Subclinical Vitamin C Plasma Levels Associated with Increased Risk of CAD Diagnosis via Inflammation: Results from the NHANES 2003–2006 Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Participants
2.3. Measurement of Plasma Vitamin C
2.4. Measurement of Coronary Artery Disease (CAD)
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, S.A.; Keske, M.A.; Wadley, G.D. Effects of Vitamin C Supplementation on Glycemic Control and Cardiovascular Risk Factors in People With Type 2 Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2021, 44, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.J.; Ortiz-Reyes, A.; Dhaliwal, R.; Clarke, J.; Hill, A.; Stoppe, C.; Lee, Z.-Y.; Heyland, D.K. IV Vitamin C in Critically Ill Patients: A Systematic Review and Meta-Analysis. Crit. Care Med. 2022, 50, e304–e312. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kim, H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules 2020, 25, 5346. [Google Scholar] [CrossRef]
- DePhillipo, N.N.; Aman, Z.S.; Kennedy, M.I.; Begley, J.; Moatshe, G.; LaPrade, R.F. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop. J. Sports Med. 2018, 6, 2325967118804544. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, A.; Evans, C.; Holmes, M.; Moore, J. The Regulation of Dietary Iron Bioavailability by Vitamin C: A Systematic Review and Meta-Analysis. Proc. Nutr. Soc. 2017, 76, E182. [Google Scholar] [CrossRef] [Green Version]
- Young, J.I.; Züchner, S.; Wang, G. Regulation of the Epigenome by Vitamin C. Annu. Rev. Nutr. 2015, 35, 545–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, 12, 3760. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front. Immunol. 2020, 11, 574029. [Google Scholar] [CrossRef] [PubMed]
- Sinnberg, T.; Lichtensteiger, C.; Hill-Mündel, K.; Leischner, C.; Niessner, H.; Busch, C.; Renner, O.; Wyss, N.; Flatz, L.; Lauer, U.M.; et al. Vitamin C Deficiency in Blood Samples of COVID-19 Patients. Antioxidants 2022, 11, 1580. [Google Scholar] [CrossRef]
- Crook, J.; Horgas, A.; Yoon, S.-J.; Grundmann, O.; Johnson-Mallard, V. Insufficient Vitamin C Levels among Adults in the United States: Results from the NHANES Surveys, 2003–2006. Nutrients 2021, 13, 3910. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Pullar, J.M.; Bozonet, S.M.; Vissers, M.C.M. Marginal Ascorbate Status (Hypovitaminosis C) Results in an Attenuated Response to Vitamin C Supplementation. Nutrients 2016, 8, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedar, A.M.; Stradner, M.H.; Roessler, A.; Goswami, N. Autoimmune Rheumatic Diseases and Vascular Function: The Concept of Autoimmune Atherosclerosis. J. Clin. Med. 2021, 10, 4427. [Google Scholar] [CrossRef] [PubMed]
- Himbert, C.; Delphan, M.; Scherer, D.; Bowers, L.W.; Hursting, S.; Ulrich, C.M. Signals from the Adipose Microenvironment and the Obesity-Cancer Link-A Systematic Review. Cancer Prev. Res. 2017, 10, 494–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtz, P.H.; von Känel, R. Psychological Stress, Inflammation, and Coronary Heart Disease. Curr. Cardiol. Rep. 2017, 19, 111. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Qian, Y.; Xia, L.; Wei, L.; Jiang, W. Artesunate attenuates foam cell formation by enhancing cholesterol efflux. Ann. Transl. Med. 2021, 9, 1379. [Google Scholar] [CrossRef]
- Buijsse, B.; Jacobs, D.R., Jr.; Steffen, L.M.; Kromhout, D.; Gross, M.D. Plasma Ascorbic Acid, A Priori Diet Quality Score, and Incident Hypertension: A Prospective Cohort Study. PLoS ONE 2015, 10, e0144920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyyssönen, K.; Parviainen, M.T.; Salonen, R.; Tuomilehto, J.; Salonen, J.T. Vitamin C deficiency and risk of myocardial infarction: Prospective population study of men from eastern Finland. Bmj 1997, 314, 634–638. [Google Scholar] [CrossRef]
- Lima, A.; Ferin, R.; Fontes, A.; Santos, E.; Martins, D.; Baptista, J.; Pavão, M.L. Circulating antioxidant vitamins and copper in Azorean coronary artery disease patients under preventive medication—A case study. J. Trace Elem. Med. Biol. 2021, 64, 126701. [Google Scholar] [CrossRef] [PubMed]
- Schectman, G.; Byrd, J.C.; Gruchow, H.W. The influence of smoking on vitamin C status in adults. Am. J. Public Health 1989, 79, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Retsky, K.L.; Chen, K.; Zeind, J.; Frei, B. Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation. Free Radic. Biol. Med. 1999, 26, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Daghini, E.; Ghiadoni, L.; Sudano, I.; Rugani, I.; Varanini, M.; Passino, C.; Emdin, M.; Taddei, S. Effect of acute administration of vitamin C on muscle sympathetic activity, cardiac sympathovagal balance, and baroreflex sensitivity in hypertensive patients. Am. J. Clin. Nutr. 2012, 96, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Xu, S.; Pelisek, J.; Jin, Z.G. Atherosclerosis Is an Epigenetic Disease. Trends Endocrinol. Metab. 2018, 29, 739–742. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, W.; Qu, K.; Lin, X.; Zeng, Z.; Chen, J.; Wei, D.; Wang, Z. TET2: A Novel Epigenetic Regulator and Potential Intervention Target for Atherosclerosis. DNA Cell Biol. 2018, 37, 517–523. [Google Scholar] [CrossRef]
- Wierda, R.J.; Geutskens, S.B.; Jukema, J.W.; Quax, P.H.; Elsen, P.J.V.D. Epigenetics in atherosclerosis and inflammation. J. Cell. Mol. Med. 2010, 14, 1225–1240. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S. Tet2 at the interface between cancer and immunity. Commun. Biol. 2020, 3, 667. [Google Scholar] [CrossRef]
- Cimmino, L.; Dolgalev, I.; Wang, Y.; Yoshimi, A.; Martin, G.H.; Wang, J.; Ng, V.; Xia, B.; Witkowski, M.T.; Mitchell-Flack, M.; et al. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell 2017, 170, 1079–1095.e20. [Google Scholar] [CrossRef]
- Qu, K.; Ma, X.-F.; Li, G.-H.; Zhang, H.; Liu, Y.-M.; Zhang, K.; Zeng, J.-F.; Lei, J.-J.; Wei, D.-H.; Wang, Z. Vitamin C down-regulate apo(a) expression via Tet2-dependent DNA demethylation in HepG2 cells. Int. J. Biol. Macromol. 2017, 98, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.K.; Sethi, G. Role of epigenetics in inflammation-associated diseases. Subcell Biochem. 2013, 61, 627–657. [Google Scholar] [PubMed]
- Gonzalez-Jaramillo, V.; Portilla-Fernandez, E.; Glisic, M.; Voortman, T.; Ghanbari, M.; Bramer, W.; Rajiv, C.; Tamar, N.; Abbas, D.; Oscar, H.F.; et al. Epigenetics and Inflammatory Markers: A Systematic Review of the Current Evidence. Int. J. Inflam. 2019, 2019, 6273680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujtor, M.; Turner, A.; Torres, S.; Esteban-Gonzalo, L.; Pariante, C.; Borsini, A. Associations of Dietary Intake on Biological Markers of Inflammation in Children and Adolescents: A Systematic Review. Nutrients 2021, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Qing, Z.; Xiao-Hui, W.; Xi-Mei, W.; Chao-Chun, Z. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance. Eur. J. Pharmacol. 2018, 829, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jafarnejad, S.; Boccardi, V.; Hosseini, B.; Taghizadeh, M.; Hamedifard, Z. A Meta-analysis of Randomized Control Trials: The Impact of Vitamin C Supplementation on Serum CRP and Serum hs-CRP Concentrations. Curr. Pharm. Des. 2018, 24, 3520–3528. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.M.; Horgas, A.L.; Yoon, S.L.; Grundmann, O.; Johnson-Mallard, V. Vitamin C Plasma Levels Associated with Inflammatory Biomarkers, CRP and RDW: Results from the NHANES 2003–2006 Surveys. Nutrients 2022, 14, 1254. [Google Scholar] [CrossRef]
- Righi, N.C.; Schuch, F.B.; De Nardi, A.T.; Pippi, C.M.; De Almeida Righi, G.; Puntel, G.O.; Da Silva, A.M.V.; Signori, L.U. Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: Meta-analyses of randomized clinical trials. Eur. J. Nutr. 2020, 59, 2827–2839. [Google Scholar] [CrossRef]
- Muhammad, M.; Jahangir, A.; Kassem, A.; Sattar, S.B.A.; Jahangir, A.; Sahra, S.; Niazi, M.R.K.; Mustafa, A.; Zia, Z.; Siddiqui, F.S.; et al. The Role and Efficacy of Vitamin C in Sepsis: A Systematic Review and Meta-Analysis. Adv. Respir. Med. 2022, 90, 281–299. [Google Scholar] [CrossRef]
- CDC. National Health and Nutrition Examination Survey Data 2005–2006; C.f.D.C.a.P.N.C.f.H. Statistics, Editor: Atlanta, GA, USA, 2018. [Google Scholar]
- McQuillan, G.M.; McLean, J.E.; Chiappa, M.; Harris Corporation; Lukacs, S.L. National Health and Nutrition Examination Survey Biospecimen Program: NHANES III (1988–1994) and NHANES 1999-2014. Vital Health Stat. 2015, 2, 1–14. [Google Scholar]
- Decker, D.; Flynn, M. Food Insecurity and Chronic Disease: Addressing Food Access as a Healthcare Issue. Rhode Isl. Med. J. 2018, 101, 28–30. [Google Scholar]
- Te Vazquez, J.; Feng, S.N.; Orr, C.J.; Berkowitz, S.A. Food insecurity and cardiometabolic conditions: A review of recent research. Curr. Nutr. Rep. 2021, 10, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Critchley, J.A.; Capewell, S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: A systematic review. Jama 2003, 290, 86–97. [Google Scholar] [CrossRef]
- Dehghan, M.; Akhtar-Danesh, N.; McMillan, C.R.; Thabane, L. Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr. J. 2007, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Rowe, S. Factors affecting vitamin C status and prevalence of deficiency: A global health perspective. Nutrients 2020, 12, 1963. [Google Scholar] [CrossRef]
- Ridge, T. The everyday costs of poverty in childhood: A review of qualitative research exploring the lives and experiences of low-income children in the UK. Child. Soc. 2011, 25, 73–84. [Google Scholar] [CrossRef]
- Sciarretta, S.; Palano, F.; Tocci, G.; Baldini, R.; Volpe, M. Antihypertensive treatment and development of heart failure in hypertension: A Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch. Intern. Med. 2011, 171, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Juraschek, S.P.; Guallar, E.; Appel, L.J.; Miller, E.R. Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 95, 1079–1088. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.L.; Cheung, A.M.; Cape, D.; Zinman, B. Impact of diabetes on coronary artery disease in women and men: A meta-analysis of prospective studies. Diabetes Care 2000, 23, 962–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- McRae, M.P. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: A meta-analysis of 13 randomized controlled trials. J. Chiropr. Med. 2008, 7, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, X.; Gong, G. Cardiovascular outcomes in patients with co-existing coronary artery disease and rheumatoid arthritis: A systematic review and meta-analysis. Medicine 2020, 99, e19658. [Google Scholar] [CrossRef] [PubMed]
- Fransen, J.; Kazemi-Bajestani, S.M.R.; Bredie, S.J.H.; Popa, C.D. Rheumatoid arthritis disadvantages younger patients for cardiovascular diseases: A meta-analysis. PLoS ONE 2016, 11, e0157360. [Google Scholar] [CrossRef]
- Jansen, H.; Willenborg, C.; Lieb, W.; Zeng, L.; Ferrario, P.G.; Loley, C.; König, I.R.; Erdmann, J.; Samani, N.J.; Schunkert, H.; et al. Rheumatoid arthritis and coronary artery disease: Genetic analyses do not support a causal relation. J. Rheumatol. 2017, 44, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Ren, Y.; Li, M.; Zhao, X.; Kong, L.; Kang, J. Prevalence of comorbidities in asthma and nonasthma patients: A meta-analysis. Medicine 2016, 95, e3459. [Google Scholar] [CrossRef]
- Hua, M.; Li, L.; Diao, L. Bronchial asthma and risk of 4 specific cardiovascular diseases and cardiovascular mortality: A meta-analysis of cohort studies. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5081–5091. [Google Scholar]
- Xu, M.; Xu, J.; Yang, X. Asthma and risk of cardiovascular disease or all-cause mortality: A meta-analysis. Ann. Saudi Med. 2017, 37, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Elste, V.; Troesch, B.; Eggersdorfer, M.; Weber, P. Emerging Evidence on Neutrophil Motility Supporting Its Usefulness to Define Vitamin C Intake Requirements. Nutrients 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.B.; Gambardella, J.; Castellanos, V.; Trimarco, V.; Santulli, G. Vitamin C and Cardiovascular Disease: An Update. Antioxidants 2020, 9, 1227. [Google Scholar] [CrossRef]
- Fortmann, S.P.; Burda, B.U.; Senger, C.A.; Lin, J.S.; Whitlock, E.P. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013, 159, 824–834. [Google Scholar] [CrossRef]
- Engelbertz, C.; Reinecke, H.; Breithardt, G.; Schmieder, R.E.; Fobker, M.; Fischer, D.; Schmitz, B.; Pinnschmidt, H.O.; Wegscheider, K.; Pavenstädt, H.; et al. Two-year outcome and risk factors for mortality in patients with coronary artery disease and renal failure: The prospective, observational CAD-REF Registry. Int. J. Cardiol. 2017, 243, 65–72. [Google Scholar] [CrossRef]
- Rodriguez, C.; Crowder, S.L.; Rodriguez, M.; Redwine, L.; Stern, M. Food Insecurity and the Hispanic Population during the COVID-19 Pandemic. Ecol. Food Nutr. 2021, 60, 548–563. [Google Scholar] [CrossRef] [PubMed]
- Jomaa, L.; Diab-El-Harake, M.; Chalak, A.; Abiad, M. Unravelling the Relationship Between Food Security, Financial Management and Household Food Waste: The Case of Lebanon During the COVID-19 Pandemic. Curr. Dev. Nutr. 2022, 6 (Suppl. 1), 841. [Google Scholar] [CrossRef]
- Baquedano, F.; Zereyesus, Y.; Christensen, C.; Valdes, C. COVID-19 Working Paper: International Food Security Assessment, 2020–2030: COVID-19 Update and Impacts of Food Insecurity; US Department of Agriculture, Editor: Washington, DC, USA, 2021; p. 33. [Google Scholar]
- Robitaille, L.; Hoffer, L.J. A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use. Nutr. J. 2015, 15, 1–9. [Google Scholar]
- De Oliveira, D.C.X.; Rosa, F.T.; Simões-Ambrósio, L.; Jordao, A.A.; Deminice, R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 2019, 63–64, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.S.; Barkyoumb, G.M.; Schumacher, S.S. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: A randomized controlled trial. Nutrients 2014, 6, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef]
- Boonthongkaew, C.; Boonthongkaew, C.; Tong-Un, T.; Kanpetta, Y.; Chaungchot, N.; Leelayuwat, C. Vitamin C supplementation improves blood pressure and oxidative stress after acute exercise in patients with poorly controlled type 2 diabetes mellitus: A randomized, placebo-controlled, cross-over study. Chin. J. Physiol. 2021, 64, 16–23. [Google Scholar]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8 (Suppl. 2), S3. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Li, M.; Ding, Y.; Pu, L.; Liu, J.; Xie, J.; Cabanero, M.; Li, J.; Xiang, R.; Xiong, S. Prognostic value of RDW in cancers: A systematic review and meta-analysis. Oncotarget 2017, 8, 16027–16035. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-D. Red blood cell distribution width: A promising index for estimating activity of autoimmune disease. J. Lab. Precis. Med. 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Agarwal, S. Red cell distribution width, inflammatory markers and cardiorespiratory fitness: Results from the National Health and Nutrition Examination Survey. Indian Heart J. 2012, 64, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.; Pahuja, M.; Pant, S.; Handa, A.; Agarwal, V.; Patel, N.; Dusaj, R. Red cell distribution width and risk of cardiovascular mortality: Insights from National Health and Nutrition Examination Survey (NHANES)-III. Int. J. Cardiol. 2017, 232, 105–110. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Sample (n = 7607) | Weighted Sample by % | Mean (SD) |
---|---|---|---|
Gender Male Female | 3699 3908 | 48.7 ± 0.5 51.3 ± 0.5 | |
Adulthood age, y Young, 20–39 Middle, 40–59 Late, ≥60 | 2751 2295 2561 | 36.5 ± 0.8 40.1 ± 0.8 22.3 ± 0.5 | |
Race/Ethnicity Mexican American Other Hispanic Non-Hispanic White Non-Hispanic Black Other | 1516 230 4305 1536 290 | 7.6 ± 1.1 3.4 ± 0.5 73.6 ± 2.1 10.5 ± 1.2 4.9 ± 0.4 | |
Family PIR High (0–1.5) Medium (1.51–4.5) Low (>4.51) | 5206 1614 787 | 63.8 ± 1.1 22.7 ± 0.5 13.5 ± 0.6 | |
Smoking status Yes No | 3392 5610 | 29.4 ± 1.0 70.6 ± 1.0 | |
Food insecurity Yes No | 1449 6158 | 14.1 ± 0.8 85.9 ± 0.8 | |
Hypertension Yes No | 2528 5052 | 30.1 ± 0.6 69.9 ± 0.6 | |
Asthma Yes No | 585 380 | 58.9 ± 1.9 41.1 ± 1.9 | |
Hypercholesterolemia Yes No | 2270 3051 | 41.2 ± 0.8 58.8 ± 0.8 | |
Diabetes Yes No | 892 6715 | 8.8 ± 0.4 91.2 ± 0.4 | |
Rheumatoid Arthritis Yes No | 401 1617 | 16.9 ± 1.0 83.1 ± 1.0 | |
BMI, kg/m2 | 28.88 (6.6) | ||
Vitamin C, μmol/L | 42.44 (8.3) | ||
CRP, mg/dL | 0.53 (1.0) | ||
RDW | 12.91 (1.3) | ||
CAD Yes | 701 | 6.9 ± 0.5 | |
No | 6906 | 93.1 ± 0.5 |
Characteristics | Plasma Vitamin C concentration (μmol/L) | ||||||
---|---|---|---|---|---|---|---|
Total | Deficiency (0–10.99 μmol/L) | HYPOVITAMINOSIS (11–23.99 μmol/L) | Inadequate (24–49.99 μmol/L) | Adequate (50–69.99 μmol/L | Saturating (≥ 70 μmol/L) | p Value | |
Vitamin C, μmol/L | 7607 | 6.85 ± 2.78 | 17.5 ± 3.69 | 38.3 ± 7.37 | 38.3 ± 5.77 | 89.8 ± 21.9 | 0.00 |
Gender Male Female | 3699 3908 | 307 (8.3%) 160 (4.1%) | 425 (11.5%) 297 (7.6%) | 1062 (28.7%) 929 (23.8%) | 1191 (32.2%) 1276 (32.7%) | 714 (19.3%) 1246 (31.9%) | <0.001 |
Adulthood Category Young, 20–39 Middle, 40–59 Late, ≥60 | 2751 2295 2561 | 50 (3.4%) 82 (6.4%) 101 (7.8%) | 118 (8.1%) 131 (10.2%) 139 (10.7%) | 425 (29.0%) 386 (30.0%) 393 (30.2%) | 525 (35.9%) 421 (32.7%) 424 (32.6%) | 345 (23.6%) 268 (20.8%) 245 (18.8%) | <0.001 |
Race/Ethnicity Mexican American Other Hispanic Non-Hispanic White Non-Hispanic Black Other | 1516 230 4305 1536 290 | 71 (7.2%) 4 (1.7%) 290 (7.2%) 92 (6.0%) 10 (3.4%) | 123 (8.1%) 23 (10.0%) 403 (10.0%) 139 (9.0%) 34 (11.7%) | 467 (30.8%) 69 (30.0%) 880 (21.8%) 497 (32.4%) 78 (26.9%) | 546 (36.0%) 86 (37.4%) 1226 (30.4%) 505 (32.9%) 104 (35.9%) | 309 (20.4%) 48 (20.9%) 1236 (30.6%) 303 (19.7%) 64 (22.1%) | <0.001 |
Family PIR High (0–1.5) Medium (1.51–4.5) Low (>4.51) | 5206 1614 787 | 323 (6.2%) 120 (7.4%) 24 (3.0%) | 520 (10.0%) 146 (9.0%) 56 (7.1%) | 1424 (27.4%) 395 (24.5%) 172 (21.9%) | 1690 (32.5%) 509 (31.5%) 268 (34.1%) | 1249 (24.0%) 444 (27.5%) 267 (33.9%) | <0.001 |
Smoking status Yes No | 3392 5610 | 282 (14.1%) 185 (3.3%) | 312 (15.6%) 410 (7.3%) | 604 (30.2%) 1387 (24.7%) | 501 (25.1%) 1966 (35.0%) | 298 (14.9%) 1662 (29.6%) | <0.001 |
Food insecurity Yes No | 1449 6158 | 115 (7.9%) 352 (5.7%) | 177 (12.2%) 545 (5.7%) | 484 (33.4%) 1507 (24.5%) | 422 (29.1%) 2045 (33.2%) | 251 (17.3%) 1709 (27.8%) | <0.001 |
Hypertension Yes No | 2528 5035 | 172 (6.8%) 295 (5.9%) | 270 (10.7%) 448 (8.9%) | 675 (26.7%) 1304 (25.9%) | 768 (30.4%) 1685 (33.5%) | 643 (25.4%) 1303 (25.9%) | 0.009 |
Asthma Yes No | 585 380 | 45 (7.7%) 21 (5.5%) | 62 (10.6%) 39 (10.3%) | 160 (27.4%) 104 (27.4%) | 180 (30.8%) 130 (34.2%) | 138 (23.6%) 86 (22.6%) | 0.64 |
Hypercholesterolemia Yes No | 2270 3051 | 114 (5.0%) 186 (6.1%) | 221 (9.7%) 278 (9.1%) | 569 (25.1%) 734 (24.1%) | 729 (32.1%) 991 (32.5%) | 637 (28.1%) 862 (28.3%) | 0.43 |
Diabetes Yes No | 892 6715 | 64 (7.2%) 403 (6.0%) | 120 (13.5%) 602 (9.0%) | 277 (31.1%) 1714 (25.5%) | 253 (28.4%) 2214 (33.0%) | 178 (20.0%) 1782 (26.5%) | <0.001 |
Rheumatoid Arthritis Yes No | 401 1617 | 34 (8.5%) 110 (6.8%) | 47 (11.7%) 178 (11.0%) | 109 (27.2%) 357 (22.1%) | 101 (25.2%) 464 (28.7%) | 110 (27.4%) 508 (31.4%) | 0.09 |
BMI, kg/m2 | 7607 | 29.0 ± 7.25 | 29.9 ± 7.42 | 29.8 ± 6.80 | 28.6 ± 6.08 | 27.1 ± 5.50 | <0.001 |
CRP, mg/dL | 7607 | 0.67 ± 1.44 | 0.61 ± 1.22 | 0.53 ± 0.88 | 0.45 ± 0.91 | 0.37 ± 0.60 | <0.001 |
RDW | 7607 | 13.0 ± 1.49 | 12.9 ± 1.34 | 12.9 ± 1.25 | 12.8 ± 1.11 | 12.7 ± 1.09 | <0.001 |
CAD Yes | 701 | 67 (9.6%) | 84 (12.0%) | 173 (24.7%) | 202 (28.8%) | 175 (25.0%) | <0.001 |
No | 6906 | 400 (5.8%) | 638 (9.2%) | 1818 (26.3%) | 2265 (32.8%) | 1785 (25.8%) |
Predictor | Unadjusted OR (CI) a,b | Adjusted OR (CI) d,e |
---|---|---|
Gender Male Female | 1.31(1.05, 1.62) c Ref | 1.33 (0.62, 2.82) Ref |
Adulthood Stage Young, 20–39 Middle, 40–59 Late, ≥60 | Ref 7.49 (4.24, 13.2) c 43.2 (25.0, 74.7) c | Ref 1.64 (0.18, 14.9) 3.35 (0.38, 29.6) |
Race/Ethnicity Mexican American Other Hispanic Non-Hispanic White Non-Hispanic Black Other | 0.58 (0.43, 0.80) c 0.42 (0.17, 1.01) Ref 0.93 (0.71, 1.20) 1.29 (0.72, 2.27) | 0.50 (0.11, 2.29) 1.42 (2.64, 7.80) c Ref 0.16 (0.04, 0.56) c 6.29 (1.01, 39.2) c |
Family PIR High Medium Low | 0.94 (0.70, 1.27) 1.27 (0.85, 1.62) Ref | 1.58 (0.43, 5.90) 2.83 (0.70, 11.5) Ref |
Smoking status Yes No | 1.11 (0.85, 1.46) Ref | 1.12 (0.86, 1.47) Ref |
Food insecurity Yes No | 2.11 (1.58, 2.80) c Ref | 2.06 (1.54, 2.75) c Ref |
Vitamin C Deficiency Hypovitaminosis Inadequate Adequate Saturating | 2.31 (1.49, 3.58) c 1.46 (1.00, 2.12) 1.39 (1.03, 1.87) c 1.16 (0.88, 1.54) Ref | 1.62 (0.47, 5.51) 1.23 (0.42, 3.64) 0.33 (0.13, 0.86) c 1.21 (0.52, 2.82) Ref |
Hypertension Yes No | 2.33 (0.89, 6.10) Ref | |
Hypercholesterolemia Yes No | 1.48 (0.63, 3.26) Ref | |
Diabetes Yes No | 3.14 (1.40, 7.07) c Ref | |
Asthma Yes No | 1.24 (0.48, 3.20) Ref | |
Rheumatoid Arthritis Yes No | 1.14 (0.34, 3.83) Ref | |
BMI, kg/m2 | 1.03 (1.01, 1.04) c | 0.90 (0.85, 0.95) c |
CRP | 1.22 (0.84, 1.76) | |
RDW | 1.68 (1.14, 2.46) c | |
Constant | 166.9 c | 5.89 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crook, J.M.; Yoon, S.-J.L.; Grundmann, O.; Horgas, A.; Johnson-Mallard, V. Subclinical Vitamin C Plasma Levels Associated with Increased Risk of CAD Diagnosis via Inflammation: Results from the NHANES 2003–2006 Surveys. Nutrients 2023, 15, 584. https://doi.org/10.3390/nu15030584
Crook JM, Yoon S-JL, Grundmann O, Horgas A, Johnson-Mallard V. Subclinical Vitamin C Plasma Levels Associated with Increased Risk of CAD Diagnosis via Inflammation: Results from the NHANES 2003–2006 Surveys. Nutrients. 2023; 15(3):584. https://doi.org/10.3390/nu15030584
Chicago/Turabian StyleCrook, Jennifer M., Saun-Joo L. Yoon, Oliver Grundmann, Ann Horgas, and Versie Johnson-Mallard. 2023. "Subclinical Vitamin C Plasma Levels Associated with Increased Risk of CAD Diagnosis via Inflammation: Results from the NHANES 2003–2006 Surveys" Nutrients 15, no. 3: 584. https://doi.org/10.3390/nu15030584
APA StyleCrook, J. M., Yoon, S. -J. L., Grundmann, O., Horgas, A., & Johnson-Mallard, V. (2023). Subclinical Vitamin C Plasma Levels Associated with Increased Risk of CAD Diagnosis via Inflammation: Results from the NHANES 2003–2006 Surveys. Nutrients, 15(3), 584. https://doi.org/10.3390/nu15030584