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Abstract: Patients undergoing hemodialysis often require zinc supplementation owing to hypoz-
incemia, which may reduce serum copper concentrations. However, hypoxia-inducible factor–prolyl
hydroxylase inhibitors (HIF-PHIs), which are used to treat renal anemia, have been reported to in-
crease serum copper. Therefore, this study investigates the effectiveness of a combination of HIF-PHIs
and zinc for the stabilization of serum copper and zinc concentrations during zinc supplementation
for patients undergoing hemodialysis with renal anemia and hypozincemia. The serum zinc and
copper concentrations were retrospectively compared over an 8-month period in 20 patients being
administered roxadustat (an HIF-PHI) and 20 controls. The changes in concentrations were tracked
in participants taking roxadustat who initiated or increased zinc supplementation. The serum zinc
concentrations of the participants were significantly higher (p < 0.001) during zinc supplementation,
regardless of roxadustat administration. Post-roxadustat, the serum copper concentrations were
significantly higher than those pre-roxadustat or in non-roxadustat-treated participants, irrespective
of zinc supplementation (p < 0.005). Even post-roxadustat, the serum copper concentrations were
significantly lower, with no increase during zinc supplementation (p < 0.040). When zinc supplemen-
tation was initiated or increased in participants taking roxadustat, copper and zinc concentrations
were normalized. Thus, combining zinc supplementation with roxadustat prevents both an excessive
increase in serum copper and a decrease in serum zinc.

Keywords: zinc; hypozincemia; renal anemia; hypoxia-inducible factor-prolyl hydroxylase inhibitor;
copper; hypocupremia

1. Introduction

Hypoxia-inducible factor–prolyl hydroxylase inhibitors (HIF-PHIs) activate the HIF
oxygen-sensing pathway and promote erythropoiesis through an increase in endogenous
erythropoietin production. Although HIF-PHIs are now becoming available for the treat-
ment of renal anemia, side effects have been reported, and recommendations for their
appropriate use have been issued [1]. Recently, there has been concern regarding the devel-
opment of high serum copper concentrations following the commencement of HIF-PHI
use [2]. Gastrointestinal discomfort, diarrhea, and vomiting have been reported as gastroin-
testinal side effects of HIF-PHIs [3], but the same symptoms also develop in patients with
copper excess [4]. Therefore, an HIF-PHI-induced high serum copper concentration may
be the cause of these gastrointestinal symptoms.

Most patients undergoing hemodialysis require zinc supplementation because of hy-
pozincemia [5], which is associated with various diseases. In addition, meta-analyses have
shown that zinc supplementation improves the nutritional status of patients undergoing
hemodialysis [6]. However, there is concern that long-term zinc supplementation may
reduce serum copper concentrations because of the induction of metallothionein [7]. There-
fore, it is conceivable that the use of a combination of an HIF-PHI and zinc supplementation
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could prevent excessive increases in serum copper concentration when using HIF-PHIs and
also prevent the decrease in serum copper concentration caused by zinc supplementation.
In addition, regarding vascular calcification, which is a concern when using HIF-PHIs, it
has been reported that the calcification caused by HIF-PHI is suppressed by zinc in vitro [8],
and it is thought that there would be an advantage in supplementing zinc together when
using an HIF-PHI.

Furthermore, regarding cognitive impairment, there have been previous reports that
hypocupremia causes Alzheimer’s disease [9], and people with high copper levels have
been shown to have a lower risk of developing Alzheimer’s disease [10]. The use of HIF-
PHIs may also increase serum copper concentrations in patients with hypocupremia, which
may also help prevent Alzheimer’s disease. However, the excessive intake of copper can
have detrimental effects on the brain [11], and some previous studies have shown that
patients with Alzheimer’s disease have significantly higher serum copper concentrations
than healthy individuals. Therefore, it is necessary that the serum copper concentrations of
patients are neither too high nor too low [12].

Appropriate zinc supplementation can prevent excessive increases in serum copper
concentration [13,14]. However, there have been reports that zinc suppresses amyloid-β
aggregation [15], which causes Alzheimer’s disease, and also that zinc promotes amyloid-
β aggregation [16,17]. Therefore, the supplementation of zinc as a method of adjust-
ing the serum copper concentration should be carried out carefully, not only to prevent
hypocupremia but also to prevent hyperzincemia.

The aim of the present study was to determine whether simultaneous zinc supple-
mentation and administration of an HIF-PHI would normalize the serum copper and zinc
concentrations during zinc supplementation of patients undergoing hemodialysis who
have renal anemia and hypozincemia.

2. Methods
2.1. Participants

A retrospective study was performed in outpatients who were undergoing mainte-
nance hemodialysis in the morning. Those undergoing hemodialysis in the afternoon were
excluded because the circadian rhythm of serum zinc concentration involves a peak in the
morning and a decrease of approximately 20% in the afternoon [18]. Patients who avoided
the use of HIF-PHIs or used them with caution for the treatment of renal anemia (those
with malignant tumors, retinopathy, liver dysfunction, or polycystic kidney disease) were
excluded, as were patients with hemorrhagic lesions. All the participants received standard
dietary advice for patients undergoing hemodialysis, but no further advice was provided
regarding their diet before the commencement of hemodialysis.

Twenty patients who had taken an HIF-PHI (roxadustat) for 2 years since May 2020
were included in the study, and 20 who had not taken an HIF-PHI during the same period
were used as controls. The baseline characteristics of the participants after applying the
exclusion criteria are shown in Table 1.

Table 1. Baseline characteristics of the participants after the application of the exclusion criteria.

No Roxadustat Roxadustat p Value

Number of participants 20 20

Male sex, n (%) 8 (40.0) 12 (60.0) 0.206

Age, mean ± SD (years) 77.1 ± 12.3 73.0 ± 11.4 0.274

Duration of dialysis, mean ± SD (years) 7.0± 5.2 6.9 ± 4.7 0.953

Etiology, n (%) 0.725

Diabetic nephropathy 9 (45.0) 7 (35.0)

Nephrosclerosis 7 (35.0) 8 (40.0)
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Table 1. Cont.

No Roxadustat Roxadustat p Value

Chronic glomerulonephritis 2 (10.0) 4 (20.0)

Other 2 (10.0) 1 (5.0)
No roxadustat, participants who did not administer roxadustat; roxadustat, participants who administered
roxadustat at any time during the study.

2.2. Observation Period

HIF-PHI-treated participants were retrospectively monitored for 8 months before
HIF-PHI administration (pre) and for 8 months after its commencement (post), and com-
parisons were made with controls who were not taking an HIF-PHI during the same period
(16 months, during which data were collected on six occasions).

2.3. Measurements

The serum zinc and copper concentrations of the participants were measured every
3 months as part of routine clinical practice; therefore, these concentrations were measured
three times during each of the 8-month periods (Figure 1). Serum zinc concentration was
measured using a direct colorimetric assay, based on the nitro-PAPS method, using a JCA-
BM6050 BioMajesty (JEOL Ltd., Tokyo, Japan) and ESPA ZnII (Nipro Co., Ltd., Osaka,
Japan) reagent. Serum copper concentration was measured using a direct colorimetric
assay, based on the 3,5-DiBr-PAESA method, and the JCA-BM6050 BioMajesty and Quick
Auto Neo Cu (Shino-Test, Tokyo, Japan) were used as the reagents. The normal ranges
for the serum copper and zinc concentrations were 11.2–20.8 µmol/L (71–132 µg/dL) and
12.2–19.9 µmol/L (80–130 µg/dL), respectively [19,20].
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Figure 1. Observation period and timing of the measurement of the serum copper and zinc concen-
trations. The observation period comprised 8 months both before and after the start of HIF-PHI
administration. Because the serum copper and zinc concentrations were routinely measured every
3 months (white arrow), these data were obtained three times both before and after starting HIF-PHI
administration. Roxadustat administration commenced during the 3-month period indicated by the
diagonal arrow.

2.4. Data Collection

The dates of the start of drug administration and blood sample collection differed;
therefore, the serum zinc and copper concentrations that were measured during the admin-
istration of roxadustat and zinc supplementation for more than a week were regarded as
being representative of the status of each mineral during the administration of roxadustat
and zinc supplementation.

To compare the effects of zinc, participants were selected who had both periods of
zinc supplementation and periods of no zinc supplementation.

Roxadustat-treated participants who had both a period of zinc supplementation and
a period without it and had their serum copper and zinc concentrations measured three



Nutrients 2023, 15, 4887 4 of 14

times during the 8-month observation period were identified, and their data were regarded
as reflecting the post-roxadustat status. In addition, these roxadustat-treated participants
were similarly sampled during the 8 months prior to roxadustat administration, and the
data obtained were regarded as reflecting pre-roxadustat status. Finally, participants who
did not take roxadustat during the same period (16 months) but who experienced periods
both with and without zinc supplementation were identified, and their data were regarded
as reflecting no-roxadustat status.

Figure 2 shows the number of participants for whom data were obtained in each
group. The number of data points obtained for each participant who was or was not
supplementing zinc during each of the study periods differed.
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Figure 2. Study design: pre-roxadustat, data obtained during the 8 months prior to roxadustat
administration; post-roxadustat, data obtained during the 8 months after roxadustat administration
commenced; no roxadustat, data obtained during the same 16-month period as the post-roxadustat
period in participants who had not administered roxadustat; zinc (+), data obtained during the period
of zinc supplementation; zinc (−), data obtained during the period of no zinc supplementation.

2.5. Statistical Analyses

Data are presented as the mean ± standard deviation for continuous data and percent-
ages and counts for categorical data. Microsoft 365 Excel (Microsoft Corporation, Redmond,
WA, USA) was used for data analysis. The baseline characteristics of the two groups
were compared using the two-sample Student’s t test, assuming unequal variances. Effect
sizes were compared using Cohen’s d. The three groups that yielded differing numbers
of data were compared using one-way ANOVA. Categorical data were compared using
the chi-square test. Relationships between continuous data were evaluated using Pear-
son’s product-moment correlation coefficient, calculated using the CORREL function, with
p values being obtained using the TDIST function. Statistical significance was set at p < 0.05.
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2.6. Treatments

Roxadustat (Astellas Pharma Inc., Tokyo, Japan; 20-, 50-, and 100-mg tablets) was the
HIF-PHI used. After switching from an erythropoiesis-stimulating agent (ESA) to roxadus-
tat for the treatment of renal anemia, the doses of iron and roxadustat administered were
adjusted in accordance with the recommendations of the Asia Pacific Society of Nephrology
(APSN) regarding the appropriate use of HIF-PHIs [1] and the Guidelines for Renal Anemia
in Chronic Kidney Disease [21]. Because thromboembolism has been reported to be a
complication of HIF-PHI administration that is associated with iron deficiency [22,23], iron
was supplemented when the serum ferritin concentration of a participant was <100 µg/L
or their transferrin saturation was <20% during roxadustat administration.

Since 2018, serum zinc and copper concentrations have been measured at the hospital
every 3 months as part of the routine blood testing of patients undergoing hemodial-
ysis, and based on that experience, the following zinc supplementation protocol was
adopted. Zinc supplementation was initiated with zinc acetate hydrate (molecular for-
mula: C4H6O4Zn.2H2O) 50 mg/day (zinc content 50 mg) in participants with frank
(serum zinc concentration < 9.2 µmol/L) zinc deficiency, polaprezinc (molecular for-
mula: C9H12N4O3Zn) 150 mg/day (zinc content 34 mg) was initiated in participants
with marginal (serum zinc concentration 9.2–12.2 µmol/L) zinc deficiency, and the target
serum zinc concentration was set as 12.2–18.4 µmol/L [13]. When the serum zinc concentra-
tions of the patients reached ≥15.3 µmol/L, the level of zinc supplementation was reduced
to 25 mg, and it was discontinued when the serum concentrations were ≥18.4 µmol/L.
The serum zinc and copper concentrations of the patients were measured before the com-
mencement of zinc supplementation, as well as every 3 months afterwards, and the values
obtained were used to adjust the level of zinc supplementation.

Sevelamer hydrochloride, a therapy for hyperphosphatemia, is highly adsorptive
of copper and therefore affects the serum copper concentrations of patients undergoing
dialysis [24]. Specifically, it has been reported to adsorb copper and zinc ions at pH 6.8,
with adsorption ratios of 99% and 38%, respectively [25]. Therefore, the use of sevelamer
hydrochloride was also investigated.

3. Results
3.1. Characteristics of the Participants

During the observation period, of the 20 participants undergoing dialysis (9 men and
11 women) in the morning who were taking roxadustat, data for 12 who had experienced
both periods with and without zinc supplementation were collected. During the period
before roxadustat administration, 20 sets of data were collected from these 12 participants,
comprising their serum copper and zinc concentrations, their dose of roxadustat, and
their level of zinc supplementation during the periods of no zinc supplementation, and
21 sets of data were obtained during periods of zinc supplementation. During the period
following the start of roxadustat administration in these 12 participants, 10 sets of data were
obtained for periods of no zinc supplementation, and 18 sets were obtained for periods of
zinc supplementation.

Of the 20 participants (11 men and 9 women) who had not taken roxadustat during
the same period, 8 who had periods both with and without zinc supplementation were
used as controls. During this period, 11 sets of data were obtained for periods of no zinc
supplementation, and 13 sets were obtained for periods of zinc supplementation for these
participants.

Table 2 shows the baseline characteristics of these participants.
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Table 2. Baseline characteristics of the participants who had both periods with and without zinc
supplementation.

No Roxadustat Roxadustat p Value

Number of participants 8 12

Male sex, n (%) 5 (62.5) 6 (50.0) 0.582

Age, mean ± SD (years) 81.8 ± 6.6 76.0 ± 6.1 0.061

Duration of dialysis, mean ± SD (years) 7.2 ± 5.0 7.3± 5.6 0.970

Etiology, n (%) 0.222

Diabetic nephropathy 5 (62.5) 4 (33.3)

Nephrosclerosis 1 (12.5) 6 (50.0)

Chronic glomerulonephritis 1 (12.5) 2 (16.7)

Uncertain 1 (12.5) 0 (0.00)
No roxadustat, participants who did not administer roxadustat; roxadustat, participants who administered
roxadustat at any time during the study.

3.2. Serum Zinc and Copper Concentrations of Participants Who Were or Were Not
Administering Roxadustat

The serum zinc concentrations of the participants were significantly higher (p < 0.001)
during zinc supplementation, regardless of whether roxadustat was being administered or not.

The serum copper concentrations post-roxadustat were significantly higher than those
pre-roxadustat and those in participants who had not administered roxadustat, irrespective
of zinc supplementation (p < 0.005) (Table 3).

Table 3. [Cu] and [Zn] in participants who were or were not taking roxadustat and were or were not
supplementing zinc.

No
Roxadustat Pre-Roxadustat Post-

Roxadustat
ANOVA
p-Value

Roxadustat
Dose (mg)

[Zn]
(µmol/L)

Zinc (−) 9.6 ± 1.2 8.6 ± 1.6 7.0 ± 1.4 <0.001 59.0 ± 26.0

Zinc (+) 13.1 ± 4.1 11.1 ± 2.1 10.6 ± 3.17 0.068 59.4 ± 25.5

p-value <0.001 <0.001 <0.001 0.483

[Cu]
(µmol/L)

Zinc (−) 15.3 ± 2.47 12.7 ± 2.8 19.4 ± 4.1 <0.005

Zinc (+) 12.4 ± 3.1 12.5 ± 3.5 16.1 ± 5.3 <0.005

p-value 0.009 0.412 0.040

Cohen’s d 0.320 0.070 0.696

Zinc dose (mg) 28.5 ± 4.6 35.1 ± 10.4 36.2 ± 6.7 * 0.026

* p < 0.001 vs. the No Roxadustat group. [Cu], serum copper concentration (normal range 11.2–20.8 µmol/L);
[Zn], serum zinc concentration (normal range 12.2–19.9 µmol/L); No roxadustat, participants who did not take
roxadustat; pre-roxadustat, participants before roxadustat administration; post-roxadustat, participants after
roxadustat administration commenced; zinc (+), data obtained during the period with zinc supplementation; zinc
(−), data obtained during the period without zinc supplementation.

These data were then analyzed according to whether or not zinc was being supple-
mented (Figure 3). The serum copper concentrations of participants pre-roxadustat were
not lower when zinc was being supplemented (p = 0.412). However, there were significantly
lower serum copper concentrations during zinc supplementation than during periods of
no zinc supplementation in the participants who had not been administered roxadustat
(p = 0.009) and in those who were post-roxadustat (p = 0.040). The effect size for the low-
ering of serum copper concentration alongside zinc administration, indicated by Cohen’s
d, was larger for the post-roxadustat group (d = 0.696) than for the no-roxadustat group
(d = 0.320).
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Figure 3. [Cu] in the period of zinc supplementation and the period of no supplementation in
participants who did not administer roxadustat and pre- and post-roxadustat in those who did.
The baseline characteristics of the two groups were compared using the two-sample Student’s
t test, assuming unequal variances. Effect size was compared using Cohen’s d. [Cu], serum copper
concentration; pre-roxadustat, data obtained during the 8 months prior to roxadustat administration;
post-roxadustat, data obtained during the 8 months after roxadustat administration commenced; no
roxadustat, data obtained during the same 8 months as the post-roxadustat period in participants
who did not administer roxadustat; zinc (+), data obtained during the period of zinc supplementation;
zinc (−), data obtained during the period of no zinc supplementation.

3.3. Relationship between Roxadustat Dose and Serum Copper Concentration

The relationship between the roxadustat dose and serum copper concentrations of
the participants was evaluated and no correlation between these two variables was found
(r = 0.089, p = 0.590).

The highest serum copper concentration measured was 29.0 µmol/L, and serum
concentrations above the upper limit of the normal range of 20.8 µmol/L were obtained for
six participants. However, the serum copper concentrations of these participants returned
to normal after increasing their level of zinc supplementation, and they did not show
symptoms of copper excess, such as gastrointestinal symptoms.

3.4. Assessment of the Level of Zinc Supplementation

Increasing the level of zinc supplementation increases the metallothionein concentra-
tions of patients and reduces those of copper [26]; therefore, the level of zinc supplementa-
tion being used was assessed. The zinc content of the zinc acetate hydrate administered
was 25 or 50 mg, and that of polaprezinc was 17 mg/tablet; therefore, the participants were
administered 34 mg/day. There was a significant difference in the level of zinc supplemen-
tation among the no roxadustat, pre-roxadustat, and post-roxadustat groups (p = 0.026).
There was no difference in zinc supplementation between the pre-roxadustat and post-
roxadustat groups. However, participants in the post-roxadustat group were supplemented
with significantly more zinc than those in the non-roxadustat group (Table 3).
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3.5. Normalization of High Serum Copper and Low Serum Zinc Concentrations Following the
Initiation of, or an Increase in, the Level of Zinc Supplementation

Of the participants who were administered roxadustat, 11 either initiated zinc supple-
mentation or increased their level of supplementation during the observation period. The
changes that occurred in their serum copper and zinc concentrations are shown in Figure 4.
After the initiation of, or an increase in, the level of zinc supplementation, their serum
copper and zinc concentrations were within or close to the respective reference ranges in
all 11 cases. Their serum zinc concentrations increased from 9.1 ± 2.1 to 13.8 ± 3.0 µmol/L,
and their serum copper concentrations decreased from 23.5 ± 4.2 to 19.8 ± 4.1 µmol/L
(mean ± standard deviation).
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adustat and zinc supplementation. #, before the administration of roxadustat; •, following the
commencement of roxadustat administration. [Cu], serum copper concentration (normal range
11.2–20.8 µmol/L); [Zn], serum zinc concentration (normal range 12.2–19.9 µmol/L).

4. Discussion

In the present study, it was shown that the use of HIF-PHIs increases the serum copper
concentrations of patients, as reported by Nakamura et al. [2]. However, zinc supplementa-
tion can reduce serum copper concentrations through the induction of metallothioneins [7].
Therefore, in patients taking an HIF-PHI, roxadustat, it was expected that those who were
supplementing zinc would have lower serum copper concentrations than those who were
not. In patients taking an HIF-PHI, serum copper concentrations were shown to be signifi-
cantly lower in those who were supplementing zinc. No correlation between the dose of
roxadustat administered and the serum copper concentration of patients was identified.
This indicates that even small doses of roxadustat can increase serum copper concentrations.

Since 2018, the serum zinc and copper concentrations of patients undergoing hemodial-
ysis have been routinely measured every 3 months at the hospital, and on the basis of that
experience, the zinc supplementation protocol described in the Treatments section was
adopted. The serum zinc and copper concentrations of each participant were measured ev-
ery 3 months during the present study, and the level of zinc supplementation was adjusted
appropriately. Therefore, it was possible to increase the amount of zinc supplementation in
patients who were taking roxadustat after confirming that their serum copper concentra-
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tions did not decrease alongside the use of roxadustat but instead increased. If the serum
copper concentration of a participant was high, it returned to within or close to the normal
range following the initiation or an increase in the level of zinc supplementation (Figure 4).
Therefore, when using HIF-PHIs, an excessive increase in serum copper concentration can
be prevented by anticipating the rise in serum copper concentration and providing an
appropriate dose of zinc in advance.

The serum zinc concentrations of patients with renal failure tend to be low because of
inadequate intake, malabsorption, or excessive loss of zinc. Therefore, most patients who
undergo hemodialysis have frank or marginal zinc deficiency [27]. If a patient’s serum zinc
concentration is low, zinc administration may improve this and ameliorate the symptoms
of the underlying disease. Therefore, even if symptoms of zinc deficiency are not being
reported, supplementation is recommended if hypozincemia is identified [20]. Because zinc
supplementation reduces the serum copper concentrations of patients, owing to its effect
on metallothionein [26], the level of zinc supplementation should be adjusted appropriately.
However, although the need for zinc supplementation is recognized, it is difficult to provide
sufficient zinc over the long term because of the high risk of hypocupremia. Encouragingly,
in the present study, it was shown that concomitant zinc supplementation when using an
HIF-PHI not only prevents a decrease in serum copper concentration but also an excessive
increase in serum copper.

The explanation for the increase in serum copper concentration in HIF-PHI users is
an HIF-2α-induced increase in the expression of divalent metal transporter 1 (DMT1) and
duodenal cytochrome b [28], which are involved in the absorption of divalent cations such
as iron, copper, and zinc. HIF-2α increases the expression of ferroportin [29]. In addition,
HIF-2α increases the expression of the copper transporters CTR1 [30,31] and ATPase 7A [32],
which are involved in the absorption of monovalent copper in the duodenum (Figure 5).
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Figure 5. The increase in serum copper concentration in HIF-PHI users is caused by an increase in
the expression of metal transporters. Hypoxia-inducible factor-α increases the expression of DMT1
and Dcytb [27], which are involved in the absorption of divalent cations, such as copper and zinc.
Hypoxia-inducible factor-α increases the expression of the copper transporters CTR1 [29,30] and
ATP7A [31], and copper is reduced from the divalent to the monovalent form in the duodenum,
where it is absorbed. This figure has been modified and reprinted with permission [13]. Dcytb,
duodenal cytochrome b; DMT1, divalent metal transporter 1; STEAP2, six-transmembrane epithelial
antigen of prostate-2; ATP7A, ATPase 7A.
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Untreated hypercupremia in patients undergoing dialysis can cause oxidative stress,
leading to dyslipidemia, the exacerbation of inflammation [24], cardiovascular disease [33],
and a higher risk of death [34]. Therefore, it may be important to supplement zinc intake to
reduce the serum copper concentrations of patients. Conversely, because copper plays an
important role in many metabolic processes, including cellular respiration, iron oxidation,
and hemoglobin synthesis, acquired copper deficiency can lead to abnormalities such
as myelodysplasia and pancytopenia [35]. However, there is no effective treatment for
hypocupremia other than copper injections and oral treatment [36].

Zinc is a cofactor in more than 300 enzymes, is part of the structure of numerous zinc
finger proteins, and is involved in signaling in various tissues. Therefore, hypozincemia
can present in a number of ways [37]. Zinc is used clinically for its anti-inflammatory and
antioxidant effects at various sites [38] and is essential for the transcriptional function of
nuclear factor erythroid 2-related factor 2 [39]. In addition, many studies have shown a
relationship between zinc and diabetes, and zinc supplementation improves the HbA1c
values and fasting blood glucose concentrations of patients [40].

Regarding cognitive impairment, no definitive results have yet been obtained regard-
ing the reduction of dementia risk through diet and nutrition [41,42]. Some previous studies
have shown that high copper intake is associated with a higher risk of dementia [43], while
others have identified no such association [44]. It has been reported that a diet high in
copper, especially when combined with a high saturated fat content, may increase the risk
of cognitive impairment [45]. These findings imply that the relationship between copper
status and the risk of developing dementia is complex.

At the International Conference on Nutrition and the Brain, Washington, DC,
19–20 July 2013, speakers were asked to comment on potential guidelines for the pre-
vention of Alzheimer’s disease. They commented that excessive copper (or iron) intake
may contribute to Alzheimer’s disease and suggested the use of multivitamin/mineral
supplements that do not contain these minerals [46]. Therefore, it is very important to
maintain a balanced copper intake, and special attention is required in the prevention and
progression of dementia.

With respect to renal anemia, not only zinc but also copper is necessary for the function
of many regulators of hematopoiesis, such as growth hormone, insulin-like growth factor
1, GATA-binding protein 1, vitamin D receptor, hephaestin, and copper–zinc superoxide
dismutase [13]. The required dose of ESA can be reduced by instituting an appropriate
level of zinc supplementation [47].

Zinc contributes to bone mineralization by inhibiting bone resorption and promoting
bone formation [48], but it also inhibits vascular calcification. HIF-PHIs exacerbate vascular
calcification because HIF-1α promotes phosphate-induced vascular smooth muscle cell
calcification [49]. Zinc also inhibits the calcification of vascular smooth muscle cells that
is induced by HIF-1α [8]. Zinc acts via G-protein-coupled receptor 39 to induce the
expression of tumor necrosis factor-alpha-induced protein 3 and inhibits nuclear factor
κB, thereby reducing phosphate-induced vascular calcification [50]. Therefore, zinc would
be expected to prevent calcification when administered to patients whose renal anemia
is being treated using an HIF-PHI. In the present study, it was shown that the increase in
serum copper concentration caused by the administration of an HIF-PHI can be used to
balance the serum zinc and copper concentrations of patients during zinc supplementation.
In other words, it was shown that the increase in serum copper concentration owing to
HIF-PHI administration is offset by the decrease in copper concentration caused by zinc
supplementation (Figure 6). In addition, the use of zinc supplementation alongside the
administration of an HIF-PHI prevented the reduction in serum copper concentration
caused by zinc supplementation and was found to be safe.
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Figure 6. Use of a combination of an HIF-PHI and zinc supplementation. Hypozincemia is com-
mon in patients undergoing hemodialysis [5], and zinc supplementation is recommended when
hypozincemia is identified [6]. Hypoxia-inducible factor 1-α strongly promotes phosphate-induced
vascular smooth muscle cell calcification [48]. Therefore, HIF-PHIs may exacerbate vascular calci-
fication. However, this calcification may be reduced by adequate zinc supplementation [49,50]. If
zinc supplementation is required when an HIF-PHI is administered, concern regarding an increase in
[Cu] owing to HIF-PHI administration and a decrease in [Cu] owing to zinc supplementation can be
alleviated. The combination of HIF-PHI and zinc supplementation is safe and effective. HIF-PHI,
hypoxia-inducible factor-prolyl hydroxylase inhibitor; [Cu], serum copper concentrations.

During zinc supplementation, in anticipation of the associated decrease in serum
copper concentration, dietary guidance regarding how patients could increase their serum
copper concentrations should be provided. This would include a recommendation to con-
sume copper-rich nuts and hemocyanin-containing seafood, such as squid, octopus, shrimp,
clams, and crabs. However, when patients are taking an HIF-PHI, they should reduce their
intake of copper, and the early introduction of dietary adjustment and zinc supplementation
are important in preventing a deleterious increase in serum copper concentration.

The present study had some limitations. First, the level of zinc supplementation of
the participants was changed according to the zinc supplementation protocol described in
the Methods section on the basis of their serum copper and zinc concentrations, measured
every 3 months. The dose of HIF-PHI was then adjusted according to their anemia status
twice a month. Therefore, data were retrospectively extracted from medical records under
circumstances in which factors influencing the serum copper concentration were constantly
changing. In addition, the final analysis was performed on patients who had experienced
periods of both zinc supplementation and no zinc supplementation, which reduced the
number of data points obtained. In particular, the number of data points obtained before
the use of an HIF-PHI commenced was as small as 10 for participants using an HIF-PHI.
However, if the observation period had been extended beyond 8 months (three data points),
in order to increase the amount of data collected, all the patients using an HIF-PHI might
have been treated by zinc supplementation alone. Therefore, it was not possible to extend
the observation period.

Although the study was conducted under conditions during which the factors that
affect serum copper concentration, which are cited as a limitation, were constantly changing,
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one of the strengths of this study was that a zinc supplementation protocol had been
introduced in 2018. Because the level of zinc supplementation was already being adjusted
according to this protocol, even when changes in serum copper concentration secondary
to the use of an HIF-PHI were superimposed upon the changes in the serum copper and
zinc concentrations that occur during zinc supplementation, it may be considered that the
investigation of the effects of HIF-PHI was conducted in a stable environment.

5. Conclusions

The use of a combination of HIF-PHI administration and zinc supplementation not
only prevents the excessive increase in serum copper concentration during HIF-PHI admin-
istration but also enables safe zinc supplementation without a reduction in serum copper
concentration in patients undergoing hemodialysis who are at a high risk of zinc deficiency.
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