Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Assessment of Diabetes Incidence
2.3. Assessment of Nutrient Intake
2.4. Basic Demographics
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison of Subjects with and without Diabetes Incidence
3.3. Interactions of Drinking Habits and Diabetes Incidence on Nutrients Intake
3.4. Prospective Relationship between Nutrient Intake and Diabetes Incidence According to Drinking Habits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- National Health and Nutrition Survey the Ministry of Health. Available online: https://www.mhlw.go.jp/stf/newpage_14156.html (accessed on 17 February 2023).
- Yoon, K.H.; Lee, J.H.; Kim, J.W.; Cho, J.H.; Choi, Y.H.; Ko, S.H.; Zimmet, P.; Son, H.Y. Epidemic Obesity and Type 2 Diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Wu, J.H.Y.; De Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-Analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary Fibre and Whole Grains in Diabetes Management: Systematic Review and Meta-Analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Huang, J.; Yang, Y.; Yang, Q.; Hu, H. Efficacy of Inulin Supplementation in Improving Insulin Control, HbA1c and HOMAAIR in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Clin. Biochem. Nutr. 2020, 66, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B.; Niaz, M.A.; Rastogi, S.S.; Bajaj, S.; Gaoli, Z.; Shoumin, Z. Current Zinc Intake and Risk of Diabetes and Coronary Artery Disease and Factors Associated with Insulin Resistance in Rural and Urban Populations of North India. J. Am. Coll. Nutr. 1998, 17, 564–570. [Google Scholar] [CrossRef]
- Do, D.; Marreiro, N.; Geloneze, B.; Tambascia, M.A.; Lerário, A.C.; Halpern, A.; Maria, S.; Cozzolino, F. Effect of Zinc Supplementation on Serum Leptin Levels and Insulin Resistance of Obese Women. Biol. Trace Elem. Res. 2006, 109, 109–118. [Google Scholar]
- Sun, Q.; Van Dam, R.M.; Willett, W.C.; Hu, F.B. Prospective Study of Zinc Intake and Risk of Type 2 Diabetes in Women. Diabetes Care 2009, 32, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Simental-Mendía, L.E.; Sahebkar, A.; Rodríguez-Morán, M.; Guerrero-Romero, F. A Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effects of Magnesium Supplementation on Insulin Sensitivity and Glucose Control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Likidlilid, A.; Sriratanasathavorn, C. Plasma Lipid Peroxidation and Antioxidiant Nutrients in Type 2 Diabetic Patients. J. Med. Assoc. Thai. 2006, 89, S147–S155. [Google Scholar]
- Reunanen, A.; Knekt, P.; Aaran, R.K.; Aromaa, A. Serum Antioxidants and Risk of Non-Insulin Dependent Diabetes Mellitus. Eur. J. Clin. Nutr. 1998, 52, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Shimazu, T.; Takachi, R.; Ishihara, J.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S. Dietary patterns and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2013, 67, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Goto, Y.; Ota, H.; Kito, K.; Mano, F.; Joo, E.; Ikeda, K.; Inagaki, N.; Nakayama, T. Characteristics of the Japanese Diet Described in Epidemiologic Publications: A Qualitative Systematic Review. J. Nutr. Sci. Vitaminol. 2018, 64, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Yoshida, D.; Hirakawa, Y.; Hata, J.; Honda, T.; Shibata, M.; Sakata, S.; Uchida, K.; Kitazono, T.; Ninomiya, T. Dietary Fiber Intake and Risk of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. J. Diabetes Investig. 2021, 12, 527–536. [Google Scholar] [CrossRef]
- Konishi, K.; Wada, K.; Tamura, T.; Tsuji, M.; Kawachi, T.; Nagata, C. Dietary Magnesium Intake and the Risk of Diabetes in the Japanese Community: Results from the Takayama Study. Eur. J. Nutr. 2017, 56, 767–774. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Kurotani, K.; Goto, A.; Oba, S.; Noda, M.; Sawada, N.; Tsugane, S. Low-Carbohydrate Diet and Type 2 Diabetes Risk in Japanese Men and Women: The Japan Public Health Center-Based Prospective Study. PLoS ONE 2015, 10, e0118377. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary Protein Intake and Risk of Type 2 Diabetes: Results from the Melbourne Collaborative Cohort Study and a Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, H.E.K.; Koskinen, T.T.; Voutilainen, S.; Mursu, J.; Tuomainen, T.P.; Kokko, P.; Virtanen, J.K. Intake of Different Dietary Proteins and Risk of Type 2 Diabetes in Men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2017, 117, 882–893. [Google Scholar] [CrossRef] [Green Version]
- Van Nielen, M.; Feskens, E.J.M.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J.W.J.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care 2014, 37, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- 5 Tips for a Healthy Diet This New Year. Available online: https://www.who.int/news-room/feature-stories/detail/5-tips-for-a-healthy-diet-this-new-year (accessed on 29 December 2022).
- Guasch-Ferre, M.; Becerra-Tomas, N.; Ruiz-Canela, M.; Corella, D.; Schroder, H.; Estruch, R.; Ros, E.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; et al. Total and Subtypes of Dietary Fat Intake and Risk of Type 2 Diabetes Mellitus in the Prevencí on Con Dieta Mediterŕanea (PREDIMED) Study. Am. J. Clin. Nutr. 2017, 105, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Barbaresko, J.; Pischke, C.R.; Iser, N.; Beckhaus, J.; Schwingshackl, L.; Schlesinger, S. Intake of Dietary Fats and Fatty Acids and the Incidence of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. PLoS Med. 2020, 17, e1003347. [Google Scholar] [CrossRef]
- Harding, A.H.; Day, N.E.; Khaw, K.T.; Bingham, S.; Luben, R.; Welsh, A.; Wareham, N.J. Dietary Fat and the Risk of Clinical Type 2 Diabetes: The European Prospective Investigation of Cancer-Norfolk Study. Am. J. Epidemiol. 2004, 159, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, R.M.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Hu, F.B. Dietary Fat and Meat Intake in Relation to Risk of Type 2 Diabetes in Men. Diabetes Care 2002, 25, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Salmerón, J.; Frank, B.H.; Manson, J.A.E.; Stampfer, M.J.; Colditz, G.A.; Rimm, E.B.; Willett, W.C. Dietary fat intake and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2001, 73, 1019–1026. [Google Scholar]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of Relative Validity of Food Group Intakes Estimated by Comprehensive and Brief-Type Self-Administered Diet History Questionnaires against 16 d Dietary Records in Japanese Adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Konishi, K.; Wada, K.; Yamakawa, M.; Goto, Y.; Mizuta, F.; Koda, S.; Uji, T.; Tsuji, M.; Nagata, C. Dietary Soy Intake Is Inversely Associated with Risk of Type 2 Diabetes in Japanese Women but Not in Men. J. Nutr. 2019, 149, 1208–1214. [Google Scholar] [CrossRef]
- Tsumura, K.; Hayashi, T.; Suematsu, C.; Endo, G.; Fujii, S.; Okada, K. Daily alcohol consumption and the risk of type 2 diabetes in Japanese men: The Osaka Health Survey. Diabetes Care 1999, 22, 1432–1437. [Google Scholar] [CrossRef]
- Seike, N.; Noda, M.; Kadowaki, T. Alcohol Consumption and Risk of Type 2 Diabetes Mellitus in Japanese: A Systematic Review. Asia Pac. J. Clin. Nutr. 2008, 17(4), 545–551. [Google Scholar]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a Risk Factor for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef] [Green Version]
- Polsky, S.; Akturk, H.K. Alcohol Consumption, Diabetes Risk, and Cardiovascular Disease Within Diabetes. Curr. Diab. Rep. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Feskens, E.J.M.; Vlrtanen, S.M.; Rasanen, L.; Tuomilehto, J.; Stengard, J.; Pekkanen, J.; Nlssinen, A. Dietary Factors Determining Diabetes and Impaired Glucose Tolerance A 20-Year Follow-up of the Finnish and Dutch Cohorts of the Seven Countries Study. Feskens, E.J.; Virtanen, S.M.; Räsänen, L.; et al. Dietary factors determining diabetes and impaired glucose tolerance: A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995, 18, 1104–1112. [Google Scholar]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino. Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Storlien, L.H.; Pan, D.A.; Kriketos, A.D.; O’Connor, J.; Caterson, I.D.; Cooney, G.J.; Jenkins, A.B.; Baur, L.A. Skeletal Muscle Membrane Lipids and Insulin Resistance. Lipids 1996, 31, S261–S265. [Google Scholar] [CrossRef]
- Borkman, M.; Storlien, L.H.; Pan, D.A.; Jenkins, A.B.; Chisholm, D.J.; Campbell, L.V. The Relation between Insulin Sensitivity and the Fatty-Acid Composition of Skeletal-Muscle Phospholipids. N. Engl. J. Med. 1993, 328, 238–244. [Google Scholar] [CrossRef]
- Odegaard, J.I.; Chawla, A. Pleiotropic Actions of Insulin Resistance and Inflammation in Metabolic Homeostasis. Science 2013, 339, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2022, 8, 1237. [Google Scholar] [CrossRef]
- MEXT: Standard Tables of Food Composition in Japan-2015-(Seventh Revised Version). Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm (accessed on 17 February 2023).
All (N = 969) | Males (N = 414) | Females (N = 555) | |||||
---|---|---|---|---|---|---|---|
Mean (n) | SD (%) | Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value * | |
Age | 61.00 | 11.30 | 60.04 | 10.80 | 61.72 | 11.69 | 0.021 |
BMI, kg/m2 | 23.09 | 3.20 | 23.59 | 3.24 | 22.72 | 3.09 | <0.001 |
Drinkers, n (%) | 522 | 53.90 | 341 | 82.37 | 181 | 32.61 | <0.001 |
Physical activities | 0.047 | ||||||
Daily | 116 | 12.00 | 52 | 12.56 | 64 | 11.53 | |
5–6 times a week | 91 | 9.40 | 43 | 10.39 | 48 | 8.65 | |
3–4 times a week | 98 | 10.10 | 30 | 7.25 | 68 | 12.25 | |
1–2 times a week | 148 | 15.30 | 73 | 17.63 | 75 | 13.51 | |
None | 516 | 53.30 | 216 | 52.17 | 300 | 54.05 | |
Diabetes incidence, n (%) | 44 | 4.50 | 25 | 6.04 | 19 | 3.42 | 0.053 |
Hypertension, n (%) | 255 | 26.30 | 110 | 26.57 | 145 | 26.13 | 0.877 |
Nutrition | |||||||
Energy, kcal | 1888.94 | 574.50 | 2114.71 | 595.95 | 1720.52 | 495.38 | <0.001 |
Animal protein, % energy | 8.40 | 3.20 | 7.92 | 3.27 | 8.75 | 3.12 | <0.001 |
Vegetable protein, % energy | 6.49 | 1.10 | 6.18 | 1.05 | 6.72 | 1.00 | <0.001 |
Animal fat, % energy | 11.13 | 3.80 | 10.35 | 3.88 | 11.71 | 3.69 | <0.001 |
Vegetable fat, % energy | 12.55 | 3.70 | 11.43 | 3.50 | 13.38 | 3.63 | <0.001 |
Carbohydrates, % energy | 55.80 | 8.30 | 54.38 | 8.90 | 56.86 | 7.60 | <0.001 |
Males (N = 414) | Females (N = 555) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
With DI (N = 25) | Without DI (N = 389) | With DI (N = 19) | Without DI (N = 536) | |||||||
Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value * | Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value * | |
Age | 64.08 | 9.31 | 59.78 | 10.85 | 0.035 | 63.42 | 7.88 | 61.66 | 11.80 | 0.358 |
BMI, kg/m2 | 24.57 | 2.88 | 23.53 | 3.26 | 0.092 | 24.04 | 4.22 | 22.67 | 3.03 | 0.177 |
Drinkers, n (%) | 20 | 80.00 | 321 | 82.50 | 0.749 | 4 | 21.10 | 177 | 33.00 | 0.274 |
Physical activities | 0.706 | 0.978 | ||||||||
Daily | 3 | 12.00 | 49 | 12.60 | 2 | 10.50 | 62 | 11.60 | ||
5–6 times a week | 3 | 12.00 | 40 | 10.30 | 1 | 5.30 | 47 | 8.80 | ||
3–4 times a week | 0 | − | 30 | 7.70 | 2 | 10.50 | 66 | 12.30 | ||
1–2 times a week | 5 | 20.00 | 68 | 17.50 | 3 | 15.80 | 72 | 13.40 | ||
None | 14 | 56.00 | 202 | 51.90 | 11 | 57.90 | 289 | 53.90 | ||
Hypertension, n (%) | 9 | 36.00 | 101 | 25.96 | 0.191 | 5 | 26.32 | 140 | 26.12 | 0.582 |
Nutrition | ||||||||||
Energy, kcal | 2208.04 | 660.07 | 2108.71 | 592.02 | 0.743 | 1901.98 | 511.61 | 1714.09 | 494.06 | 0.223 |
Animal protein, % energy | 8.40 | 3.80 | 7.89 | 3.23 | 0.966 | 8.70 | 3.16 | 8.75 | 3.12 | 0.831 |
Vegetable protein, % energy | 6.10 | 0.91 | 6.19 | 1.06 | 0.912 | 6.66 | 1.00 | 6.72 | 1.00 | 0.684 |
Animal fat, % energy | 10.73 | 4.36 | 10.32 | 3.86 | 0.692 | 11.65 | 3.49 | 11.71 | 3.70 | 0.979 |
Vegetable fat, % energy | 11.48 | 3.40 | 11.42 | 3.51 | 0.135 | 12.59 | 3.22 | 13.41 | 3.64 | 0.061 |
Carbohydrates, % energy | 54.48 | 9.57 | 54.38 | 8.87 | 0.607 | 58.61 | 6.98 | 56.80 | 7.62 | 0.305 |
Males (N = 414) | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-Drinkers (n = 73) | Drinkers (n = 341) | |||||||||||
With DI (n = 5) | Without DI (n = 68) | With DI (n = 20) | Without DI (n = 321) | DI * | Drinking * | DI × Drinking * | Simple Main Effect § | |||||
Mean (n) | SD (%) | Mean (n) | SD (%) | Mean (n) | SD (%) | Mean (n) | SD (%) | |||||
Animal protein, % energy | 10.12 | 4.07 | 7.85 | 3.39 | 7.97 | 3.71 | 7.89 | 3.20 | 0.302 | 0.545 | 0.091 | |
Vegetable protein, % energy | 6.07 | 0.61 | 6.94 | 0.99 | 6.11 | 0.98 | 6.03 | 1.01 | 0.163 | 0.111 | 0.023 | Non-drinkers: 0.040 |
Drinkers: 0.326 | ||||||||||||
Animal fat, % energy | 13.74 | 3.20 | 10.13 | 3.48 | 9.98 | 4.35 | 10.36 | 3.93 | 0.262 | 0.130 | 0.016 | Non-drinkers: 0.048 |
Drinkers: 0.149 | ||||||||||||
Vegetable fat, % energy | 12.20 | 2.46 | 12.45 | 3.71 | 11.30 | 3.63 | 11.21 | 3.44 | 0.232 | 0.151 | 0.979 | |
Carbohydrates, % energy | 56.09 | 7.44 | 60.88 | 7.58 | 54.08 | 10.15 | 53.00 | 8.51 | 0.732 | 0.003 | 0.148 |
Exp(β) | 95% CI (Lower) | 95% CI (Upper) | p-Value * | ||
---|---|---|---|---|---|
Non-drinkers | Vegetable protein | 0.208 | 0.046 | 0.935 | 0.041 |
(n = 73) | Animal fat | 1.625 | 1.020 | 2.589 | 0.041 |
Drinkers | Vegetable protein | 1.345 | 0.773 | 2.342 | 0.294 |
(n = 341) | Animal fat | 0.870 | 0.735 | 1.030 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, A.; Tsujiguchi, H.; Nakamura, M.; Hayashi, K.; Hara, A.; Suzuki, K.; Miyagi, S.; Kannon, T.; Takazawa, C.; Zhao, J.; et al. Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study. Nutrients 2023, 15, 1040. https://doi.org/10.3390/nu15041040
Ogawa A, Tsujiguchi H, Nakamura M, Hayashi K, Hara A, Suzuki K, Miyagi S, Kannon T, Takazawa C, Zhao J, et al. Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study. Nutrients. 2023; 15(4):1040. https://doi.org/10.3390/nu15041040
Chicago/Turabian StyleOgawa, Aya, Hiromasa Tsujiguchi, Masaharu Nakamura, Koichi Hayashi, Akinori Hara, Keita Suzuki, Sakae Miyagi, Takayuki Kannon, Chie Takazawa, Jiaye Zhao, and et al. 2023. "Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study" Nutrients 15, no. 4: 1040. https://doi.org/10.3390/nu15041040
APA StyleOgawa, A., Tsujiguchi, H., Nakamura, M., Hayashi, K., Hara, A., Suzuki, K., Miyagi, S., Kannon, T., Takazawa, C., Zhao, J., Kambayashi, Y., Shimizu, Y., Shibata, A., Konoshita, T., Suzuki, F., Tsuboi, H., Tajima, A., & Nakamura, H. (2023). Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study. Nutrients, 15(4), 1040. https://doi.org/10.3390/nu15041040