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Abstract: The number of diabetes mellitus patients is increasing rapidly worldwide. Diet and nutri-
tion are strongly believed to play a significant role in the development of diabetes mellitus. However,
the specific dietary factors and detailed mechanisms of its development have not been clearly elu-
cidated. Increasing evidence indicates the intestinal microbiota is becoming abundantly apparent
in the progression and prevention of insulin resistance in diabetes. Differences in gut microbiota
composition, particularly butyrate-producing bacteria, have been observed in preclinical animal
models as well as human patients compared to healthy controls. Gut microbiota dysbiosis may
disrupt intestinal barrier functions and alter host metabolic pathways, directly or indirectly relating
to insulin resistance. In this article, we focus on dietary fat, diabetes, and gut microbiome characteri-
zation. The promising probiotic and prebiotic approaches to diabetes, by favorably modifying the
composition of the gut microbial community, warrant further investigation through well-designed
human clinical studies.
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1. Introduction

Diabetes, the epidemic of the 21st century, has become one of the major threats
to human health and has greatly increased the global burden of the disease [1,2]. The
development of diabetes is associated with a number of factors, including excessive dietary
intake, genetics, and a sedentary lifestyle [3]. Dietary composition is an important factor
influencing the risk of developing diabetes [4], and the quantity and/or quality of dietary
fat in diabetes have attracted considerable interest. Dietary fat, especially saturated fatty
acid, has been considered to be an unhealthy dietary component due to its high energy
density [5,6]. The excessive intake of dietary fat is thought to be associated with obesity and
metabolic disorders [7], and the relationship between high-fat diets (HFDs) and diabetes has
received extensive attention in past studies. Studies have confirmed that 59% of safflower
oil can lead to insulin resistance in rats [8]. With HFD supplementation, beta cell senescence
leads to a reduction in insulin release [9].

Gut microbes refer to microbiota present in the gastrointestinal tract and are associated
with energy harvesting and storage and the metabolism of many metabolic functions,
such as amino acids and carbohydrates [10,11]. Gut microbes are affected by diet, and
when mice were shifted to a high-fat, high-sugar diet, the structure of the microbiota was
altered within one day [12]. An HFD of 60% lard and soybean oil resulted in a decrease
in Bacteroidetes and an increase in Firmicutes and Proteobacteria in mice [13]. Imbalances in
gut microbes are associated with metabolic diseases such as obesity and diabetes through
mechanisms such as increasing the amount of energy obtained from the diet, affecting fatty
acid metabolism in the liver and adipose tissue, and increasing serum concentrations of
branched-chain amino acids causing insulin resistance [14–16].
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This review discusses possible metabolic dysregulation induced by an HFD, partic-
ularly the changes in diabetes and gut microbes. In order to mitigate the prevalence of
diabetes caused by an HFD, appropriate animal models are selected to explore the cel-
lular and molecular mechanisms between gut microbiome and diabetes. Moreover, this
review highlights the anti-diabetic effects of dietary therapy, therapeutic interventions, and
probiotics, as well as the mechanisms of their actions.

2. High-Fat-Diet-Induced Metabolic Dysfunction
2.1. Consumption of Dietary Fats Is Generally Increasing

Over thousands of years, diet consumption, in conjunction with other aspects of daily
lifestyles such as exercise, has been associated with metabolic health. As one of the three
important nutrients, dietary fats are mainly from edible oils, dairy products, meat, nuts, and
other foods. They provide energy, act as a carrier of fat-soluble vitamins, and participate in
the metabolism of cells and tissues as biologically active components [17,18]. Inadequate
total dietary fat intake can easily lead to malnutrition. However, excessive dietary fat intake
is also associated with nutrition-related diseases, including obesity, diabetes, heart disease,
and cancer [19].

A typical Western diet contains different forms of fats, such as triglycerides, cholesterol,
phospholipids, and long-chain fatty acids. Recently, people’s dietary structure has gradually
shifted towards a high-calorie diet with increasing dietary fat intake since the occurrence
of economic development and industrialization. The Global Burden of Disease Nutrition
and Chronicity Expert Group systematically assessed dietary consumption in 187 countries
worldwide and showed that the global average intake of polyunsaturated fatty acids
(PUFAs) was about 5%, and the average intake of saturated fatty acids (SFAs) was about
11% [20]. A study of 29 countries found that total trans fat (TFA) intake ranged from 0.3%
to 4.2% of total energy intake (E%) in each country, with seven countries having trans-fat
intakes above the WHO recommendation of 1% [21]. The Chinese National Nutrition
Survey shows that between 1992 and 2002, the total fat intake of Chinese people rose from
22% to 29.8%, with the amount of energy obtained from animal food rising from 9.3%
to 13.7% [22]. The excessive intake of dietary fat can lead to the development of various
chronic diseases related to fat metabolism.

Both the US Public Health Dietary Recommendations and the UK Public Health
Dietary Recommendations state that total fat consumption should be reduced to less than
35% of total energy intake, with the saturated fat intake being limited to less than 10%
of daily calories [23]. A high-fat diet in humans refers to a calorie intake of 30–75% [24].
As can be seen from the literature, diets with different higher fatty acid compositions are
considered to be HFDs. Stocks T et al. defined an HFD as an intake of 40–45% of energy
derived from fat [25]. André J Tremblay defined an HFD in a cohort study as 37% fat
intake, with saturated fat intake at 15%, monounsaturated fatty acids (MUFAs) at 12.7%,
PUFA at 4.3%, and TFA at 3.5% [26]. Osterberg et al. regarded an HFD as 55% fat intake
in their study, with saturated fat accounting for 25% of total energy intake [27]. Cameron
J Holloway, in his study, chose an HFD as one in which 70% of the daily calorie intake is
fat [28].

2.2. Excessive Dietary Fat Intake Exacerbated Metabolic Disorders

Excessive fat intake can lead to excess nutrients in the body and adversely cause
systematic metabolic changes in blood plasma, liver, urine, and other organs, involving
multiple metabolic pathways, including tricarboxylic acid cycle, glycolysis, lipogenesis,
and gut microbiota functions together with the metabolisms of fatty acids, amino acids,
choline, and others. These dynamic metabolic responses may result in the development
and progression of HFD-induced metabolic disorders, including the dysbiosis of gut
microbes [29] and the inflammation of peripheral tissues such as the central nervous
system, liver, adipose tissue, and skeletal muscle [30,31].
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Although there is still some controversy, a growing body of research points to the
development of cardiovascular disease with excessive fat intake (especially SFA) [6,32]. An
HFD fed to mice can lead to endothelial dysfunction by reducing the ability of vascular
tissue to scavenge superoxide anions [33]. Compared to an HFD with unsaturated fatty
acids such as olive oil, a 60%-lard diet reduces endothelial NO synthase activity, thereby
affecting vascular homeostasis [34]. In a rabbit model, HFD induction led to early vascular
injury through endothelial dysfunction and increased vascular reactivity [35]. A random-
ized controlled trial (RCT) has also shown that high SFA intake leads to increased plasma
concentrations of medium and small LDL particles, increasing the risk of cardiovascular
disease [36].

An association between an HFD and cognitive impairment and neurodegenerative
diseases has also been found in human epidemiological studies [37]. SFA intake has been
positively associated with Alzheimer’s disease, dementia, mild cognitive impairment, and
cognitive decline [38,39]. An HFD induces oxidative stress in the brain leading to cognitive
impairment and enhances cerebral amyloid angiopathy promoting the development of
Alzheimer’s [40,41]. A high-fat palm oil diet for 16 months leads to amyloid deposits
in the brains of mice, thought to be a marker of Alzheimer’s disease [42]. Cognitive
impairment due to an HFD may be related to oxidative stress. A 60%-lard diet increases
brain inflammation in mice, significantly increasing the expression of the cytokines TNFα
and IL-6, and the chemokine MCP-1, leading to impaired cognitive performance [40]. In
rats, a diet of 40% fat for three months was found to impair learning and memory function,
with more severe damage seen with a diet rich in SFA, lard, compared to a diet rich in
unsaturated fatty acids, soybean oil [43].

It has been well documented in human and animal models that high-fat diets are asso-
ciated with fatty liver disease. The HFD diet is widely used to induce hepatic steatosis or
non-alcoholic fatty liver disease in experimental animals. The accumulation of triglycerides
and cholesterol in the livers of rats fed 35% lard for 12 weeks occurs, which can lead to
fatty liver degeneration [44]. Mice fed an HFD developed varying degrees of fatty liver
disease [44]. Mice induced with an HFD for 16 weeks showed an obese and inflammatory
phenotype, while the liver showed an increase in natural killer T cells and clusters of
differentiation (CD)8+ T-cells, which play an important role in obesity-associated adipose
tissue inflammation [45]. It has been suggested that total fat intake is positively associated
with hepatic steatosis in overweight adolescents [46]. Lisis et al. confirmed that total fat
intake was associated with non-alcoholic fatty liver in patients with hepatic steatosis [47].

There is a general consensus that a long-term HFD leads to diabetes, established in
both animal and human experiments. Diabetes (defined as fasting blood glucose equal
to or above 7 mmol/L) is a chronic metabolic disease caused by insulin abnormalities
and manifested as an increase in blood glucose [44,48]. Diabetes can lead to a variety of
complications, including retinopathy, nephropathy, peripheral neuropathy, cardiovascular
and cerebrovascular complications, arteriopathy of the lower limbs, and hypertension [49].
According to the classification proposed by the American Diabetes Association and adopted
by the WHO [45], there are four types of diabetes: type 1 diabetes, type 2 diabetes, ges-
tational diabetes, and other special types of diabetes such as neonatal diabetes, etc. [46].
According to the 10th edition of the Diabetes Atlas published by the International Diabetes
Federation [47], the global prevalence of diabetes among people aged 20–79 years was
predicted to be about 10.5% (536.6 million people) in 2021, rising to 12.2% (783.2 million
people) in 2045. The 2017 Global Burden of Disease Study states that diabetes is the lead-
ing cause of diet-related death and disability, second only to cardiovascular disease and
cancer [50]. The pathogenesis of type 2 diabetes is complex, and the causes of diabetes
have not yet been fully explored. Diabetes is associated with a number of factors, including
lifestyle, genetic, and environmental factors, with diet playing an important role in the
pathogenesis of type 2 diabetes. Excessive energy intake is thought to be a major cause of
the type 2 diabetes epidemic [51]. In a nurses’ health study, higher dietary intake of TFA
was associated with increased diabetes [52]. A prospective cohort study noted that whole
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grain intake was negatively associated with type 2 diabetes [53]. With a long-term HFD, a
lack of exercise, genetics, and aging, the body becomes metabolically disturbed, and the
balance of blood glucose in the body is disturbed, causing an increase in blood glucose
and leading to the development of type 2 diabetes. An HFD is currently one of the main
methods of inducing diabetes in rodent models, and HFD-induced diabetes in rodents
is associated with weight gain, hyperglycemia, insulin resistance, hyperinsulinemia, and
accumulation of lipids [50]. An HFD can lead to hyperglycemia, insulin resistance, and
damage to pancreatic beta cells by affecting glucose and lipid metabolism in the metabolic
organs [51].

3. HFD-Induced Diabetes in Animal Models and Humans

An HFD leads to fat accumulation and increased blood sugar, causing insulin resis-
tance and beta cell damage, causing diabetes in humans [30]. The ethical aspects of human
research have necessitated the development of animal models of diabetes. Animal models
of diabetes can better explore the pathogenesis of diabetes and help to reveal the pathogene-
sis of diabetes. Currently, common models of diabetes include rodents, non-human primate
models, large animals, and non-mammalian models [54]. Within these models, HFD induc-
tion is a common approach, and common symptoms of HFD-induced diabetes in animal
models include weight gain, hyperinsulinemia, and disruption of glucose homeostasis [55].

3.1. HFD-Induced Diabetes in Human Intervention Studies

The strongest evidence about the relationship between diet and the progression of dis-
ease comes from RCTs. Most of the current studies on the relationship between an HFD and
diabetes are cohort studies. An HFD can lead to high type 2 diabetes by affecting glucose
and lipid metabolism, which in turn can impair the function of major metabolic organs [56],
including adipose tissue, pancreas, and liver. Table 1 summarizes the relationship between
dietary fat and diabetes in human studies.

Adipose tissue is a loose connective tissue consisting of cells filled with lipids [57].
As an important organ involved in energy homeostasis, adipose tissue produces various
bioactive substances, such as adipocytokines and fatty acids, which play a key role in the
development of diabetes [58]. An HFD also has an effect on gene expression in adipose
tissue; an RCT of patients with metabolic syndrome found that a high saturated fat diet
increased the expression of lipolytic genes, which may be associated with impaired insulin
sensitivity [59].

The pancreatic beta cells can maintain blood glucose stability by secreting insulin to
promote glucose uptake by peripheral tissues [60]. Type 2 diabetes eventually develops
when pancreatic beta cells do not secrete enough insulin to meet the demands of insulin
resistance. The decrease in beta cell mass in type 2 diabetics is due to beta cell apoptosis [61].
In pre-diabetes, blood glucose can still be maintained at normal levels due to the com-
pensatory response of the beta cells [62]. As oxidative stress and inflammatory responses
proceed in later stages, the compensatory mechanisms of the beta cells are continuously
compromised, eventually leading to the development of type 2 diabetes [63].

Under normal physiological conditions, hepatic glucose production is regulated by a
combination of insulin and glucagon, with glucagon inducing hepatic glucose production
and insulin inhibiting it [64]. As there is insulin resistance in diabetes, the inability of
insulin to suppress liver glucose production leads to hyperglycemia [65]. An HFD can
lead to fat accumulation in the liver, causing insulin resistance and thus disrupting blood
glucose homeostasis. An HFD has been shown to significantly increase liver fat levels in
56% of obese women [66].
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Table 1. High-fat diet and human diabetes intervention studies.

Diet Participants Duration Findings References

Randomized controlled intervention trials (RCTs)

50 E % carbohydrate, 20 E % protein, 5
E% PUFAs

• SFA: 20 E% SFAs, 5 E% MUFAs
• cis-MUFA: 20 E% cis-MUFAs, 5

E% SFAs
• trans MUFA: 20 E%

trans-MUFAs, 5 E% SFAs

Obese type 2 diabetes
patients aged 42–58

(N = 16)
6 weeks

No difference in postprandial
glucose and serum lipids;

increased serum insulin and
C-peptide for SAT and trans

MUFA diets

[67]

45 E% carbohydrate, 15 E% protein

• Saturated fat diet (butter and
margarine)

• Monounsaturated fatty acid diets
(oleic acid)

Healthy people aged
30–65 (N = 162) 3 months

Insulin sensitivity was
significantly impaired for SAT

diet, while there was no
difference for MUFA diet

[68]

• Control group: regular diet
• Intervention group:

carbohydrate >50 E%, fat <30 E%

Overweight people
aged >40 with

glucose tolerance
(7.8–11.1) mmol/l

(N = 102)

3.1 years
55% reduction in the incidence
of diabetes in the intervention

group
[69]

Cohort

Fat intake (total, SFA, MUFA, and
PUFA)

Healthy people aged
40–69 (N = 1173) 2 years

Total fat is negatively
associated with insulin

sensitivity
[70]

Fat intake (SFA, MUFA, PUFA, TFA,
long-chain omega-3 PUFA, and

animal and vegetable fat)

Healthy women aged
45–50 (N = 35,988) 11 years

Diabetes incidence is
negatively associated with

vegetable fats
[71]

Fat intake (total fat, SAT, MUFA-oleic
acid, PUFA-linoleic acid)

Healthy men aged
40–75 (N = 42,504) 12 years

Total fat and SAT intake are
associated with a higher risk of

type 2 diabetes
[72]

Foods high in fat (vegetable oils,
butter, margarine, nuts and seeds, and

cakes and biscuits)

European Prospective
Investigation into

Cancer (N = 340,234)
9 years

Margarine consumption is
positively associated with

diabetes risk
[73]

Fat intake (SFA, MUFA, PUFA, TFA,
animal fats, vegetable fats, marine
omega-3 fatty acids, non-marine

omega-3 fatty acids, and omega-6
linoleic acid (18:2n-6))

The people who were
free of diabetes but

were at high
cardiovascular risk

were aged 55–80
(N = 3349)

4.3 years
SAT and animal fats (cheese

and butter) are associated with
a higher risk of diabetes

[74]

Fat intake (SFA, MUFA, and PUFA) Healthy women aged
45–50 (N = 8370) 6 years

Intake of MUFA, total n-3
PUFA, α-linolenic acid, and
n-6 PUFA were positively

associated with the incidence
of diabetes

[75]

Total fat, SFA, MUFA, PUFA, and TFA Healthy women aged
45–50 (N = 84,204) 14 years

TFA intake was positively
associated with the risk of

diabetes, while PUFA intake
was negatively associated with

the direction of diabetes

[76]
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Table 1. Cont.

Diet Participants Duration Findings References

Type of fat and amount of fat: oils and
margarine used during cooking and at

the table

Healthy women aged
30–55 (N = 83,648) 32 years

Higher intakes of linoleic acid
are associated with a lower

risk of type 2 diabetes
[77]

Healthy women aged
25–44 (N = 88,610) 22 years

Healthy men aged
40–75 (N = 41,771) 26 years

Consumption of nuts and peanut
butter (monounsaturated and
polyunsaturated fatty acids)

Healthy women aged
35–49 (N = 83,818) 16 years

Women who ate nuts or
peanut butter at least five

times a week had a lower risk
of developing diabetes

[78]

3.2. HFD-Induced Diabetes in Animal Models

Intervention human studies have necessitated the development of animal models
of diabetes, including mice, rats, Drosophila, zebrafish, and so on, to better explore the
pathogenesis of diabetes and help to reveal the pathogenesis of diabetes. An HFD affects
the major insulin-sensitive tissues of the animal model, including adipose tissue, the
pancreas, and the liver. Rodent models are the most widely used animal models of diabetes
and have been well-studied. Large animal models have physiological conditions more
similar to those of humans, including physiological and pathological features. Primate
models are very similar to humans but are more expensive and have a longer life cycle. Non-
mammalian models, such as fruit flies and zebrafish, have a variety of advantages, such as
short growth cycles, simple husbandry, low cost, and high reproductive capacity [54,79].
Table 2 summaries the animal models induced by an HFD, including fat type and amount,
duration, animal species, and symptoms

Adipose tissue has an important role in the development of diabetes, and adipose
tissue is a major site for storing gluconeogenic substrates and energy [80]. An HFD can
alter the expression of genes in adipose tissue, down-regulating genes encoding lipid
metabolizing enzymes or markers of lipid differentiation, and increasing genes encoding
markers of inflammation [81]. The B-cell activating factor (BAFF) is a tumor necrosis
factor (TNF) ligand family protein that is a key factor in the development of poor glucose
tolerance [82]. Mice fed an HFD had significantly increased BAFF in visceral adipose
tissue and serum [83]. The pro-inflammatory cytokine TNF-α is associated with insulin
resistance [84], and an HFD of both lard and soybean oil can increase TNF-α expression
levels in adipose tissue [85].

The pancreas is a key site for regulating the secretion of insulin and glucagon, and an
HFD can have an impact on the pancreas, leading to the development of diabetes. Several
studies have pointed out the mechanism by which an HFD can enhance the compensation of
pancreatic β-cells. For example, Jonatan Ahrén et al. found an increase in β-cell volume and
β-cell numbers after feeding mice with a 60% lard diet for three months [86]. Kanno et al.
found that the compensatory mechanism of islet cells in those on an HFD resulted mainly
from increased levels of insulin translation [87]. Ribeiro et al. found that an HFD induced
islet hypertrophy and a compensatory morpho-functional shift in pancreatic β-cells [88].
However, it has also been suggested that an HFD can directly lead to the degeneration
of islet cell function. The levels of glucose transporters (GLUT)2 and glucokinase mRNA
in rat pancreas were significantly reduced after 10 weeks of HFD feeding, and an HFD
can reduce insulin secretion by impairing signal transduction in pancreatic β-cells [89]. In
ZDF rats fed an HFD for a long period of time, the pancreas developed fat accumulation,
which may have led to pancreatic fibrosis, acinar cell damage, and pancreatic stellate cell
activation [90,91].
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The liver is the main site of carbohydrate and fat utilization and plays an important
role in controlling glucose intake, fat metabolism, and energy balance [92]. Liver fat
accumulation is associated with insulin resistance, and excess fat intake leads to increased
levels of free fatty acids and increased triglyceride deposition in the liver [93].

Table 2. Animal model of high-fat-diet-induced diabetes mellitus.

High-Fat Diet Duration Mode Findings References

335 g/kg corn oil
and lard 11 weeks Japanese fancy

mouse 1
Impaired glucose tolerance, hyperglycemia,

hyperinsulinemia, and obesity [94]

58% lard 12 months C57BL/6J mice Weight increase, circulating insulin increase,
and impaired glucose tolerance [55]

42% lard
42% olive 12 weeks Male Wistar rats Obesity and insulin resistance [95]

43% fat Different ages Nile rat
Hyperinsulinemia, high blood glucose,

insulin resistance, abdominal adiposity, and
impaired glucose clearance

[96]

20% coconut oil 14 days Drosophila

Induced insulin resistance, elevated
triglyceride and circulating glucose, and

elevated expression of glass bottom boat (a
Drosophila homolog of mammalian

transforming growth factor-β)

[97]

30% fat vegetable
shortening and beef

tallow
8 weeks Guinea pigs

Impaired glucose tolerance, β-cell
hyperplasia, compensatory hyperinsulinemia,

and dyslipidemia with hepatocellular
steatosis

[98]

80% fat (lard) 7 weeks Dogs Decreased insulin sensitivity [99]

8% trans fatty acids 6 years African green
monkeys

Increased intra-abdominal fat deposition,
hyperinsulinemia, elevated fructosamine, and

reduced muscle AKT (protein kinase)
phosphorylation

[100]

Six feeds/day (11%
fat) 8 weeks Zebrafish Increased blood glucose, impaired glucose

tolerance, and insulin resistance [101]

3.3. Gut Microbiota Dysbiosis in HFD-Induced Diabetes

From a physiological point of view, one of the most important links between an HFD
and diabetes is the gut microbiota–host axis, as well as the factors released from intestinal
metabolites, mediating bidirectional communication between the intestines and the host.
Specific intestinal flora community profiles have been suggested to promote type 2 dia-
betes. Type 2 diabetic patients have dysbiosis of gut microbes with a reduced abundance
of butyrate-producing bacteria (including Eubacterium rectale, Roseburia intestinalis, and
Roseburia inulinivorans) and an increased abundance of pathogens (such as Clostridium
ramosum, Clostridium symbiosum, Eggerthella lenta, and Escherichia coli) [102]. Emerging
evidence demonstrates that changes in the ratios between gut microbiota, such as the ratios
of Bacteroides and Firmicutes, are associated with the development of type 2 diabetes [103].

Recent studies have also found that type 2 diabetes caused by an HFD may be associ-
ated with gut microbes. Diet is a major factor influencing the composition and function of
gut microbes. Animal experiments have shown that an HFD affects gut microbes. Com-
pared to the normal diet, mice fed a high-fat diet were more susceptible to diabetes, which
may be associated with a reduction in Bifidobacteria [104]. In mice on a 45% HFD, there
was a decrease in Bacteroidetes and an increase in Firmicutes and Proteobacteria [13]. The
HFD reduced the mice’s Akkermansia, Coprococcus, and Ruminococcus, increased Odoribacter
and Parabacteroides, and led to a reduction in short-chain fatty acids (SCFAs) [105]. SCFAs
can alleviate diet-induced insulin resistance, and a reduction in SCFAs may lead to type 2
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diabetes [106]. An HFD can affect the production of immunoglobulin A, a key regulator
of glucose homeostasis, an immune-derived molecule in the gut [107]. Table 3 below
summaries the gut microbiota of animals with high-fat-diet-induced diabetes.

Table 3. Effect of an HFD on gut microbes in diabetic animal models.

Mode Mode High-Fat Diet Duration Sample Impact on Microbiota References

Mice

C57BL/6

72% fat (corn oil
and lard) 3 months

Ileum,
caecum,

and colon

Decrease Bacteroidetes, Proteobacteria
Increase Firmicutes, Deferribacteres,

Lachnospiraceae
[108]

60% fat 13 weeks Caecum Decrease Bacteroidetes
Increase Proteobacteria [109]

60% fat (soybean
oil and lard) 8 weeks Fecal

Decrease Bacteroidetes
Increase Firmicutes, Deferribacteres,

Actinobacteria
[110]

60% fat 16 weeks Fecal
Decrease Actinobacteria
Increase Proteobacteria,

the ratio of Bacteroidetes to Firmicutes
[111]

60% fat
+STZ 5 weeks Fecal

Increased ratio of Firmicutes to
Bacteroidetes

Decrease Rikenellaceae
Increase Ruminococcaceae and

Erysipelotrichaceae

[112]

60% fat (soybean
oil and lard) 18 weeks Fecal

Decrease Akkermansia
Increase Muribaculaceae and

Eubacterium
[113]

60% fat (soybean
oil and lard)

+STZ
11 weeks Fecal Decrease Bacteroides

Increase Firmicutes [114]

60% fat (soybean
oil and lard)

+STZ
6 weeks Fecal

Increase the ratio of
Firmicutes/Bacteroidetes
Decrease Akkermansia,

Muribaculaceae, Bacteroides,
Fusobacterium, and Dubosiella
Increase Colidextribacter and

Helicobacter

[115]

C57BL/6J

60% fat (soybean
oil and lard) 8 weeks Fecal

Decrease Bacteroidetes
Increase Firmicutes, Proteobacteria,

Deferribacteres
[116]

60% fat (soybean
oil and lard) 8 weeks Cecal Decrease Bacteroidetes

Increase Firmicutes [117]

41% fat 15 weeks Fecal

Decrease Akkermansia, Coprococcus,
and Ruminococcus

Increase Odoribacter and
Parabacteroides

[105]

60% fat +STZ 12 weeks Fecal Decrease Bacteroidetes
Increase Firmicutes [118]

60% fat (soybean
oil and lard) 17 weeks Fecal Decrease Actinobacteria [119]

72% fat (corn oil
and lard) 4 weeks Cecal

Decrease Lactobacillus spp.,
Bifidobacterium spp., and
Bacteroides-Prevotella spp.

[120]

60% fat (soybean
oil and lard) 12 weeks Fecal

Increased ratio of Firmicutes to
Bacteroidetes

Decrease Bacteroidetes
Increase Proteobacteria, Firmicutes

[121]

45% fat (lard) 8 weeks Fecal
Decrease Bacteroidetes and

Actinobacteria
Increase Firmicutes

[122]
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Table 3. Cont.

Mode Mode High-Fat Diet Duration Sample Impact on Microbiota References

60% fat (soybean
oil and lard)

+STZ
7 weeks Fecal Decrease Verrucomicrobia

Increase Saccharibacteria [123]

45% fat (soybean
oil and lard) 14 weeks Fecal

Decrease Akkermansia
Increase the ratio of Firmicutes and

Bacteroidetes
[124]

BALB/c 40% fat +STZ 8 weeks Fecal
Decrease Firmicutes, Proteobacteria,

and Actinobacteria
Increase Bacteroidetes, Actinobacteria

[125]

Swiss 55% fat 12 weeks Fecal Decrease Firmicutes, Actinobacteria
Increase Bacteroidetes [126]

Rats

Wistar rats

58% fat +STZ 12 weeks Fecal Decrease Lactobacillus spp.
Increase Bifidobacterium spp. [127]

60% fat 6 months Fecal
Decrease Actinobacteria,

Proteobacteria, and Bacteroidetes
Increase Firmicutes

[128]

Sprague
Dawley rats

60% fat (soybean
oil and lard) 10 weeks Fecal

Decrease Bacteroides/Prevotella
Increase Firmicutes, Bifidobacterium

spp., Enterobacteriaceae, and
C. leptum.

[129]

10% lard +
normal diet 12 weeks Fecal Decrease Firmicutes

Increase Bacteroidetes, Proteobacteria [130]

60% fat (soybean
oil and lard) 4 weeks Fecal Increase the ratio of Firmicutes to

Bacteroidetes [131]

7% lard + normal
diet 9 weeks Fecal Decrease Proteobacteria

Increase Firmicutes [132]

High-fat diet
(lard) 12 weeks Fecal

Decrease Actinobacteria,
Proteobacteria

Increase Firmicutes
[133]

High-fat diet
(soybean oil and

lard)
15 weeks Colonic

Decrease Clostridium and
Faecalibacterium

Increase Bacteroides, Butyricoccus,
Parabacteroides, Rikenella,

Bifidobacterium, Allobaculum,
Dehalobacterium, Lactobacillus,

Oscillospira, Ruminococcus, and
Desuifovibrio

[134]

45% fat (soybean
oil) 24 weeks Fecal and

cecal
Decrease Bacteroidetes

Increase Firmicutes [135]

4. Measurements to Treat Diabetes

With aging and urbanization, the number of people with diabetes is increasing, and
the prevalence of diabetes continues to rise [136]. Therefore, the prevention and treatment
of diabetes is now an important issue for people. Current treatments for diabetes include
medication, dietary interventions, and physical activity [137]. In recent years, with intensive
research into gut microbes and diabetes, probiotics may be a new way to treat diabetes.

4.1. Therapeutic Interventions for Diabetes

When dietary interventions are not feasible, medication may be considered as a strat-
egy to prevent the development of type 2 diabetics. The chemical drugs used can be divided
into biguanides, sulfonylureas, thiazolidinediones, glucosidase inhibitors, etc., according to
the mechanism of action and chemical structure [138,139]. Metformin, a biguanide, is the
most widely used oral hypoglycemic drug, with the advantages of safety and effectiveness,
cardiovascular protection, and low cost, and is recommended as a first-line drug by the
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American Diabetes Association and the European Diabetes Association [140]. Metformin
acts primarily on the liver and can improve hyperglycemia by inhibiting hepatic glucose
production [141]. Metformin can act by inhibiting mitochondrial respiratory chain complex
I, increasing the AMP/ATP ratio and activating AMPK-activated protein kinase [142,143].
The therapeutic effect of metformin may be related to its effect on gut microbiota, confirmed
in animal models and clinical studies. Metformin decreases Bacteroides fragilis in type 2
diabetics and also increases the abundance of the mucin-degrading bacterium Akkermansia
in HFD mice [144,145]. Sulphonylureas are a class of drugs that promote insulin secretion
and can act by binding to the SUR subunit of the ATP-sensitive potassium channel in
pancreatic cells [146]. However, the effects of sulfonylureas on gut microbiota have still
not been well studied. Thiazolidinediones improve insulin sensitivity, and rosiglitazone
and pioglitazone are representatives of these drugs. Thiazolidinediones are agonists of
peroxisome proliferator receptor gamma (PPARγ), which can enhance insulin target tis-
sues (muscle, fat, liver) and accelerate glucose utilization by activating PPARγ to promote
the expression of genes related to glucose transport and lipid metabolism [147,148]. The
relative abundance of Proteobacteria decreased after the treatment of HFD mice with pi-
oglitazone [149]. Thiazolidinediones may cause a variety of side effects, such as heart
failure, cardiovascular death, edema, and fractures [150]. Oral α- glucosidase inhibitors
can improve hyperglycemia by delaying the breakdown of carbohydrates into glucose.
Currently, the three clinically approved glucosidase inhibitors include acarbose, voglibose,
and miglitol [151]. A double-blind RCT of acarbose altered gut microbiota in prediabetic
patients, decreasing Ruminococcaceae and Lachnospiraceae and increasing Lactobacillaceae,
Ruminococcaceae, and Veillonellaceae [152].

4.2. Dietary Interventions to Alleviate Diabetes

Most health organizations point to dietary interventions as a powerful treatment
for diabetes, with controlled diets improving insulin sensitivity and reducing the risk of
diabetes and its complications [153]. The American College of Lifestyle Medicine believes
that diabetes can be treated with dietary interventions that use whole food, plant-based
eating patterns, and increase the intake of unrefined plant foods in the daily diet while
eliminating or minimizing the intake of animal foods and refined foods, and with moderate
exercise in life [154]. The impact of dietary interventions on diabetes includes effects
through indirect weight loss and direct consumption of a variety of nutrients with health
benefits [155]. Being overweight is considered to be one of the important factors associated
with the risk of diabetes [156,157]. Dietary interventions can reduce weight and improve
diabetes by reducing the intake of fat.

As carbohydrate catabolism causes blood glucose to rise, reducing carbohydrate intake
in the daily diet can be a good treatment for type 2 diabetes [158]. A low-carbohydrate
diet, as defined by the American Diabetes Association, is 130 g/day or less than 26% of
total daily energy intake [159]. The traditional Mediterranean diet of minimally processed
whole grains has also been shown to have significant benefits for diabetes [160].

Specific types of dietary fat may affect diabetes. The KANWU study found that
replacing a diet with monounsaturated fatty acids (23%E for MUFA, 8%E for SFA, 6%E
for PUFA) over saturated fatty acids (17%E for SFA, 14%E for MUFA, 6%E for PUFA)
improved insulin sensitivity at a total fat intake below the median (37E%) [68]. Another
study also confirmed that a diet rich in MUFA could improve central fat distribution
and insulin resistance [161]. The Iowa Women’s Study found a reduced risk of diabetes
when saturated fatty acids were replaced with unsaturated fatty acids [71], and a study by
Summers et al. also noted that replacing saturated fatty acids with unsaturated fatty acids
improved insulin sensitivity and abdominal fat accumulation [162]. n-3 PUFA improves
high-fat-diet-induced insulin resistance. n-3 PUFA in fish oil improves insulinemia, lipid
metabolism, and glucose metabolism in insulin-resistant rats [163]. Different dietary fat
types may influence the affinity of insulin receptors by affecting the fatty acid composition
of cell membranes [164]. It has also been suggested that dietary fat can modulate the
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expression of genes involved in lipid metabolisms that affect diabetes, such as fatty acid
transport proteins and fatty acid synthases [165]. Increased inflammation may lead to
insulin resistance, and PUFA acid intake may improve inflammation, e.g., n-3 PUFA may
inhibit Toll-like receptors on the cell surface and reduce the production of inflammatory
cytokines [166,167].

Other than the chemical drugs currently used to treat diabetes, natural plant foods such
as fruits and vegetables, which are rich in nutrients such as antioxidants and polyphenols,
can improve adipokines and oxidative stress, significantly improving beta cell function and
insulin sensitivity [168,169]. Table 4 below summaries the potential mechanisms of natural
products in food for the treatment of diabetes.

Table 4. Potential mechanisms of natural products in foods in animal models of diabetes.

Natural Products Model Potential Mechanisms References

hesperidin male C57BL/KsJ-db/db
mice

↑ hepatic glucokinase activity, glycogen
concentration, plasma insulin, C-peptide, and leptin

↓ hepatic glucose-6-phosphatase and
phosphoenolpyruvate carboxykinase

[170]

cyanidin 3-glucoside HFD-induced obese rat
and db/db mice

↑insulin sensitivity, phosphorylation of forkhead
box O1

↓inflammatory cytokines, hepatic triglyceride, c-Jun
N-terminal kinase activation

[171]

quercetin db/db mice
↑insulin, triglyceride, glycogen, the ratio of B-cell

lymphoma-2/Bcl2-Associated X
↓the activation of caspase-3, -9, -12

[172]

kaempferol HFD-fed C57BL/6 male
mice

↑AKT and hexokinase activity
↓pyruvate carboxylase and glucose-6 phosphatase

activity
[173]

ferulic acid C57BL/KsJ db/db mice

↑plasma insulin, hepatic glycogen synthesis, and
glucokinase activity

↓total cholesterol and low-density lipoprotein
cholesterol

[174]

resveratrol
streptozotocin-

nicotinamide-induced
diabetic rats

↑insulin
↓blood glucose, glycosylated hemoglobin, TNF-α,

IL-1β, IL-6, NF-κB p65 unit, nitric oxide, superoxide
dismutase, catalase, glutathione peroxidase, and

glutathione-S-transferase

[175]

genistein streptozotocin-induced
diabetic mice

↑insulin, protein expression of cyclin D1, islet β-cell
proliferation, survival, and mass [176]

anthocyanins HFD-fed Zucker rats ↑adipose and skeletal muscle PPAR activity
↓triglycerides, abdominal fat mass, insulin resistance [177]

conophylline streptozotocin-treated and
Goto-Kakizaki rats ↑ insulin, β-cell differentiation [178]

berberine streptozotocin-induced
rats

↑insulin sensitivity, insulin receptor mRNA, protein
kinase C activity [179]

ginsenosides HFD-fed C57BL/6J mice
↑glucose uptake

↓ TNF-α-induced activation of MAPK and NF-κB
signaling pathway

[180]

↑: Increased gene expression, increased content in the body, improved insulin sensitivity. ↓: Gene expression
decreases, content decreases.

4.3. Potential Probiotics Help with Diabetes

Probiotics refer to the beneficial microbiota which inhabit the gut and have a variety
of health functions [181]. The development of diabetes is closely linked to gut microbes,
and therefore the regulation of gut microbes through probiotics could be a new approach
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to treating diabetes. The hypoglycemic effect of probiotics has been confirmed in both
in vitro and in vivo experiments. Zhu et al. found that most of the Lactobacillus species
inhibited dipeptidyl peptidase IV and α-glucosidase by cell-free excretory supernatants
and cell-free extracts prepared from 21 Lactobacillus species [182]. Several studies have
shown that probiotics can lower blood sugar to varying degrees in diabetic animals, such
as Lactobacillus plantarum [183], Lactobacillus casei [184], Lactobacillus rhamnosus [185], and
Clostridium butyricum [186]. A meta-analysis indicated that probiotics significantly lowered
hemoglobin A1c, fasting blood glucose, fasting insulin, triglycerides, and total cholesterol,
and improved the symptoms of diabetes [187]. High endotoxemia was demonstrated
in high-fat-fed mice. Supplementation with oligofructose to increase the number of gut
Bifidobacteria revealed that endotoxemia was negatively correlated with Bifidobacteria and
also improved glucose tolerance and insulin secretion with increased Bifidobacteria [188].

The mechanisms by which probiotics improve diabetes include direct effects on the
gut microbiota, anti-inflammatory and immunomodulatory effects, reduction in oxidative
stress, and involvement in glucose homeostasis [181,189,190]. Gut microbial dysbiosis in di-
abetic patients leads to increased gut permeability and increased concentrations of bacterial
endotoxins such as lipopolysaccharides, inducing inflammation and, ultimately, systemic
insulin resistance [191]. Probiotics such as Lactobacillus paracasei can restore the expression
of the tight junction protein in the colon, thereby reducing serum lipopolysaccharide and
inflammatory cytokine levels [192]. Diabetes leads to increased systemic oxidative stress,
and the intake of beneficial bacteria can significantly improve fasting blood glucose and
the antioxidant status in diabetics [193,194]. Bifidobacterium lactis improves glucose uptake
and GLU4 translocation through the insulin signaling pathway AKT and insulin receptor
substrate-1, increases the expression of GLUT4 and insulin-sensitivity-related genes, and
regulates glucose metabolism [195].

5. Conclusions

A long-term HFD, especially the excessive intake of saturated fats, could have a variety
of adverse effects on human body health and even lead to chronic diseases, including
diabetes. Animal models of diabetes can better explore the pathogenesis of diabetes and
help to reveal the pathogenesis of diabetes. Daily diet can have a direct impact on the
composition and function of host gut microbiota. Excessive fat intake can lead to the
imbalances of gut microbiota, including changes in the ratio of Bacteroidetes and Firmicutes,
a decrease in butyrate-producing bacteria, and an increase in the abundance of pathogens.
A gut microbiota imbalance may further disturb host metabolism, such as decreased
amounts of SCFA and immunoglobulin A, ultimately leading to diabetes. Within animal
models, HFD-induced diabetes is accompanied by weight gain, hyperinsulinemia, and the
disruption of glucose homeostasis. At present, the treatment of diabetes includes dietary
interventions and medication. The causal relationship between gut microbiota and diabetes
and its underlying mechanisms are still not fully elucidated, and further research is needed.
In the near future, as research into the mechanisms of diabetes and gut microbes intensifies,
probiotics may become a new method of treatment for diabetes.
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