthologs and
pathways were selected through a paired t-test, and q values < 0.05 were considered as
significantly enriched.

2.8. Exogenous Metabolites and Whole Foods Prediction

We downloaded the genomes, proteomes, and KEGG orthology annotation files
representing the standard strains of the entire genus from the IMG server. The selection of
strains is based on commonly found bacteria within their genera. Metabolic models of these
bacteria were reconstructed using RevEcoR (v0.99.3). As of now, the gastric microbiota
has not been extensively characterized, and there is limited research on the common
strains of gastric microbiota [15]. Furthermore, based on netseed, the exogenous nutritional
requirements of these bacteria were predicted. The Canadian Food Database (FooDB,
https://foodb.ca/, accessed on 7 August 2023) was further used to explore rational dietary
interventions based on exogenous metabolites. Based on these exogenous metabolites, we
identified a large number of diet options and summarized them in a list. We manually
filtered out unquantified diets, as well as processed foods, alcohol, and those products
without a clearly defined composition. Foods with high levels of exogenous metabolites
and broad regulatory capabilities on microbiota were selected.

https://foodb.ca/
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2.9. Statistical Tests

The LEfSe and random forest models were used to evaluate species with significant
alterations. Multivariate linear regression was used to solve the problems of univariate
statistics using the limma R package (v3.56.0), and factors including age and sex were
incorporated into the analysis. Statistical analyses were performed using Origin software
2020 (Origin Lab Corp. v9.7.0.185). Corrected p-values < 0.05 differentially identified
the taxa.

3. Results
3.1. Published 16S rRNA Data of Gastritis Included in This Study

To investigate the reproducible association between the gastric microbiome and AG,
16S rRNA data of the gastric mucosa of 537 samples were gathered from 12 different
publicly available studies, including controls and patients with AG and SG. The 14 sample
locations were Qingdao (China), Hanyang (Korea), Michigan (USA), Porto (Portugal),
Inner Mongolia (China), Tumaco (Columbia), Túquerres (Columbia), and Seoul (Korea)
(Table 1) [8,16–27]. We reran the datasets on our platform (Jiangnan University) to obtain a
uniform result. After preprocessing and quality control, data from Qingdao (China), Beijing
(China), and part of Hanyang (Korea) were excluded from the high-quality sequencing
collection [17,22,25]. In addition, it was not possible to determine whether gastric fluid
could be analyzed together with samples from the gastric antrum; therefore, we discarded
the samples of gastric fluid [18,24] (Figure S1).

The effect of study-associated heterogeneity was investigated because of technical and
biological differences in each study. (Figure 1A). The selected studies were read more than
5000 times, which suggested that they were of high quality. We compared the selected
studies with available factors, including sex and age, and found no significant differences
(Figure 1B,C). We investigated whether location leads to differences in microbiota diversity,
and the countries showed statistically significant differences. We found that the microbiota
diversity between HC_N and SG_N was similar, while there was a difference between
HC_P and SG_P (Figure 1D). Furthermore, we determined the diversity and composition of
the gastric microbiota that were enriched or depleted in the SG and AG groups consistently
across the six populations in different locations. Six selected studies did not demonstrate the
situation of H. pylori infection in their samples; thus, we considered H. pylori with a relative
abundance of more than 1% as H. pylori infection [16]. The results exhibited a similar trend
in that H. pylori infection in patients with SG led to a decrease in the Shannon index, and the
infection exhibited an increase in the index in the AG group across all studies (Figure 1F).
The gastric bacterial composition at the phylum and genus levels differed. Individuals with
H. pylori infection had a high proportion of Epsilonbacteraeota, whereas high proportions
of Proteobacteria, Firmicutes, and Bacteroidetes were observed in individuals without the
infection (Figure 1E). At the genus level, bacteria in the H. pylori infection group, except in
China, were dominated by Helicobacter and Streptococcus, while the gastric bacteria of the
Chinese group were occupied by Helicobacter, Streptococcus, Halomonas, and Lactobacillus
(Figure 1F). Across all the studies, although people in different places have various bacterial
compositions, H. pylori infection drives the bacteria to a consistent composition. Studies
have shown no differences between HC_N and SG_N. Patients with AG were different
from those in the HC and SG groups, showing greater bacterial diversity.
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Figure 1. Bacterial characteristics and covariate analysis among selected studies. (A) Boxplots
reporting the total number of reads in each dataset. (B,C) Multivariate analysis of species richness
using crude age- and sex-adjusted coefficients obtained from linear models. Deep green represents
the confidence interval and blue represents the regression line. (D) Shannon index of each group
across different geographical locations. (E,F) Stacked bar plot shows the mean relative proportions
of gastric microbial communities at the phylum and genus levels. HC_N, SG_N, and AG_N are
representative of people without H. pylori infection; HC_P, SG_P, and AG_P are representative of
people with H. pylori infection. n.s. represents no significance; **: p < 0.01. Circles in (A–D) represent
each subject.

3.2. Gastric Microbial Diversity of CKD between SG and AG

To investigate the global biomarkers between SG and AG with or without H. pylori
infection, as well as H. pylori-assistant bacteria, we included seven suitable datasets for
investigation (Figure 2A). During our analysis of SG and AG biomarkers, we divided the
patients into H. pylori infection and non-H. pylori infection. Because patients with 100%
pylorus infection were not conducive to the observation of biomarkers, we excluded them
(SG191, SG193, SG194, SG195, SG203, SG198, AG161, AG162, AG163, AG164, AG169,
AG170, and AG171). When all datasets were aggregated, a significant ACE change in the
microbiota was found in patients with H. pylori infection (p < 0.05). To investigate the
association between the functional composition of the gastric microbiota and disease, we
quantified the Bray–Curtis dissimilarity between all datasets. Our results showed that there
was some overlay and separation, and the circle of the SG group trended toward that of
the AG group (Figure 2D,E). Venn diagrams indicated that 382 ASVs were shared between
AG_N and SG_N, and 509 ASVs were shared between AG_P and SG_P.
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Figure 2. Population and gastric bacteria diversity across SG and AG cohorts. (A) Sample sizes of
SG and AG populations. The ACE species diversity between patients with SG and AG with (B)
or without H. pylori infection (C). Circles in (B) and (C) represent each subject. The PLSDA based
on ASV distribution between patients with SG and AG with (D) or without H. pylori infection (E).
Venn diagrams displaying the overlaps between groups with (F) or without H. pylori infection (G).
Analyses are performed at the genus level. SG_N (n = 63), AG_P (n = 42), SG_P (n = 111), AG_P
(n = 128) [3,10,13,14,16,17,20].

3.3. Gastric Microbial Biomarkers Related to AG

LEfSe was used to differentiate between the specific microbiota of SG and AG based
on operational taxonomic units. The results showed that 17 bacteria, including Halomonas,
Helicobacter, and Shewanella were predominant in AG_N, whereas 22 bacteria, includ-
ing Weissella, Alloprevotella, and Bacteroides were reduced in AG_N compared to SG_N
(Figure 3A). When we analyzed the biomarkers for SG_P and AG_P, we excluded H. pylori,
as a large proportion of the bacteria interfered with our investigation. (Figure 3B). In
addition, 12 bacteria, including Bacillus, Anaerobacillus, and Lactobacillus, were enriched in
SG_P, compared to 18 bacteria, including Streptococcus and Pseudomonas, in AG_P.

3.4. Repeatable Gastric Microbial Markers for AG

Furthermore, a random forest classifier model between the SG and AG groups was
constructed to explore the potential of repeatable gastric microbial markers. Microbial
markers were identified according to the results of the LEfSe, random forest scores, and
p-values (Table S1). Seven ASVs, Bacteroides, Weissella, Actinomyces, Atopobium, Oribacterium,
Peptostreptococcus, and Rothia, were selected as biomarkers between SG_N and AG_N to
build a ten-fold cross-validation of the random forest model (Figure 4C). Seven ASVs
had an AUC of 0.7417 between SG_N and AG_N (Figure 4A). We employed a cluster-to-
random forest machine to diagnose AG_P based on the microbial abundance. Among the
clusters, Bacillus was found to be decreased in AG_P, while microbes, including Actinomyces,
Cutibacterium, Helicobacter, Novosphingobium, Pseudomonas, and Streptococcus, were enriched
compared to SG_P (Figure 4D). Simultaneously, a random forest classifier based on the
signatures of SG_P and AG_P obtained reasonable results, reaching an AUC of 0.8862
(Figure 4B). The data indicated that the classifier model based on biomarkers had powerful
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diagnostic potential for differentiating AG from SG. To explore the precision of these gastric
microbiota as classifiers, we randomly recruited participants with SG or AG with or without
H. pylori infection for validation according to a sophisticated doctor’s diagnosis in China.
In the validation cohort, the model between SG_N and AG_N showed higher AUC values
of 0.7662, whereas the classifier between SG_P and AG_P produced an AUC of 0.7029,
compared with the AUC used in the discovery cohort.
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(A,B) SG-enriched species are indicated with a negative LDA score (red), and species enriched in the
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p < 0.05 are shown. SG_N (n = 63), AG_P (n = 42), SG_P (n = 111), AG_P (n = 128).
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Figure 4. Random forest classifier model based on crucial bacteria. In the discovery cohort, seven
gastric biomarkers between SG_N (n = 63) and AG_N (n = 42) are selected as the important microbiota
(AUC of 0.7417) (A,C). Seven gastric biomarkers between SG_P (n = 111) and AG_P (n = 128) are
selected as the important microbiota (AUC of 0.8862) (B,D). In the validation cohort, the AUCs of
predictive models achieve 0.7662 between SG_N (n = 14) and AG_N (n = 11) and 0.7029 between
SG_P (n = 28) and AG_P (n = 25), respectively (E,F).

3.5. Crucial Bacteria and Microbial Functions Related to AG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway profiles were de-
termined using the PICRUSt2 pipeline. Two predicted functions were decreased in the
AG_N group compared with the SG_N group, except for the adenosylcobalamin and
GDP-D-glycero-α-D-manno-heptose biosynthesis pathways (Figure 5A). Parameters in-
cluding sulfoglycolysis, the superpathway of heme biosynthesis, methylgallate degradation,
gallate degradation II, gallate degradation I, L-histidine degradation, formaldehyde as-
similation I (serine pathway) I, 2-amino-3-carboxymuconate semialdehyde degradation
to 2-oxopentenoate, 2-nitrobenzoate degradation, pyruvate fermentation to propanoate,
and L-tryptophan degradation XII (Geobacillus) were higher in AG_P, while formaldehyde
assimilation I (serine pathway) decreased in AG_P compared with SG_P (Figure 5C). Fur-
thermore, Spearman correlation coefficients were calculated between key microbes and
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pathways. The abundances of Oribacterium, Atpobium, and Rothia had positive relation-
ships with adenosylcobalamin (Figure 5B). Gallate and amino acid degradation and heme
biosynthesis had significant negative relationships with the abundances of Actinomyces
and Cutibacterium, and had positive relationships with that of Streptococcus, Bacillus, and
Pseudomonas (Figure 5D).
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Figure 5. Microbiota-related predicted functions between SG and AG. Predicted functions of AG-
associated gastric microbes with significant changes based on the validation cohort (A,C). Two
predicted microbial functions are significantly decreased in AG_N (n = 11) compared to SG_N (n = 14)
(A). Ten predicted microbial functions were increased in AG_P (n = 25) compared to SG_P (n = 28) (C).
Heatmaps indicate the correlation between different gut microbes and pathways (B,D). *: p < 0.05;
**: p < 0.01.

3.6. Dietary-Based Interventions for AG

To further characterize the diet targeting these missing microbial communities, we
selected 18 representative strains capable of reflecting Bacteroides and Weissella based on
the human gut microbiome gene catalog (Table S2) [28]. In order to infer the nutrients
for these strains, we reconstructed the metabolic networks of these 18 strains using the
RevEcoR software (v 0.99.3) and identified exogenous metabolites for these strains through
the netseed software (Table S2) [13,29]. We discovered 104 exogenous metabolites be-
tween Bacteroides and Weissella and found 19 unique exogenous metabolites in Weissella
compared to Bacteroides. Meanwhile, Bacteroides exhibited significantly stronger nutri-
tional requirements than Weissella. Exogenous metabolites provide dietary information for
targeting specific bacteria. We inquired about potential targeted diets using FooDB, the
world’s largest metabolite–food network on the website. The compounds were detected in
708 foods (Table S3). Further, we manually excluded processed foods, alcoholic beverages,
and some undefined items. In order to screen for the best microbiota-targeted foods, we
finally selected foods with clearly defined quantification. The quantitative limits for cys-
teine, alpha-Diamino-beta-dithiolactic acid, N-methyltyramine, glutamic acid, methionine
S-oxide, and raffinose were explicitly indicated in the entire range of foods. Therefore,
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based on the concentrations of these several exogenous metabolites, we ranked the foods
(Table S4). Due to methionine S-oxide and raffinose being unique metabolites found only
in Weissella, they had to be considered. Lastly, we selected soybean, common wheat, dates,
and barley as potential dietary candidates for targeted microbial populations.

4. Discussion

Reverse ecology tools provide a promising bridge for studying the interaction between
diet and bacteria [13]. With the increasing number of tools for studying bacterial metabolic
models, genome-scale metabolic models are expected to become practical tools for per-
sonalized nutrition. Here, we have constructed dietary prediction methods by identifying
microbiota biomarkers, exogenous metabolites, and whole foods.

Firstly, we collected 12 publicly available datasets from different regions and com-
prehensively evaluated the AG-related gastric microbiome and the microbial ability to
distinguish newly diagnosed patients with AG from those with SG. In these studies, differ-
ent sampling methods were employed to examine the gastric microbiome, including gastric
washes and endoscopic sampling. Some studies have used gastric fluid to consider the
microbiome, and we confirmed that the microbiome in the gastric fluid and gastric body is
different, and the combination of gastric fluid and body samples might be unreasonable,
which is similar to the results of Sung et al. [27,30] (Figure S1).

In addition, samples of gastric mucosa from healthy individuals have been identified
as having superficial gastritis. Therefore, we explored the differences between normal
controls and patients with superficial gastritis in terms of microbial composition and
diversity. Surprisingly, different microbial diversity was found in SG_P compared to HC_P,
while significant changes were not found in SG_N compared to HC_N, which suggests
that H. pylori is a crucial driving factor, and SG_P and HC_P cannot be diagnosed together
(Figure 1D–F). We also evaluated the variability across the gastric microbiome. Microbial
diversity in the available datasets was independent of potential confounding factors such
as age and sex, while dissimilarity in geographical regions was observed, which is similar
to He et al. [31] (Figure 1B,C).

We selected 376 16S rRNA samples, including only SG and AG, and explored the
differences between the SG and AG microbial communities (Figure 2). We found a shift in
the microbial community from SG to AG according to the principal coordinates analysis,
which suggested a continuous change regardless of other factors. The abundance of H.
pylori was excluded when we explored microbial markers between SG_P and AG_P, since
microbes with large portions could easily mask the signals of other microbes [32]. LEfSe and
random forest scores are the most widely used identification methods for distinguishing
biomarkers in microbial studies [33]. Finally, seven microbial markers for AG_N and AG_P
were determined using LEfSe and random forest scores, respectively. More importantly,
the microbes predicted AG detection accuracies of 0.7662 and 0.7029 for AG_N and AG_P
in our local cohorts, respectively, which suggests repeatable biomarkers.

Most of the AG biomarkers explored in this study were enriched in AG, including
Bacteroides, Actinomyces, and Peptostreptococcus for AG_N, and Actinomyces, Pseudomonas,
and Streptococcus for AG_P. As expected, some potential synergistic bacteria of Helicobac-
ter promoted the development of AG_P (Figure 4C,D). These identified microbes are in
agreement with previous studies and may develop into intestinal metaplasia and gastric
cancer without prevention [6,7,16,22,23,30,34]. We identified Actinomyces as a biomarker
for both AG_N and AG_P. Microbes are filamentous Gram-positive Bacillus that weaken the
host immune system or decrease oxygen tension and are strongly associated with inflam-
mation [35]. Furthermore, AG_N-associated beneficial bacteria, Weissella and Bacteroides,
produce bacteriocins to inhibit pathogens and ameliorate inflammation, which can be con-
sidered as a protective role for AG_N [36,37]. Peptostreptococcus possessing lactic acid and
Atopobium producing H2S are acid-forming bacteria that are not conducive to the balance
of stomach acid and can be used as indicators of AG_N progression [38,39]. However, the
number of harmful bacteria was significantly increased in patients with AG_P. Streptococcus
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is widely regarded as an AG_P-associated bacterium, and species including Streptococcus
mitis/oralis, S. pneumoniae, S. anginosus, and S. salivarius are reportedly associated with
AG in H. pylori-positive subjects [16,23,30]. Cutibacterium and Novosphingobium are related
to disease progression, but the pathogenic mechanism remains unknown, and the health
association of Pseudomonas remains debatable [40–42].

The metabolic function of gastric microbes is one of the factors affecting disease devel-
opment. Some predicted metabolic shifts between SG and AG were discovered (Figure 5).
Adenosylcobalamin and GDP-D-glycero-α-D-manno-heptose biosynthesis are the two
main pathways that are depleted in AG_N. Adenosylcobalamin is known as a member
of vitamin B12, whose deficiency is often found in patients with gastritis. A reduction in
vitamin B12 biosynthesis in microbiota in AG_N further promotes vitamin B12 deficiency,
inducing high disease risk, while the biosynthesis is potentially related to Oribacterium,
Atpobium, and Rothia [43–45]. The GDP-D-glycero-α-D-manno-heptose biosynthesis in
SG_N remained unclear, while heptose-containing bacterial natural products are consid-
ered sources of novel bacterial drugs [46]. In patients with H. pylori and AG infections,
formaldehyde assimilation I (serine pathway) was the only pathway that showed a signif-
icant decrease [47]. Formaldehyde assimilation is a pathway for bacterial detoxification
that plays important roles in methylotrophs, and depletion of this pathway may lead to a
decrease in Bacillus [48]. The enrichment of heme biosynthesis has been reported to pro-
mote bacteria in Proteobacteria and inflammation in the gut [49,50]. Gallates have excellent
bioactivity for bacterial inhibition and a reduction in inflammation [51]. Our observation of
gallate degradation in AG_P suggests that a reduction in gallate levels in the stomach may
induce an increase in AG_P-related microbes. An increase in pathways including histidine
degradation, pyruvate fermentation to propanoate, and L-tryptophan degradation has
been previously found in patients with gastritis [25]. Therefore, our findings indicate that
vitamin B12 biosynthesis can be an essential pathway to distinguish AG_N and SG_N,
whereas the pathogenic mechanism of AG_P is mainly related to gallate and amino acid
degradation and heme biosynthesis. However, the roles of these significantly altered
functional pathways in the development and occurrence of AG require further study [47].

The supplementation of beneficial microbes has shown potential in alleviating diseases.
However, due to various factors such as a lack of approval or colonization difficulties, direct
bacterial supplementation is often restricted [47]. Recently, there is growing interest in
using microbiota-directed diets to modulate the microbes. Considering the unknown
safety of Bacillus, which shows reduced abundance in AG_P patients, it is recommended
to supplement gallate directly to inhibit harmful bacteria. Gallate has been reported to
have the ability to suppress H. pylori [48]. For AG_N, two crucial genera, Weissella and
Bacteroides, have been identified. Dead bacteria do not possess colonization capability and
are easily washed away by digestive fluids. Our samples were taken from gastric antral
tissue, ensuring a certain level of bacterial viability. On the other hand, bacterial transcripts
can identify active bacteria. Wurm et al. analyzed the transcripts of gastric microbiota
and found a high proportion of Bacteroides [49]. Furthermore, Mailhe et al. also isolated
various Bacteroides from the stomach [50]. Weissella, due to its low pH tolerance, also has
the ability to survive in the stomach [51,52]. All of the above ensures that these bacteria can
survive in the stomach and benefit from potential prebiotics. Key strains from these genera
were selected to represent the entire genus. A reverse ecology approach was applied for
reconstruction of models and the identification of exogenous metabolites associated with
these strains [13]. Based on the FooDB database, soybean, common wheat, dates, and barley
have been recognized as key foods that may alleviate AG_N. Due to the predictive nature
of adenosyloobalamin-related foods in the FooDB database, we have not included foods
related to adenosyloobalamin. However, it is recommended to combine these bacteria-
targeted foods with adenosyloobalamin-rich sources to maximize therapeutic effects.
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5. Conclusions

In conclusion, our study provides microbial biomarkers of AG and a recommended
diet through a reverse ecology approach. We expect that our results from the collected
cohort will provide direction for the further investigation of AG. However, there are still
limitations. The meta-analysis could not determine interfering factors, such as sample
handling, or cohort information, such as geography, medical background, and diet. Next,
the staging of gastritis is clinically helpful for monitoring the progression of the disease.
However, due to the lack of research on the microbiota of different degrees of gastritis
in collected datasets, our sample classification was not stratified according to gastritis
staging. The availability of accessible metagenomic data from the stomach and the detailed
composition of gastric microbiota at the species level are limited, which may result in
inaccuracies in the predicted results. Nevertheless, this study still provides a set of dietary
strategies that can be followed, focusing on microbiota.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nu15224738/s1: Figure S1: α-diversity of microbiota between healthy
people of gastric antrum (n = 29) and gastric fluid (n = 84); Table S1: Lists of microbial biomarkers
between SG and AG; Table S2: Lists of exogenous compound of 18 representative strains in Bacteroides
and Weissella; Table S3: Lists of food related to exogenous compound; Table S4: Lists of quantification
of exogenous compound in food.
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