Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Cell Culture
2.3. ELISA
2.4. Western Blot Analysis
2.5. NK-92 Cell Proliferation
2.6. In vitro NK Cytotoxicity Assay
2.7. Fluorescent Antibody and Cell Surface Antigen Staining
2.8. Analysis of Short-Chain Fatty Acids (SCFAs) Present in the Culture Medium
2.9. Immunosuppression in BALB/c Mice by Cyclophosphamide
2.10. Complete Blood Cell Count
2.11. In Vivo NK Cytotoxicity Assay
2.12. Fluorescent Antibody and Cell Surface Antigen Staining
2.13. Splenocyte Proliferation Assay
2.14. Splenocyte Cytokine Production
2.15. H&E Staining and Immunohistochemistry (IHC)
2.16. Statistical Analysis
3. Results
3.1. Effects of Bifidobacterium and Limosilactobacillus on Pro-Inflammatory Cytokine Production and the Expression of MAPK Signaling Molecules in RAW 264.7 Cells
3.2. Effect of Bifidobacterium and Limosilactobacillus on NK-92 Cells
3.3. Analysis of SCFAs in L. fermentum Present in the Culture Medium
3.4. Effect of L. fermentum on the Weight Changes of Body, Liver and Spleen in CP-Treated Immunosuppressed Mice
3.5. Effect of L. fermentum on CBC in CP-Treated Mice
3.6. Effects of L. fermentum on the Frequency of T Cells and Cytotoxicity of NK Cells in CP-Treated Immunosuppressed Mice
3.7. Effect of L. fermentum on the Production of Cytokines (TNF-α, INF-γ) and Antibodies (IgM, Total IgG) in CP-Treated Immunosuppressed Mice
3.8. Effect of L. fermentum on the Intestinal Mucosal Barrier in CP-Treated Immunosuppressed Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.R.; Hombal, S.M. Cyclophosphamide (Cytoxan). A review on relevant pharmacology and clinical uses. J. Am. Acad. Dermatol. 1984, 11, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.; Alexander, M.J.; Steinfeld, J.L. Cyclophosphamide. A clinical study. JAMA 1963, 183, 165–170. [Google Scholar] [CrossRef]
- Ahlmann, M.; Hempel, G. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 2016, 78, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Hao, C.; Wang, J.; Wang, D.; Zhao, Y.; Li, Y.; Yao, W. High-dose cyclophosphamide administration orchestrates phenotypic and functional alterations of immature dendritic cells and regulates Th cell polarization. Front. Pharmacol. 2020, 11, 775. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46 (Suppl. 2), S58–S61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhamid, A.G.; El-Masry, S.S.; El-Dougdoug, N.K. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 2019, 10, 337–350. [Google Scholar] [CrossRef]
- Bendali, F.; Kerdouche, K.; Hamma-Faradji, S.; Drider, D. In vitro and in vivo cholesterol lowering ability of Lactobacillus pentosus KF923750. Benef. Microbes. 2017, 8, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Yang, T.Y.; Hsu, C.C.; Wei, Y.H.; Wu, C.C.; Tsai, Y.C. Lactobacillus paragasseri BBM171 Ameliorates Allergic Airway Inflammation Induced by Ovalbumin in Mice via Modulating the Th1/Th2 Balance. Microorganisms 2022, 10, 2041. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.H.; Qian, L.Y.; Pang, J.; Lin, J.Y.; Xu, Q.; Wang, L.H.; Huang, D.S.; Zou, H. The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 2017, 8, 59915–59928. [Google Scholar] [CrossRef] [Green Version]
- Elbanna, K.; El Hadad, S.; Assaeedi, A.; Aldahlawi, A.; Khider, M.; Alhebshi, A. In vitro and in vivo evidences for innate immune stimulators lactic acid bacterial starters isolated from fermented camel dairy products. Sci. Rep. 2018, 8, 12553. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, K.T.; Choi, M.; Lee, Y.; Paik, H.D. In vivo evaluation of immune-enhancing activity of red Gamju fermented by probiotic Levilactobacillus brevis KU15154 in mice. Foods 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Malissen, B. Innate and adaptive immunity: Specificities and signaling hierarchies revisited. Nat. Immunol. 2005, 6, 17–21. [Google Scholar] [CrossRef]
- Nagarkatti, M.; Nagarkatti, P.S.; Brooks, A. Effect of radon on the immune system: Alterations in the cellularity and functions of T cells in lymphoid organs of mouse. J. Toxicol. Environ. Health 1996, 47, 535–552. [Google Scholar] [CrossRef]
- Patel, A.A.; Ginhoux, F.; Yona, S. Monocytes, macrophages, dendritic cells and neutrophils: An update on lifespan kinetics in health and disease. Immunology 2021, 163, 250–261. [Google Scholar] [CrossRef]
- Oberholzer, A.; Oberholzer, C.; Moldawer, L.L. Cytokine signaling--regulation of the immune response in normal and critically ill states. Crit. Care Med. 2000, 28, N3–N12. [Google Scholar] [CrossRef]
- Lee, H.H.; Cho, Y.J.; Yu, D.; Chung, D.; Kim, G.H.; Kang, H.; Cho, H. Undaria pinnatifida Fucoidan-Rich Extract Induces Both Innate and Adaptive Immune Responses. Nat. Prod. Commun. 2019, 14, 1934578X19873724. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Cho, H. A novel membrane-bound interleukin-2 promotes NK-92 cell persistence and anti-tumor activity. Mol. Cell Toxicol. 2020, 16, 139–147. [Google Scholar] [CrossRef]
- Park, H.E.; Lee, W.K. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J. Funct. Foods 2018, 49, 518–525. [Google Scholar] [CrossRef]
- Lee, H.H.; Cho, Y.; Kim, G.H.; Cho, H. Undaria pinnatifida fucoidan-rich extract recovers immunity of immunosuppressed mice. J. Microbiol. Biotechnol. 2020, 30, 439–447. [Google Scholar] [CrossRef] [PubMed]
- de Roock, S.; van Elk, M.; Hoekstra, M.O.; Prakken, B.J.; Rijkers, G.T.; de Kleer, I.M. Gut derived lactic acid bacteria induce strain specific CD4(+) T cell responses in human PBMC. Clin. Nutr. 2011, 30, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Bonavida, B. Activation of natural killer cells by probiotics. Forum Immunopathol. Dis. Ther. 2016, 7, 41–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, S.; Kang, C.H. Immunostimulatory Activity of lactic acid bacteria cell-free supernatants through the activation of NF-kappaB and MAPK signaling pathways in RAW 264.7 cells. Microorganisms 2022, 10, 2247. [Google Scholar] [CrossRef]
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [Green Version]
- Cavaillon, J.M. Cytokines and macrophages. Biomed. Pharmacother. 1994, 48, 445–453. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.P.; Vale, V.L.; Silva Mda, C.; Araujo, I.B.; Trindade, S.C.; de Moura-Costa, L.F.; Rodrigues, G.C.; Sales, T.S.; dos Santos, H.A.; de Carvalho-Filho, P.C.; et al. MAPK involvement in cytokine production in response to Corynebacterium pseudotuberculosis infection. BMC Microbiol. 2014, 14, 230. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Hara, T.; Nagaoka, M.; Mike, A.; Mitsuyama, K.; Sako, T.; Yamamoto, M.; Kado, S.; Takada, T. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology 2009, 128, e170–e180. [Google Scholar] [CrossRef]
- Matsuguchi, T.; Takagi, A.; Matsuzaki, T.; Nagaoka, M.; Ishikawa, K.; Yokokura, T.; Yoshikai, Y. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Vaccine Immunol. 2003, 10, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prager, I.; Liesche, C.; van Ooijen, H.; Urlaub, D.; Verron, Q.; Sandstrom, N.; Fasbender, F.; Claus, M.; Eils, R.; Beaudouin, J.; et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 2019, 216, 2113–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, R.; Pupovac, A.; Evtimov, V.; Boyd, N.; Shu, R.; Boyd, R.; Trounson, A. Enhancing a natural killer: Modification of NK cells for cancer immunotherapy. Cells 2021, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Kim, J.S.; Park, H.M.; Kim, S.; Paek, N.S. Antioxidant activity and short-chain fatty acid production of lactic acid bacteria isolated from Korean individuals and fermented foods. Biotech 2021, 11, 217. [Google Scholar] [CrossRef]
- Correa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef] [PubMed]
- Azagra-Boronat, I.; Tres, A.; Massot-Cladera, M.; Franch, A.; Castell, M.; Guardiola, F.; Perez-Cano, F.J.; Rodriguez-Lagunas, M.J. Lactobacillus fermentum CECT5716 Supplementation in rats during pregnancy and lactation impacts maternal and offspring lipid profile, immune system and microbiota. Cells 2020, 9, 575. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Tajdozian, H.; Seo, H.; Kim, S.; Rahim, M.Z.; Lee, S.; Song, H.Y. Efficacy of Lactobacillus fermentumi from the vagina of a healthy woman against carbapenem-resistant klebsiella infections in vivo. J. Microbiol. Biotechnol. 2021, 31, 1383–1392. [Google Scholar] [CrossRef]
- Lim, S.M.; Jang, H.M.; Jang, S.E.; Han, M.J.; Kim, D.H. Lactobacillus fermentum IM12 attenuates inflammation in mice by inhibiting NF-κB-STAT3 signalling pathway. Benef. Microbes. 2017, 8, 407–419. [Google Scholar] [CrossRef]
- Hyun, S.H.; Ahn, H.Y.; Kim, H.J.; Kim, S.W.; So, S.H.; In, G.; Park, C.K.; Han, C.K. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: A randomized, double-blind, placebo-controlled trial. J. Ginseng. Res. 2021, 45, 191–198. [Google Scholar] [CrossRef]
- Winkelstein, A.; Neta, R.; Salvin, S.B. The toxicity of cyclophospamide for T and B cells. Acad. Press 1977, 1977, 69–571. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Zheng, Y.; Zhang, M.; Fei, W.; Sun, D.; Zhao, M.; Ye, Y.; Zheng, C. Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis. Br. J. Pharmacol. 2022, 179, 4315–4329. [Google Scholar] [CrossRef]
- John, W.; Hadden, E.M.; Hadden, J.R.; John, R.S. Effects of concanavalin A and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels. Proc. Natl. Acad. Sci. USA 1976, 73, 1717–1721. [Google Scholar] [CrossRef]
- Bandilla, K.K.; McDuffie, F.C.; Gleich, G.J. Immunoglobulin classes of antibodies produced in the primary and secondary responses in man. Clin. Exp. Immunol. 1969, 5, 627–641. [Google Scholar]
- Zuo, L.; Kuo, W.-T.; Turner, J.R. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, X.; Zhou, X.; Yi, R.; Yang, Z.; Zhao, X. Lactobacillus fermentum ZS09 mediates epithelial–mesenchymal transition (EMT) by regulating the transcriptional activity of the Wnt/β-Catenin signalling pathway to Inhibit colon cancer activity. J. Inflamm. Res. 2021, 14, 7281–7293. [Google Scholar] [CrossRef] [PubMed]
- Archer, A.C.; Muthukumar, S.P.; Halami, P.M. Lactobacillus fermentum MCC2759 and MCC2760 alleviate inflammation and intestinal function in high-fat diet-fed and streptozotocin-induced diabetic rats. Probiotics Antimicrob. Proteins 2021, 13, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, J.; Li, Y.; Wang, Y.; Wang, F.; Qiu, X.; Li, H. Sodium alginate modulates immunity, intestinal mucosal barrier function, and gut microbiota in cyclophosphamide-induced immunosuppressed BALB/c mice. J. Agric. Food Chem. 2021, 69, 7064–7073. [Google Scholar] [CrossRef]
- Jiang, M.; Dai, C.; Zhao, D.-H. VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int. J. Mol. Med. 2012, 29, 202–208. [Google Scholar] [CrossRef]
- Rose, E.C.; Odle, J.; Blikslager, A.T.; Ziegler, A.L. Probiotics, prebiotics and epithelial tight junctions: A promising approach to modulate intestinal barrier function. Int. J. Mol. Sci. 2021, 22, 6729. [Google Scholar] [CrossRef]
Origin | Species | Strain |
---|---|---|
Breast milk Fermented food Food | Limosilactobacillus reuteri | MG505 |
Limosilactobacillus fermentum | MG5159 | |
Limosilactobacillus fermentum | MG5091 | |
Infant feces | Lacticaseibacillus paracasei | MG5015 |
Bifidobacterium bifidum | MG731 | |
Bifidobacterium lactis | MG741 | |
Limosilactobacillus fermentum | MG4538 |
Strain | Acetic Acid (mg/L) | Propionic Acid (mg/L) | Butyric Acid (mg/L) |
---|---|---|---|
L. fermentum MG4538 | 4310.0 ± 31.9 | 2.07 ± 0.14 | 3.43 ± 0.00 |
L. fermentum MG5091 | 4310.0 ± 33.1 | 2.02 ± 0.15 | 3.96 ± 0.23 |
L. fermentum MG5159 | 4239.0 ± 31.5 | 1.84 ± 0.16 | 4.10 ± 0.29 |
Hematological Index (1) | Group | ||||||
---|---|---|---|---|---|---|---|
Control | CP | RG | MG4538 | MG5091 | MG5159 | 3Mix | |
WBC (×103 cells/μL) | 1.72 ± 0.27 a | 1.00 ± 0.25 c | 1.50 ± 0.35 abc | 1.09 ± 0.30 c | 1.58 ± 0.80 abc | 1.12 ± 0.37 bc | 1.69 ± 0.56 ab |
NEU (%) | 24.70 ± 5.97 c | 33.37 ± 4.9 b | 36.92 ± 7.69 ab | 34.25 ± 8.56 b | 39.73 ± 9.03 ab | 33.95 ± 5.30 b | 45.57 ± 8.96 a |
LYM (%) | 59.90 ± 6.00 a | 35.30 ± 10.1 b | 40.70 ± 5.88 b | 42.23 ± 5.46 b | 42.78 ± 5.09 b | 42.25 ± 7.06 b | 40.52 ± 8.26 b |
EOS (%) | 6.32 ± 3.28 c | 13.43 ± 1.82 a | 10.08 ± 2.17 b | 10.18 ± 3.19 b | 8.80 ± 1.98 bc | 9.07 ± 3.34 bc | 7.87 ± 2.30 bc |
BASO (%) | 2.50 ± 1.52 b | 7.03 ± 2.81 a | 2.82 ± 1.68 b | 2.85 ± 0.95 b | 2.87 ± 1.61 b | 2.55 ± 1.52 b | 2.72 ± 0.97 b |
RBC (×106 cells/μL) | 8.78 ± 0.15 a | 7.81 ± 0.53 b | 8.05 ± 1.03 ab | 8.75 ± 0.62 a | 8.67 ± 0.76 a | 8.50 ± 0.43 ab | 8.31 ± 0.37 ab |
HGB (g/dL) | 13.52 ± 0.47 a | 11.82 ± 0.77 b | 12.10 ± 1.51 b | 13.28 ± 0.82 a | 13.43 ± 1.19 a | 12.60 ± 0.63 ab | 12.43 ± 0.44 ab |
HCT (%) | 43.97 ± 2.97 a | 36.45 ± 3.81 d | 37.93 ± 4.15 cd | 42.80 ± 2.27 ab | 41.80 ± 3.66 abc | 39.37 ± 2.28 bcd | 39.88 ± 2.20 bcd |
MCV (fL) | 48.50 ± 2.48 a | 46.27 ± 1.20 b | 47.30 ± 1.21 ab | 47.20 ± 0.89 ab | 47.02 ± 0.49 ab | 46.52 ± 0.29 b | 48.70 ± 2.28 b |
MCH (pg) | 15 ± 0.17 a | 15.08 ± 0.10 a | 15.04 ± 0.14 a | 14.90 ± 0.17 a | 14.93 ± 0.08 a | 14.92 ± 0.12 a | 15.07 ± 0.20 a |
MCHC (g/dL) | 31.77 ± 0.49 a | 31.72 ± 0.90 a | 31.93 ± 0.88 a | 31.80 ± 0.32 a | 31.85 ± 0.39 a | 31.97 ± 0.25 a | 31.83 ± 0.39 a |
RDW (%) | 17.17 ± 0.54 a | 15.65 ± 0.87 b | 15.72 ± 1.11 b | 16.62 ± 0.57 ab | 16.63 ± 0.37 ab | 15.65 ± 0.42 b | 16.57 ± 2.25 ab |
MPV (fL) | 7.35 ± 0.21 c | 7.80 ± 0.31 ab | 8.00 ± 0.25 a | 7.67 ± 0.16 b | 7.70 ± 0.06 b | 7.65 ± 0.29 b | 7.77 ± 0.18 ab |
PLT (×103 cells/μL) | 606.00 ± 224.83 a | 224.83 ± 111.4 b | 517.00 ± 326.99 a | 584.33 ± 326.99 a | 530.83 ± 131.94 a | 553.67 ± 190.10 a | 522.17 ± 118.50 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, H.H.; Kang, C.-H.; Kang, H.; Cho, H. Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide. Nutrients 2023, 15, 1038. https://doi.org/10.3390/nu15041038
Kim S, Lee HH, Kang C-H, Kang H, Cho H. Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide. Nutrients. 2023; 15(4):1038. https://doi.org/10.3390/nu15041038
Chicago/Turabian StyleKim, SukJin, Hwan Hee Lee, Chang-Ho Kang, Hyojeung Kang, and Hyosun Cho. 2023. "Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide" Nutrients 15, no. 4: 1038. https://doi.org/10.3390/nu15041038
APA StyleKim, S., Lee, H. H., Kang, C. -H., Kang, H., & Cho, H. (2023). Immune-Enhancing Effects of Limosilactobacillus fermentum in BALB/c Mice Immunosuppressed by Cyclophosphamide. Nutrients, 15(4), 1038. https://doi.org/10.3390/nu15041038