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Abstract: Probiotics have received wide attention as a potential way to alleviate gastrointestinal (GI)
motility disorders. Herein, we investigated the effects of Lacticaseibacillus paracasei JY062, Lactobacillus
gasseri JM1, and the probiotic combination at 5 × 109 CFU/mL on mice induced by loperamide and
explored the possible underlying mechanisms in GI motility disorder. After two weeks of probiotic
intervention, the results indicated that the probiotic combination alleviated GI motility disorder
better. It increased the secretion of excitatory GI regulators motilin, gastrin, and 5-hydroxytryptamine
(5-HT) and decreased the secretion of the inhibitory GI regulators peptide YY and nitric oxide
(NO), except vasoactive intestinal peptide. 5-HT and NO were related to the mRNA expression of
5-HT4 receptor and nitric oxide synthase, respectively. The intervention of probiotic combination
also increased the number of interstitial cells of Cajal and the expression of SCF/c-kit protein.
In addition, it also increased the abundance of beneficial bacteria (Lactobacillus, Rikenellaceae, and
Clostridiaceae_Clostridium) and improved the contents of short-chain fatty acids in cecum contents of
mice. In conclusion, the probiotic combination of L. paracasei JY062 and L. gasseri JM1 has the potential
to alleviate GI motility disorders by balancing intestinal homeostasis.

Keywords: probiotics; gastrointestinal regulatory peptides; SCF/c-kit; gut microbiota; short-chain
fatty acids

1. Introduction

Gastrointestinal (GI) motility disorder is one of the main mechanisms triggering func-
tional constipation and functional dyspepsia. Statistics showed that functional constipation
has a prevalence of about 14% in adults, and 25–35% of patients with functional dyspepsia
suffer from delayed gastric emptying and GI motility disorders [1,2]. Patients with GI
motility disorder can present with varying degrees of abdominal distension, loss of ap-
petite, nausea, halitosis, anxiety, and other symptoms [3]. Currently, drug therapy, such as
laxatives and prokinetics, is still the main treatment method for GI motility disorders, with
some limitations, including the single target of action, susceptibility to diarrhea, and high
recurrence rate after drug discontinuation [4,5]. More new therapeutic options have been
researched, such as probiotics, prebiotics, microbial metabolites, and natural ingredients
from plants [6–9].

Most of the strains with probiotic functions are concentrated in Lactobacillus and
Bifidobacterium [10], and the functions of probiotics have been well explained, such as
regulating gut microbiota, alleviating lipid metabolism disorder, and improving inflam-
mation [11–13]. Meanwhile, probiotics to alleviate GI motility disorders have received
widespread attention, and they could avoid the limitations and side effects of drug therapy.
More studies have demonstrated that Lactobacillus plantarum CQPC05, Bifidobacterium lactis
TY-S01, and Lactobacillus rhamnosus strains play an essential role in alleviating GI motility
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disorder by influencing the production pathways of neurotransmitters, improving GI regu-
latory peptides, balancing gut microbiota, and regulating intestinal metabolites [6,14–16].
Additionally, different probiotic strains improve GI motility disorders in different alleviat-
ing ways. In addition, multiple strains were more advantageous than single strains and
produced certain coordination effects to enhance their beneficial effects [17]. The probi-
otic compounds, including Lactobacillus acidophilus LA11-Onlly, Lacticaseibacillus rhamnosus
LR22, Limosilactobacillus reuteri LE16, Lactiplantibacillus plantarum LP-Onlly, and Bifidobac-
terium animalis subsp. lactis BI516, could promote the colonization of specific strains and
improve GI motility [18]. However, there are few studies on alleviating GI motility by the
probiotic combination of L. paracasei and L. gasseri.

In this study, the regulatory effects of single probiotics and their combination on GI
regulatory peptides, gut microbiota, and short-chain fatty acids (SCFAs) in mice with GI
motility disorders were explored. Additionally, the mechanism of them to alleviate GI
motility disorders was further investigated. This research could provide key insights for
probiotics to alleviate GI motility disorders and provide a theoretical basis for this probiotic
combination as a probiotic product and functional food.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

L. paracasei JY062 and L. gasseri JM1 were isolated from traditional fermented dairy
products and healthy infant feces, respectively, and they were cultured in De Man, Rogosa,
and Sharpe (MRS) broth (Qingdao Hope Bio-Technology Co., Ltd., Qingdao, China) at 37 ◦C
under aerobic conditions for 20 h. Then, the cell pellets were collected by centrifugation at
5000× g for 5 min and resuspended in sterile (sterilized at 121 ◦C for 15 min and cooled to
room temperature) phosphate buffer saline (PBS).

2.2. Mouse Model and Experimental Design

The male KM mice (n = 40, 6–7 weeks) were from Vital River Laboratory Animal
Technology Co., Ltd., (Beijing, China). They were raised in cages with a room temperature
of 22 ± 2 ◦C and a humidity of 55 ± 5% for 12 h of light/dark cycle. The experiment was
designed and modified from the previous description [19]. All mice had free access to
water and food for the first week to acclimatize to the environment. After seven days, the
mice were divided into five groups (n = 8 per group), including the normal control group
(NC), model group (M), L. paracasei JY062 group (JY), L. gasseri JM1 group (JM), and the
combination group (MIX) (L. paracasei JY062: L. gasseri JM1 = 1:2). All groups of mice except
the NC group were given 5 mg/(kg·d) body weight of loperamide by continuous gavage
for 7 days. At this time, mice in the NC group were continuously gavaged with equal
amounts of PBS. Then, mice of JY, JM and MIX groups were intragastrically administered
L. paracasei JY062, L. gasseri JM1, and the combination with 5 × 109 CFU/mL, at a dose of
10 mg/(kg·d) body weight for two weeks, respectively, whereas those of the NC and M
groups were intragastrically administered PBS with an equal dose. Mice were anesthetized
by intraperitoneal injection of ketamine and diazepam before sacrifice at the end of the
experiment.

2.3. Physiological Indicators

Before being sacrificed, the mice were fasted for 24 h. Then, they were intragastrically
administered 0.5 mL of ink and sacrificed 30 min later. The determination of the gastric
emptying rate and small intestine propulsive rate was slightly modified from previous
methods [20]. (1) Weighed the ink weight (a1) and total stomach weight (a2). Washed the
stomach contents and weighed the stomach net weight after drying (a3). (2) Determined the
distance from the pylorus to the front end of the ink (L1) and the distance from the pylorus
to the ileocecal region (L2) with a ruler. (3) The fecal moisture content was determined
by the low-temperature freeze-drying method. Weighed the plate weight (b1), the total
weight of the plate and feces before freeze-drying (b2), and the total weight of the plate and
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feces after freeze-drying (b3). (4) Gastric antrum, small intestine, and colon samples were
collected under sterile conditions. After soaking some tissues in 4% paraformaldehyde for
48 h, 5 mm-thick sections were used for hematoxylin and eosin (HE) staining to analyze
the histological characteristics [21]. The formulas were as follows:

Gastric emptying rate (%) = (1 − a2 − a3

a1
) × 100 (1)

Intestine propulsive rate (%) =
L1

L2
× 100 (2)

Fecal moisture content (%) =
b2 − b3

b2 − b1
× 100 (3)

2.4. Determination of GI Regulatory Peptides and Neurotransmitters

The concentrations of motilin (MTL), gastrin (GAS), peptide YY (PYY), vasoactive
intestinal peptide (VIP), and 5-hydroxytryptamine (5-HT) in serum were determined by
commercially available ELISA kits (Nanjing Jiancheng Co., Ltd., Nanjing, China). The nitric
oxide (NO) was determined by the nitric acid reductase biochemical kit (Beijing Solarbio
Science & Technology Co., Ltd., Beijing, China).

2.5. Reverse Transcription (RT) and Quantitative Real-Time PCR (qPCR)

To investigate the expression of related genes (Aqp4, Aqp8, Thp1, 5-HT4R, SERT, c-kit,
SCF, VIPR1, NOS), the total RNA of colon tissues was isolated by a Simple P Total RNA
Extraction Kit (Bioer Technology Co., Ltd., Hangzhou, China). cDNA was synthesized
by PrimeScript™ RT reagent Kit (TaKaRa Bio, Dalian, China). All procedures were per-
formed by the manufacturers’ instructions. The mRNA levels were determined by the
QuantStudio® 3 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) with
TB Green® Premix Ex Taq™ II (TaKaRa Bio, Dalian, China). The relative expression of
mRNA was calculated using the 2−∆∆Ct method. The primers used in this study were listed
in Table 1.

Table 1. The specific RT-qPCR primers for target genes.

Gene
Primer Sequences (5′→3′)

Forward Reverse

GAPDH TGACCTCAACTACATGGTCTACA CTTCCCATTCTCGGCCTTG
Aqp4 CAGCATCGCTAAGTCCGTCTTCTAC ACCGTGGTGACTCCCAATCCTC
Aqp8 GGAACATCAGCGGTGGACACTTC GGGAATTAGCAGCATGGTCTTGAGG
Thp1 ATCCGTCCTGTGGCTGGTTACC AGGTGTCTGGCTCTGGAGTGTAG

5-HT4R AAGGCTGGAACAACATCGGCATAG ACCACAGAGCAGGTGATAGCATAGG
SERT CGTCGTCGTGTCTTGGTTCTATGG GAACAGGAGAAACAGAGGGCTGATG
c-kit GATCTGCTCTGCGTCCTGTTGG AACTCTGATTGTGCTGGATGGATGG
SCF TGCGGGAATCCTGTGACTGATAATG CCGGCGACATAGTTGAGGGTTATC

VIPR1 AAGAAGGCTGGTCACAACTGGAAC AGAACTCAGTCTGTTGCTGCTCATC
NOS GTCAGAAGATGTCCGCACCAAGG TGTTCACCTCCTCCAGCCTGTC

2.6. Immunohistochemistry and TUNEL Staining Analysis

The colon sections were dewaxed in xylene, and antigens were retrieved with citrate
antigen retrieval solution, cooled to room temperature, blocked with goat serum for 1 h,
and incubated with anti-c-kit antibody overnight at 4 ◦C, followed by incubation with
biotinylated secondary antibody at room temperature for 1 h and horseradish enzyme-
labeled avidin at 37 ◦C for 30 min. They were then stained by diaminobenzidine (DAB)
and observed under a light microscope. The Mean Density (IOD/AREA) was determined
with Image-pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA).
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The determination of apoptosis of interstitial cells of Cajal (ICC) was done by TUNEL
staining analysis by a TUNEL apoptosis assay kit (Roche, Germany). According to the
previous method, with a few modifications [22], paraffin sections of colonic tissues were
treated with xylene and ethanol and washed with PBS. Proteinase K was added and
incubated at 37 ◦C for 30 min, and 3% bovine serum albumin (BSA) was added and
incubated at room temperature for 20 min. Then, it was incubated with 50 µL TUNEL
staining solution at 37 ◦C for 2 h, incubated with c-kit primary antibody (1:100) overnight
at 4 ◦C, and incubated with secondary antibody (1:400) in the dark at room temperature
for 50 min. 4′,6-diamidino-2-phenylindole (DAPI) was added dropwise in the dark for
10 min and the slice was sealed with anti-fluorescence quenching sealer. The images were
observed and acquired under a fluorescence microscope.

2.7. Western Blot (WB) Analysis

Determination of c-kit and SCF protein expression by WB analysis with modifica-
tions of previously described methods [23,24]. Specifically, frozen colonic tissue (100 mg)
was added to protein lysate (1 mL) containing protease inhibitor cocktail (1:200) and ho-
mogenized thoroughly in an ice bath. The homogenate was centrifuged at 13,000× g for
5 min, and the supernatant was collected to determine the protein concentration using
the bicinchoninic acid protein assay kit (ROCHE, Basel, Switzerland). Equal amounts of
protein samples (40 µg) were separated by 10% SDS-PAGE (Bio-Rad, Hercules, CA, USA)
and transferred to PVDF membranes (Millipore, Bedford, MA, USA). Membranes were
blocked with 5% skim milk in Tris-buffered saline with 0.1% Tween-20 (TBST) at room
temperature for 1 h. GAPDH was used as an internal reference. Membranes were incubated
overnight with primary antibody (1:1000) at 4 ◦C. After washing in TBST, the secondary
antibody (1:5000) was added and incubated at room temperature for 30 min, then the blots
were washed with TBST and exposed to enhanced chemiluminescence-plus reagents (ECL)
for chemiluminescence detection. The grayscale of the target bands was analyzed with
Image-pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD, USA).

2.8. Gut Microbiota Sequencing and Analysis

Cecum contents from mice were collected to assess the changes in the composition of
gut microbiota. The total DNA was extracted by using the DNA Extraction Kit (NucleoSpin,
MN, Germany). PCR amplification of the V3–V4 region of the 16S rRNA gene was per-
formed using primers (F: ACTCCTACGGGAGGCAGCAG, R: GGACTACHVGGGTWTC-
TAAT), as described previously [15]. DNA samples were sequenced by Illumina MiSeq.
Bacterial diversity analysis of the 16S rRNA sequence data was conducted after sequencing.

2.9. Determination of SCFAs

Cecum contents from mice were homogenized and sonicated to make a suspension
and centrifuged at 5000× rpm for 20 min. The extract (0.8 mL, 25 mg/L methyl tert-
butyl ether stock solution) and 50% H2SO4 (0.1 mL) were added as internal standards to
the supernatant (0.8 mL) and shaken for 10 min, sonicated for 10 min in ice bath water,
centrifuged at 10,000× rpm for 15 min, and then transferred the supernatant to a fresh glass
vial for GC-MS analysis according to Wang’s method [16].

2.10. Statistical Methods

The data were analyzed by one-way analysis of variance (ANOVA) using SPSS and
Origin software. The results were expressed as mean ± standard deviation (Mean ± SD).
Graphs were drawn using Excel software and GraphPad Prism 8.02.

3. Results
3.1. Effects on Physiological Indicators of Mice with GI Motility Disorder

As shown in Figure 1A–C, the gastric emptying rate and intestinal propulsive rate in
the M group were significantly lower than those in the NC group (p < 0.05), but the trend
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was reversed after the probiotic intervention, in which the MIX group could reach the NC
group level. Specifically, the gastric emptying rate in the MIX group (43.3 ± 3.1%) was
not significantly different from that in the JM group (41.3 ± 5.0%), but it was significantly
higher than that in the JY group (31.3 ± 3.1%). Additinally, the intestinal propulsive rate in
the MIX group (76.1± 1.2%) was significantly higher than that in the JY group (59.0± 3.2%)
and the JM group (61.2 ± 4.8%). Simultaneously, fecal moisture content was increased
after intervention, which significantly improved the lower level of the M group (p < 0.05)
(Figure 1D). These results indicated that L. paracasei JY062 and L. gasseri JM1 could promote
GI motility to some extent, and their combination was more effective.
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Figure 1. Alleviation of gastrointestinal (GI) motility disorder of probiotics: (A) change of gastric
emptying rate in mice; (B) change of small intestinal propulsive rate in mice; (C) specifics of ink
propulsion in the small intestine; (D) change of fecal moisture content in mice; (E) hematoxylin and
eosin (HE) staining for gastric antrum, small intestine and colon sections (200×). Different letters
(a, b, c and d) denote significant differences between different groups of mice (p < 0.05). NC stands
for the normal control group, M for the model group, JY for the L. paracasei JY062 group, JM for the
L. gasseri JM1 group, and MIX for the combination group. Red trangles in (C) stand the front end
of the ink, and different color arrows in (E) denote eroded and shed mucosal epithelial cells (red
arrows), inflammatory cells (blue arrows), submucosal edema (black arrows), Paneth cells (yellow
arrows) and goblet cells (green arrows).

The results of the HE staining (Figure 1E) showed that the local mucosal epithelial
cells in the gastric antrum of the M group were eroded and shed (red arrows), and a large
number of inflammatory cells (blue arrows) were infiltrated in the lower layer. In addition,
the villi of the small intestine were poorly structured, significantly shorter in length, and
had inflammatory cells (blue arrows). Additionally, inflammatory cells were also seen in the
colonic mucosa, and submucosal edema was evident (black arrows). After the intervention
of L. paracasei JY062 and L. gasseri JM1, the injury of the gastric antrum, intestine, and colon
were relieved to different degrees, and the improvement effect was more significant in the
MIX group, which was close to the NC group. Notably, the presence of Paneth cells (yellow



Nutrients 2023, 15, 839 6 of 17

arrows) and goblet cells (green arrows) in the small intestine and colon may be related to
the stress response of the body against the external environment. These results indicated
that the intervention of single and combination of L. paracasei JY062 and L. gasseri JM1 could
alleviate the degree of injury.

3.2. Effects on GI Regulatory Peptides and Neurotransmitters of Mice with GI Motility Disorder

The levels of GI regulatory peptides (MTL, GAS, PYY, VIP) and neurotransmitters
(5-HT, NO) were determined. The results (Figure 2A,B) showed that the contents of MTL
and GAS were improved after probiotic intervention, significantly higher than that of the
M group (p < 0.05). The levels of MTL and GAS in the MIX group were 423.3 ± 71.67 ng/L
and 128.1 ± 15.16 ng/L, respectively, and there was no significant difference compared
with the NC group (p > 0.05). Previous studies have shown that PYY and VIP, the inhibitory
regulators of GI hormones, could inhibit gastric acid secretion and GI motility [25]. Simi-
larly, the PYY level in M group was significantly increased compared with the NC group
(p < 0.05), and the trend was reversed after the intervention, especially in the MIX group
(Figure 2C). However, except for the NC group, there was no significant difference in VIP
levels between other groups (p > 0.05) (Figure 2D). The excitatory factor 5-HT and the
inhibitory factor NO were essential in the regulation of GI motility. The results showed that,
compared with the M group, the level of 5-HT was increased significantly after probiotic
intervention (p < 0.05), whereas NO showed an opposite trend, and the degree was more
obvious in MIX (Figure 2E,F). Thus, L. paracasei JY062, L. gasseri JM1, and, in particular,
their combination, may regulate the level of GI regulatory peptides and neurotransmitters.
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Figure 2. The contents of GI regulatory peptides and neurotransmitters in mice: (A) content of motilin
(MTL); (B) content of gastrin (GAS); (C) content of peptide YY (PYY); (D) content of vasoactive
intestinal peptide (VIP); (E) content of 5-hydroxytryptamine (5-HT); (F) content of nitric oxide (NO).
Different letters (a, b, c and d) denote significant differences between different groups of mice
(p < 0.05). NC stands for the normal control group, M for the model group, JY for the L. paracasei
JY062 group, JM for the L. gasseri JM1 group, and MIX for the combination group.

3.3. Effects on the Expression of Related Genes of Mice with GI Motility Disorder

Aquaporin is the protein in cell membranes that selectively transports water molecules.
The expression levels of Aqp4 and Aqp8 in the M group were significantly increased
compared with the NC group (p < 0.05), whereas those were reversed after the intervention,
especially in the MIX group (Figure 3A,B). The increased expression of Thp1 and 5-HT4R
and the decreased expression of SERT indicated that they were improved by intervention,
and Thp1 and 5-HT4R had more significant effects in the MIX group (Figure 3C–E). After the
intervention, the expressions of c-kit and SCF were increased (Figure 3F,G), whereas those
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of NOS and VIPR1 were decreased (Figure 3H,I), indicating that the single and combination
of L. paracasei JY062 and L. gasseri JM1 promoted the expression of pro-regulatory factors
and inhibited the expression of anti-regulatory factors.
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Figure 3. Regulatory effect of probiotics on related genes in mice: (A) mRNA relative expression of
Aqp4; (B) mRNA relative expression of Aqp8; (C) mRNA relative expression of Thp1; (D) mRNA
relative expression of 5-HT4R; (E) mRNA relative expression of SERT; (F) mRNA relative expression
of c-kit; (G) mRNA relative expression of SCF; (H) mRNA relative expression of NOS; (I) mRNA
relative expression of VIPR1. Different letters (a, b, c, d and e) denote significant differences between
different groups of mice (p < 0.05). NC stands for the normal control group, M for the model group, JY
for the L. paracasei JY062 group, JM for the L. gasseri JM1 group, and MIX for the combination group.

3.4. Effects on ICC, c-kit Protein and SCF Protein of Mice with GI Motility Disorder

The c-kit is a transmembrane receptor that produces the primary signaling of ICC
and is commonly used to label the amount of ICC [26]. The tissue section (200×) was
shown in Figure 4A; the brown-yellow color part indicated the positive expression. The
brown-yellow color part of the M group was seriously lighter compared with the NC group,
whereas those of the JY and JM groups were increased, especially in the MIX group. The
results of Mean Density (Figure 4B) showed that the level of positive expression in the MIX
group was significantly higher than those in the JY and JM groups (p < 0.05), reflecting the
distribution of ICC in the mice of each group and the relatively high number of ICC in the
MIX group. In addition, as shown in Figure 4C, red fluorescence indicated positive labeling
of c-kit and green fluorescence indicated cell apoptosis. The results showed an increase in
the positive expression of c-kit after the probiotic intervention, consistent with the trend of
immunohistochemical results. However, ICC apoptosis showed an opposite trend, with
the highest level of ICC apoptosis in the M group. Additionally, the ICC apoptosis was
alleviated after the probiotic intervention. Specifically, the level of ICC apoptosis in the
MIX group was lower than those in JY and JM groups, which was close to the level of NC
group. Simultaneously, the protein expression levels of both c-kit and SCF increased after
probiotic intervention, with a significant increase in the MIX group (Figure 4D,E), similar to
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the results for gene expression of c-kit and SCF. It can be concluded that the expression of
the c-kit and SCF protein was increased by the single and combination of L. paracasei JY062
and L. gasseri JM1, further promoting the amount of ICC increased after intervention.
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Figure 4. Description of interstitial cells of Cajal (ICC) and expression of c-kit and SCF protein in
colon: (A) ICC distribution in colon (200×); (B) the Mean Density of c-kit in colon; (C) ICC apoptosis
in colon (200×); (D) blot images of c-kit and SCF; (E) expression of c-kit and SCF protein. Different
letters (a, b, c, d and e) denote significant differences between different groups of mice (p < 0.05). NC
stands for the normal control group, M for the model group, JY for the L. paracasei JY062 group, JM
for the L. gasseri JM1 group, and MIX for the combination group.

3.5. Effects on Gut Microbiota of Mice with GI Motility Disorder

The abundance and diversity of gut microbiota are essential in improving GI diseases.
The effects of gut microbiota of mice with GI motility disorder were systematically stud-
ied and analyzed. The length distribution for amplicon sequence variants (ASVs) was
determined (Figure 5A). Those in all samples would mainly range from 400 bp to 450 bp
without abnormal sequence [27]. According to Figure 5B, it could be found that there were
557 ASVs in all groups, which were comprised of core intestinal microbiota in mice. There
were 162 ASVs overlapped between M and NC, whereas the number of ASVs overlapped
between JY, JM, MIX, and NC were 241, 227, and 264, respectively, indicating that compared
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with the M group, the gut microbiota compositions of diet intervention groups were closer
to that of NC group, and the advantage of MIX group was more significant. Alpha diversity
index (Figure 5C–F) showed no significant differences among different groups (p > 0.05),
but it also can be seen that those of the M group were all decreased, and the community
richness and diversity of mice could be improved to a certain extent after the intervention,
which was similar to Zhang’s results [28]. Beta diversity analysis (Figure 5G–I) showed that
the community structure of each sample in the NC group with high similarity was different
from that of other groups, but the opposite trend was observed for M group with more
dispersed samples. This trend could be ameliorated by L. paracasei JY062 and L. gasseri JM1,
especially their combination.
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Figure 5. Alpha diversity index and Beta diversity analysis of gut microbiota: (A) sequence-length
distribution; (B) ASV venn diagram; (C) Chao1 index; (D) Observed species index; (E) Shannon index;
(F) Faith’s PD index; (G) principal coordinates analysis (PCoA); (H) nonmetric multidimensional
scaling (NDMS) analysis; (I) hierarchical clustering analysis using the unweighted pair-group method
with arithmetic means (UPGMA). (A) stands for the normal control group (NC), (B) for the model
group (M), (C) for the L. paracasei JY062 group (JY), (D) for the L. gasseri JM1 group (JM), and (E) for
the combination group (MIX).

As shown in Figure 6A, gut microbiota of mice in different groups was analyzed at the
phylum level. Firmicutes and Bacteroidetes were predominant, accounting for about 90%
of the total. The abundance of Firmicutes was decreased and Bacteroidetes was increased
in the M group, whereas these trends were reversed in the probiotic groups, and notably
the abundance of Firmicutes in the MIX group (73.74%) was higher than the N group
(66.99%). At the family level (Figure 6B), the abundance of Bacteroidaceae, Prevotellaceae, and
Erysipelotrichaceae in the M group was significantly increased, whereas that of Rikenellaceae
was decreased. In addition to the reversal of their abundance after the intervention, Lach-
nospiraceae and Ruminococcaceae were increased simultaneously, especially in the MIX group.
At the genus level (Figure 6C), compared with NC group, the abundance of Bacteroides and
Prevotella was increased in the M group (8.63% and 3.08%) and decreased after the probi-
otic intervention, with the most significant changes in the MIX group (2.64% and 0.90%),
which closed to the NC group (0.57% and 0.85%). It was noteworthy that the abundance
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of Lactobacillus in the MIX group (0.72%) was the highest among all groups, which was
much higher than that in the NC group (0.29%). Simultaneously, the abundance of Clostridi-
aceae_Clostridium in the NC, M, JY, JM, and MIX groups were 0.23%, 0.11%, 0.08%, 0.13%,
and 0.20%, respectively. It could be seen that the abundance of Clostridiaceae_Clostridium in
the MIX group was closer to that in the NC group. As shown in Figure 6D, the samples in
the NC group were aggregated, indicating that the community structures of gut microbiota
were highly similar, whereas the gut microbiota composition in the M group was changed
with certain differences. After the intervention, the samples of the JY, JM, and MIX groups
were relatively clustered and had a high similarity, which further supported the results of
Beta diversity analysis. According to the LDA Effect Size (LEfSe) analysis (Figure 6E–G),
compared with the M group, Bifidobacterium, Faecalibacterium, and Veillonella were mainly
enriched in the JY group. Clostridiales, Lachnospiraceae, Butyricicoccus, and Anaerovbrio were
mainly enriched in the JM group. Rikenellaceae were mainly enriched in the MIX group.
The whole was consistent with the above description. Simultaneously, there was a certain
correlation between gut microbiota and other physiological indexes (Figure 6H), the mRNA
expression of VIPR1, Aap4, Aap8, and NOS were positively correlated with Bacteroides and
Prevotella and negatively correlated with Rikenella, whereas the mRNA expression of Thp1,
SCF, and 5-HT4R showed an opposite correlation with the above bacteria genus (p < 0.05,
p < 0.01). MTL was positively correlated with Rikenella and Clostridiaceae_Clostridium but
negatively correlated with Prevotella, whereas VIP showed an opposite trend to MTL in
terms of correlation with the above bacteria.

3.6. Effects on SCFAs of Mice with GI Motility Disorder

Current studies have shown that the levels of SCFAs could affect the intestinal motility
of mice, and some probiotics have been shown to regulate the production of intestinal
SCFAs [29,30]. The contents of SCFAs (acetic acid, propionic acid, butyric acid, isobutyric
acid, valeric acid, and isovaleric acid) in the M group were significantly decreased (p < 0.05),
whereas those were improved to different extents after the intervention, especially in
the MIX group; additionally, there were differences between the two strains, and the
improvement effect of the L. gasseri JM1 intervention was higher than that of the L. paracasei
JY062 intervention (Figure 7A–F). Further, the correlation analysis between SCFAs and
differential bacterial genus (Figure 7G) showed that the contents of the above SCFAs
were positively correlated with Rikenella (p < 0.05, p < 0.01) but negatively correlated with
Bacteroides (p < 0.05, p < 0.01). Among them, propionic acid, isobutyric acid, valeric acid, and
isovaleric acid were also negatively correlated with Prevotella (p < 0.05). In addition, all the
above SCFAs showed a certain positive correlation with Lactobacillus, Dehalobacterium, and
Clostridiaceae_Clostridium. Simultaneously, we found that the abundance of Lactobacillus,
Dehalobacterium, Clostridiaceae_Clostridium, and Rikenella were increased, whereas those of
Bacteroides and Prevotella were decreased after the intervention. The probiotic combination
could improve the contents of SCFAs by regulating gut microbiota.
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Figure 6. Differences in gut microbiota composition among the five groups (n = 4): (A) microbial com-
position at the phylum level; (B) microbial composition at the family level; (C) microbial composition
at the genus level; (D) heatmap of genus composition combined with cluster analysis at genus level;
(E) LDA Effect Size (LEfSe) analysis between M and JY groups; (F) LEfSe analysis between M and JM
groups; (G) LEfSe analysis between M and MIX groups; (H) the correlation heatmap between gut
microbiota and other physiological indexes. * p < 0.05 and ** p < 0.01 represent significant correlation
between gut microbiota and SCFAs. (A) stands for the normal control group (NC), (B) for the model
group (M), (C) for the L. paracasei JY062 group (JY), (D) for the L. gasseri JM1 group (JM), and (E) for
the combination group (MIX).
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Figure 7. The effect of probiotics on short-chain fatty acids (SCFAs) in mice: (A) content of acetic acid;
(B) content of propionic acid; (C) content of butyric acid; (D) content of isobutyric acid; (E) content
of valeric acid; (F) content of isovaleric acid; (G) correlation between gut microbiota and SCFAs.
Different letters (a, b, c, d and e) denote significant differences between different groups of mice
(p < 0.05). * p < 0.05 and ** p < 0.01 represent significant correlation between gut microbiota and
SCFAs. NC stands for the normal control group, M for the model group, JY for the L. paracasei JY062
group, JM for the L. gasseri JM1 group, and MIX for the combination group.

4. Discussion

At present, many studies have proven the probiotic function of lactic acid bacteria and
have been applied in functional food [31,32]. Herein, the mechanism by which L. paracasei
JY062 and L. gasseri JM1 and their combination alleviated GI motility disorders was ex-
plored, including the regulation of GI regulatory peptides, the balance of gut microbiota,
and the regulation of SCFAs.

Loperamide is a µ opioid receptor agonist that acts on intestinal smooth muscle
to inhibit the contraction of intestinal smooth muscle and suppress intestinal motility,
thereby prolonging the residence time of food in the small intestine [33]. Blockade of µ
opioid receptors and antagonism of GI calmodulin were the molecular mechanisms by
which loperamide affected intestinal motility [21]. In rodent models, it has been used
to cause delayed gastric emptying and decreased intestinal motility [16]. In the present
study, with 5 mg/(kg·d) body weight of loperamide for 7 days [34], the mice showed a
significant decrease in gastric emptying rate and small intestinal propulsive rate, as well
as symptoms of defecation difficulty and dark stool, indicating successful modeling. The
movement of GI contents is primarily driven by GI motility, which can be detected by
measuring gastric emptying rate and small intestine propulsive rate. After the probiotic
intervention, those were significantly increased in mice induced by loperamide, which
was consistent with Tang’s results [15]. Moreover, when feces remain in the intestine for a
longer time, more water is absorbed, resulting in a decrease in fecal moisture content that is
detrimental to intestinal motility. Aquaporins in the cell membrane can selectively transport
water molecules [35]. The decreased transcription level of Aqp4 and Aqp8 improved the
absorption of water in the intestinal lumen after the intervention. Simultaneously, fecal
moisture content showed an increasing trend. These initial data suggested that probiotics
may improve GI motility.

Moreover, the HE pathological analysis showed that the probiotic combination could
improve the organismal injury induced by loperamide. Of note was the appearance of
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Paneth cells in the small intestine, which secreted some antimicrobial molecules such as
defensins into the villi of the intestine lumen to help maintain the GI barrier when bacteria
or bacterial antigens invade the organism [36]. Unexpectedly, the appearance of Paneth cells
in the M group may be related to the stress response made by innate autoimmunity [37].

GI regulatory peptides, including excitatory regulators (MTL and GAS) and inhibitory
regulators (PYY and VIP), play an essential role in the regulation of GI motility. MTL
could cause intense phase III contraction of interdigestive migrating contractions, which
are closely associated with gastric emptying and intestinal propulsion [38]. GAS is the
peptide hormone secreted by G cells that strongly stimulates the secretion of gastric acid
and pepsin [39]. In our study, the levels of MTL and GAS were both increased, and
these were consistent with previous studies [14]. PYY is a typical appetite-suppressing
hormone secreted by L cells, which could inhibit gastric acid secretion and GI motility,
causing the body to feel satiety and reduce food intake [40]. We found that PYY was
increased in mice induced by loperamide, whereas it was improved after the probiotic
intervention. Some studies have demonstrated that VIP could relax smooth muscle and
slow down small intestinal motility [41]. The majority of VIP actions were mediated
by the expression of VIPR1 on the epithelial cells, cholinergic excitatory motor neurons
innervating longitudinal muscles, cholinergic secretomotor neurons, and mucosal mast
cells [42]. However, the downregulated transcription of VIPR1 after probiotic intervention
in this study was consistent with Ren’s results [19], whereas the improvement to VIP
was not significant, probably related to the failure of strain intervention to improve the
expression of VIPR1 protein. Meanwhile, it has been demonstrated that endogenous
VIP was released by numerous stimuli of at least two VIP-positive nerve populations:
cholinergic and non-cholinergic VIP-releasing nerves [25]. This may also be one of the
influencing factors in our study, but further research is needed. Therefore, L. paracasei JY062
and L. gasseri JM1 could promote GI motility by increasing excitatory regulators (MTL and
GAS) and decreasing inhibitory regulators (PYY).

Neurotransmitters, including the excitatory factor 5-HT and the inhibitory factor
NO, are crucial in GI regulation. 5-HT is mainly synthesized by enterochromaffin cells
(EC) in the presence of tryptophan hydroxylase 1 (Tph1) and released into the lamina
propria to act by activating the corresponding 5-HT receptor (5-HTR). Among the seven
families of 5-HTR, G protein-coupled receptor 5-HT4R is the most in contact with GI
contents, which is mainly responsible for the regulation of intestinal secretion [43,44].
Simultaneously, it will be inactivated under the action of the serotonin transporter (SERT),
and the reaction is terminated [45]. Tph1 and 5-HT4R with upregulated transcription and
SERT with downregulated transcription after probiotic intervention promoted the binding
of 5-HT to 5-HT4R and improved intestinal motility better, which was consistent with
previous results [46]. Surprisingly, it has also been shown that it can promote the secretion
of GI hormones such as MTL [6], and the improvement of GI hormones may be related
to 5-HT in our study. On the contrary, NO was considered as the main non-adrenergic,
non-cholinergic inhibitory neurotransmitter responsible for smooth muscle relaxation [47].
Studies have shown that VIP could stimulate the production of NO [48], but there was
no significant improvement in VIP after the probiotic intervention, indicating NO may
still be affected in other mechanisms. Notably, nitric oxide synthase (NOS) could catalyze
the synthesis of NO [49]. We found that the mRNA level of NOS was decreased after the
probiotic intervention, especially the probiotic combination, which showed the same trend
as the concentration of NO. Therefore, the probiotic combination could improve GI motility
disorder by NO by regulating the transcription level of NOS.

ICC, important pacemaker cells in the intestine, are responsible for the generation of
slow wave potential and smooth muscle contraction [50]. The dimer was formed by the
combination of stem cell factor (SCF) and tyrosine kinase receptor c-kit that specifically
labeled ICC, which regulated the proliferation and differentiation of ICC [51]. If this
pathway was blocked or inhibited, resulting in a decrease in the number of ICC [52]. We
found that mRNA expression of c-kit and SCF and protein expression of c-kit and SCF
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tended to increase after the probiotic intervention, indicating that L. paracasei JY062 and
L. gasseri JM1 could increase ICC numbers by stimulating SCF/c-kit pathway.

The abundance and diversity of gut microbiota are crucial in GI diseases. In our study,
we explored the effects of loperamide, single probiotics, and the combination of L. paracasei
JY062 and L. gasseri JM1 on gut microbiota of mice with GI motility disorder. Specifically,
the abundance of Bacteroides, Prevotella, and Erysipelotrichaceae was increased in the M group
and significantly reduced after the probiotic intervention. It was generally accepted that
gram-negative Bacteroidetes contained two dominant genera (Bacteroides and Prevotella)
that had the potential to be linked with chronic inflammatory conditions [53], which may
be one of the causes of inflammatory cell infiltration in the M group known by HE patholog-
ical analysis. Previous studies found that Erysipelotrichaceae was observed in diet-induced
obese animals [54,55], and the increased abundance of Erysipelotrichaceae in M group was
indicated that there may be a risk of lipid metabolism disorders in loperamide-induced
GI motility disorder. It could be seen that the intestine of mice in the M group was more
likely to be colonized by harmful bacteria, thus disrupting the balance of the intestinal
microenvironment and potentially increasing the risk of other diseases. Conversely, the
abundance of Lachnospiraceae, Ruminococcaceae, and Rikenellaceae was improved under pro-
biotic intervention. Among them, Lachnospiraceae and Ruminococcaceae belonging to the
Firmicutes phylum are other important bacteria for producing SCFAs and might be related
to improving cardiovascular health [56,57]. Rikenellaceae belonging to the Bacteroidetes
phylum could produce acetic acid and propionic acid and have the potential to protect
against cardiovascular and metabolic diseases associated with visceral fat [58,59]. Interest-
ingly, we found a significant increase in the abundance of Rikenellaceae, despite a decrease
in that of Bacteroidetes. It is widely recognized that Lactobacillus and Bifidobacterium could
regulate intestinal metabolites, reduce inflammation, and improve immunity [13,60]. Ad-
ditionally, it was important that members of Clostridiaceae are known for the production
of butyrate by carbohydrate fermentation [61]. Likewise, the increase of Lactobacillus and
Clostridiaceae_Clostridium in the MIX group and Bifidobacterium in the JY group were shown,
which was similar to previous results [11,62]. Our results suggested that the single and
combination of L. paracasei JY062 and L. gasseri JM1 improved the gut microbiome of mice,
where the improvement of multiple GI functional parameters was related to the changes
in microbiome composition by correlation analysis. Thus, the changes in host GI function
could be reflected by changing gut microbiota composition triggered by the ingestion
of probiotics.

Furthermore, the interaction between gut microbiota and SCFAs could be demon-
strated by the fact that SCFAs are important metabolites of microbiota metabolism, and
they can inhibit the growth of harmful bacteria and stimulate the growth of beneficial bacte-
ria [63,64]. SCFAs showed an indispensable role in intestinal health, for instance, acetic acid
could promote intestinal motility by promoting the absorption of water and electrolytes,
and propionic acid could combine with cations to form propionate to the liver to participate
in gluconeogenesis to provide energy for extensive metabolism and intestinal motility [65].
Apart from that, SCFAs have more functions, including the anti-inflammatory effect of
butyric acid and the inhibitory effect of valeric acid on liver cancer [66,67]. Although there
was no significant improvement in some SCFAs (isobutyric acid and isovaleric acid) after
the intervention of single L. gasseri JM1 and L. paracasei JY062 respectively, SCFAs were
mostly increased after the intervention of their combination, along with an increase in
SCFAs-producing bacteria, further indicating their interaction. Therefore, the improve-
ment in GI motility could be influenced by the increased SCFAs due to the change in
gut microbiota.

5. Conclusions

In summary, the probiotic combination of L. paracasei JY062 and L. gasseri JM1 could
alleviate GI motility disorder in mice, specifically by improving the secretion of MTL, GAS,
PYY, 5-HT, and NO, and increasing the expression of c-kit and SCF protein. In addition, gut
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microbiota was regulated through an increase in SCAFs-producing bacteria (Lactobacillus,
Rikenellaceae, and Clostridiaceae _Clostridium) and a decrease in harmful bacteria (Bacteroides
and Prevotella). Additionally, the concentrations of acetic acid, propionic acid, butyric
acid, and valeric acid were also increased mostly. Thus, it showed that the combination of
L. paracasei JY062 and L. gasseri JM1 could balance intestinal homeostasis through multiple
actions to alleviate GI motility disorder in mice induced by loperamide. This study could
provide a potential adjuvant therapeutic option for alleviating GI motility disorders and
provide strains for the subsequent development of functional foods.
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