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Abstract: Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a
potent estrogen receptor (ER) agonist, with a higher binding affinity for ERβ than for ERα. However,
there is currently limited information regarding its beneficial effects in postmenopausal disorders
and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous
or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in
comparison with the effects of 17β-estradiol (E2) replacement. Coumestrol was administered daily at
a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated
uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body
fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical
activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions
involved in browning of white fat and insulin signaling, including increased hepatic expression of
fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at
10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERβ-selective antagonist
but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in
OVX mice are primarily mediated by ERβ. These findings provide important insights into the
beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of
postmenopausal symptoms.

Keywords: coumestrol; estrogen receptor; metabolic dysfunction; postmenopausal disorders; ovariec-
tomized mouse

1. Introduction

Endogenous estrogen deficiency in women after menopause induces, not only impair-
ment of reproductive functions, but also chronic metabolic disorders, including obesity,
diabetes, and cardiovascular disease [1]. Phytoestrogens have been widely studied over
the past few decades as an effective and safe therapeutic strategy for postmenopausal
disorders. Similarly to human estrogens, the primary mode of action of phytoestrogens
is initiated by binding to the estrogen receptor (ER), including both subtypes alpha (ERα)
and beta (ERβ), and subsequent transcriptional regulation. The majority of in vitro studies
have found that phytoestrogens have a higher binding affinity for ERβ than for ERα [2–4],
suggesting their potential biological effects as ERβ-mediated. Among the various phy-
toestrogen compounds identified to date, coumestrol, a common phytoestrogen found in
various plant sources, such as soybeans, clover, and alfalfa sprouts, is considered one of
the most potent ER agonists [5]. In addition to the effects of coumestrol on ERβ activation,
our recent comparative study of 15 known phytoestrogens showed coumestrol to have the
highest ERα-mediated activity, both in an in vitro ERα transactivation assay and an in vivo
uterotrophic assay [6].

Nutrients 2023, 15, 954. https://doi.org/10.3390/nu15040954 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15040954
https://doi.org/10.3390/nu15040954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-7316-6042
https://doi.org/10.3390/nu15040954
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15040954?type=check_update&version=2


Nutrients 2023, 15, 954 2 of 12

With increasing scientific interest in coumestrol as a safer alternative to estrogen
replacement therapy, several studies have investigated its protective effects against post-
menopausal diseases in ovariectomized (OVX) rodent models. In these studies, coume-
strol was shown to display anti-cancer [7], neuroprotective [8], osteoprotective [9], and
glycogenolytic [10] activities. Nogowski et al. [10] found that coumestrol enhanced lipid
synthesis in the liver and skeletal muscle, while simultaneously stimulating the uterine
tissue in OVX rats, suggesting that the effects of coumestrol on lipid metabolism may be
independent of its estrogenic action. The same research group also reported that coumestrol
did not affect plasma insulin levels but inhibited the binding capacity of insulin receptors
as well as the glycogen content in the liver of OVX rats [11]. On the other hand, several
studies have shown the beneficial effects of coumestrol in the regulation of glucose and
lipid homeostasis. In these studies, coumestrol ameliorated insulin resistance, with re-
duced accumulation of sphingolipids in primary rat hepatocytes [12] and downregulated
adipogenic factors such as PPARγ, c/EBPα, SREBP-1, and FAS in 3T3-L1 adipocytes [13].
Interestingly, a recent study reported that coumestrol treatment reduced adiposity through
the activation of brown adipose tissue (BAT) metabolism in high-fat diet (HFD)-fed male
mice [14]. In this study, oral administration of coumestrol increased the mitochondrial
contents of BAT, reduced visceral fat accumulation, and improved insulin sensitivity in
mice. However, the metabolic effects of coumestrol in estrogen-deficient female animals
and its underlying mechanisms have not yet been elucidated.

Therefore, in this study, we investigated the effects of coumestrol on adiposity, brown-
ing of white fat, and insulin signaling in HFD-fed OVX mice. Moreover, to determine
the involvement of ER in the metabolic effects of coumestrol, we studied its effects when
co-administered with selective antagonists of ERα and ERβ. This study provides useful
information for understanding the estrogen-mimicking characteristics of coumestrol in
metabolic regulation and suggests that clinical studies in postmenopausal women are
warranted.

2. Materials and Methods
2.1. Animals and Surgery

Seven-week-old female C57BL/6J mice (Orient Bio Inc., Seongnam-Si, Republic of
Korea) were housed under a 12 h light–dark cycle. After an acclimation period of 1 week,
the mice were randomly divided into five treatment groups (7 mice per group) as follows:
(1) sham control, (2) OVX control, (3) OVX + 17β-estradiol (E2), (4) OVX + coumestrol
(subcutaneous administration), and (5) OVX + coumestrol (oral administration). Mice
were subjected to bilateral OVX or sham operation under anesthesia with a 1.2% avertin
(2,2,2-tribromoethanol) solution. Treatment with E2, coumestrol, or vehicle was initiated
the day after surgery. E2 (Sigma-Aldrich, St. Louis, MO, USA) and coumestrol (ChemFaces
Biochemical, Wuhan, China) were dissolved in saline containing 2% Tween-80 and 0.5%
methylcellulose. Throughout the study (10 weeks), E2 was administered at 50 µg/kg by
subcutaneous (SC) injection once daily. Coumestrol was administered daily at a dose of
5 mg/kg by SC injection or oral gavage. All mice were fed a phytoestrogen-free HFD
(TD04059, 52% Kcal from anhydrous milk fat, Harlan Teklad, Madison, WI, USA) and water
ad libitum during the experimental period. Six weeks after surgery, all OVX mice were
housed singly with running wheels for 3 days, to determine voluntary running activity.

In a separate experiment using the same mouse model, coumestrol was orally admin-
istered at 10 mg/kg for 7 weeks in combination with MPP (ERα-selective antagonist) at
1 mg/kg, PHTPP (ERβ-selective antagonist) at 1 mg/kg, or ICI 182,780 (ER antagonist)
at 3 mg/kg (6 mice per group). MPP, PHTPP (Tocris Bioscience, Bristol, UK), and ICI
182,780 (Sigma-Aldrich) were dissolved in corn oil and administered via SC injection once
daily throughout the study. Food intake was recorded weekly, and ear temperature was
measured using an infrared thermometer (IR-B153, Braintree Scientific, Braintree, MA,
USA) 4 weeks after ovariectomy. At the end of the study, mice were sacrificed by over-
dosing with avertin. Blood was collected via cardiac puncture, and tissue samples were
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isolated for histological staining and molecular analysis. All animal work was carried out
in accordance with institutional guidelines for the use and care of laboratory animals. The
study protocol was approved by the Ethical Committee of the Andong National University
(Protocol Number: 2021-1-0128-01-01).

2.2. Histological Staining

Sections of the parametrial adipose tissue and liver were fixed in 10% formalin, embed-
ded in paraffin, sectioned, and stained with hematoxylin and eosin (H&E). The adipocyte
area in white fat and lipid droplet area in the liver were traced and quantified using ImageJ
software (Version 1.8.0, National Institutes of Health, NIH, Bethesda, MA, USA). The rela-
tive adipocyte number was calculated by dividing parametrial fat pad weight by the mean
adipocyte size in each mouse (n = 4 per group), as previously described [15].

2.3. Determination of Thiobarbituric Acid Reactive Substances (TBARS)

Concentrations of TBARS in the liver were determined using a colorimetric method,
as previously described [16]. Levels of TBARS were expressed as malondialdehyde (MDA)
equivalents.

2.4. Gene Expression Analysis

Uterine tissue was homogenized in 1 mL TRIzol reagent, and total RNA was isolated.
Total RNA was reverse-transcribed to cDNA using a High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster, CA, USA). cDNA was used as a template for the
relative quantitation of selected target genes using predesigned Taq-Man primer/probe sets
(Applied Biosystems). Each 20 µL reaction mixture contained 100 ng cDNA, 2 × TaqMan
Fast Advanced Master Mix (Applied Biosystems), and a TaqMan primer/probe. All reac-
tions were carried out in triplicate using a 7500 Real-Time PCR System (Applied Biosystems)
under the following conditions: 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 3 s, and
60 ◦C for 30 s. Results are expressed as a relative values after normalization to glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH).

2.5. Western Blot Analysis

White adipose tissue (WAT), BAT, liver, and skeletal muscle tissues were homogenized
in RIPA buffer containing a protease inhibitor cocktail (Sigma-Aldrich) and centrifuged
to collect the supernatants. The total protein concentration was determined using the
Bradford method. Equal amounts of protein were separated on a 12% sodium dodecyl
sulfate-polyacrylamide gel and transferred onto polyvinylidene difluoride membranes.
Membranes were blocked for 30 min in phosphate buffered saline containing 3% bovine
serum albumin and 0.1% Tween-20 for 1 h at room temperature. The membranes were
probed with the primary antibodies listed in Table S1, followed by incubation with the
corresponding horseradish peroxidase-conjugated secondary antibodies (Sigma-Aldrich).
Protein bands were visualized using enhanced chemiluminescence reagents on a Fusion
Solo 6S EDGE imaging system (Vilber, Marne-la-Vallée, France) and quantified using
ImageJ software (NIH).

2.6. Statistical Analysis

All statistical analyses were performed using one-way ANOVA using R software
(4.0.4 for Windows, R Foundation, Vienna, Austria). The least squares mean option us-
ing Tukey–Kramer adjustment was used for multiple comparisons among the treatment
groups. Results are expressed as mean ± SEM. p values < 0.05 were considered statistically
significant.



Nutrients 2023, 15, 954 4 of 12

3. Results
3.1. Effects of Coumestrol Treatments on Uterine Growth in OVX Mice

As expected, ovariectomy induced uterine atrophy in mice, and E2 replacement
markedly increased uterine weight in these animals (p < 0.001, Figure 1A,B). Coumestrol
administration at 5 mg/kg for 10 weeks significantly increased uterine weight when mice
were treated through the SC route but had no effect on uterine weight when mice were
treated via oral gavage. Interestingly, the uterine ERα mRNA expression findings were
opposite to those of uterine weight; it was slightly increased in the OVX control mice
(p > 0.05) but significantly decreased in OVX mice exposed to E2 (p < 0.01, Figure 1C).
Conversely, the ERβ mRNA expression findings were similar to those for uterine weight, as
shown by the increased gene expression in mice exposed to E2 or SC coumestrol (p < 0.001).
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Compared to the sham-operated mice, the OVX control mice exhibited a progressive in-
crease in body weight, characterized by the accumulation of visceral and subcutaneous 
fat and adipocyte hypertrophy (Figure 2A–F). Coumestrol, in both SC and oral treat-
ments, prevented adipose tissue accumulation and adipocyte hypertrophy in OVX mice. 
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Figure 1. Effects of coumestrol on uterine growth in OVX mice. Mice were subjected to sham or
ovariectomy surgery and received the indicated sample treatments for 10 weeks. At the end of the
study, the (A) uterine wet and (B) blotted weights were recorded. (C) Uterine mRNA expression
of estrogen receptors (ERα and ERβ). Values represent means ± SEM (n = 7). Con, control; E2,
17β-estradiol; COU-SC, coumestrol subcutaneous treatment; COU-OR, coumestrol oral treatment;
OVX, ovariectomized. * Significantly different from the OVX control group (* p < 0.05, ** p < 0.01,
*** p < 0.001).

3.2. Coumestrol Prevents Adiposity in HFD-Fed OVX Mice

To determine the preventive effects of coumestrol on postmenopausal metabolic disor-
ders, we used an OVX mouse model that was fed on a phytoestrogen-free HFD. Compared
to the sham-operated mice, the OVX control mice exhibited a progressive increase in body
weight, characterized by the accumulation of visceral and subcutaneous fat and adipocyte
hypertrophy (Figure 2A–F). Coumestrol, in both SC and oral treatments, prevented adipose
tissue accumulation and adipocyte hypertrophy in OVX mice. Interestingly, similarly to
E2, coumestrol treatment increased the voluntary running activity in OVX mice (p < 0.01,
Figure 2G), suggesting its anti-obesity effects were associated with enhanced physical
activity.

In addition, coumestrol normalized the ovariectomy-induced hepatic lipid accumula-
tion, as shown by liver weight (p < 0.05) and histological analysis (p < 0.001, Figure 3A,B).
Consistently with the hepatic lipid content, OVX control mice showed higher hepatic pro-
tein expression of fatty acid synthase (FAS), which was markedly reduced by E2 (p < 0.001)
and coumestrol treatment (p < 0.01, Figure 3C). The hepatic level of TBARS, a marker of
oxidative stress, was increased by ovariectomy, but normalized by coumestrol treatment
(Figure 3D). These results demonstrate that coumestrol prevents adiposity and improves
hepatic lipid homeostasis in HFD-fed OVX mice.
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Figure 2. Preventive effects of coumestrol on adiposity in OVX mice fed a HFD. (A) Body weight and
weights of (B) visceral and (C) subcutaneous adipose depots. (D) Representative H&E-stained section
of parametrial adipose tissue and distribution histogram of adipocyte size (scale bar = 100 µm). (E)
Average size of adipocytes and (F) relative adipocyte number. (G) At 6 weeks after surgery, all OVX
mice were housed singly with running wheels, and voluntary running distance was recorded. Values
represent means ± SEM (n = 7 for (A–C), n = 4 for (D–G)). CON, control; E2, 17β-estradiol; COU-SC,
coumestrol subcutaneous treatment; COU-OR, coumestrol oral treatment; OVX, ovariectomized.
* Significantly different from the OVX control group (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.3. Coumestrol Modulates Protein Expressions Involved in Browning of White Fat

Browning of white fat has been recognized as a key strategy to restrict obesity and
obesity-related disorders [17]. It has been demonstrated that a peroxisome proliferator-
activated receptor (PPAR) α-driven increase in fibroblast growth factor 21 (FGF21) plays
a central role in the conversion of white into brown-like adipocytes [18,19]. In this study,
similarly to E2, coumestrol increased FGF21 protein expression in the liver and the WAT of
OVX mice (p < 0.05, Figure 4). In WAT, uncoupling protein 1 (UCP1), PPARα expression,
and p38 phosphorylation were reduced following ovariectomy, but increased after E2 and
coumestrol treatments (Figure 4C). In BAT, PPARγ protein expression was increased by
E2 (p < 0.01) and coumestrol (p < 0.05) treatments, whereas UCP1 expression was slightly
decreased (p < 0.05 only for coumestrol oral treatment, Figure 4A).
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Figure 3. Preventive effects of coumestrol on hepatic steatosis in OVX mice fed a HFD. (A) Liver
weight, (B) representative H&E-stained sections of liver (scale bar = 100 µm) with quantitative data,
and (C) Western blot of hepatic fatty acid synthase (FAS) with quantitative data. (D) Concentrations of
thiobarbituric acid reactive substances (TBARS) in liver were expressed as malondialdehyde (MDA)
equivalents. Values represent means ± SEM (n = 7 for (A,D), n = 4 for (B,C)). CON, control; E2,
17β-estradiol; COU-SC, coumestrol subcutaneous treatment; COU-OR, coumestrol oral treatment;
OVX, ovariectomized; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KDa, kilodaltons.
* Significantly different from the OVX control group (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 4. Regulatory effects of coumestrol on the browning of white fat in OVX mice. Western blotting
of (A) uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor-γ (PPARγ) in brown
adipose tissue; (B) fibroblast growth factor 21 (FGF21) in the liver; and (C) FGF21, UCP1, PPARγ, PPARα,
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phosphorylated p38 (p–p38), and total p38 in white adipose tissue with quantitative data. Values
represent means ± SEM (n = 4). CON, control; E2, 17β-estradiol; COU-SC, coumestrol subcutaneous
treatment; COU-OR, coumestrol oral treatment; OVX, ovariectomized; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; KDa, kilodaltons. * Significantly different from the OVX control group
(* p < 0.05, ** p < 0.01, *** p < 0.001).

3.4. Coumestrol Normalizes the Phosphorylation of PI3K and Akt in the Skeletal Muscle and Liver
of OVX Mice

The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway is a key reg-
ulator of insulin signaling, resulting in an increased glucose uptake in skeletal muscles
and reduced glucose production in the liver [20]. Our study showed that ovariectomy
reduced the phosphorylation of PI3K and Akt in skeletal muscle and liver, which was
normalized by E2 treatment (Figure 5). Phosphorylation of these proteins was normalized
in the skeletal muscle using SC treatment with coumestrol (p < 0.05), and in the liver with
both SC and oral treatments (p < 0.01), suggesting an improvement of glucose homeostasis
from coumestrol in OVX mice.
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Figure 5. Regulatory effects of coumestrol on insulin signaling in OVX mice. Western blotting of
(A) phosphorylated phosphoinositide 3-kinase (p-PI3K), total PI3K, phosphorylated protein kinase
B (p-Akt), and total Akt in skeletal muscle and (B) liver with quantitative data. Values represent
means ± SEM (n = 4). CON, control; E2, 17β-estradiol; COU-SC, coumestrol subcutaneous treatment;
COU-OR, coumestrol oral treatment; OVX, ovariectomized; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; KDa, kilodaltons. *Significantly different from the OVX control group (* p < 0.05,
** p < 0.01).
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3.5. Metabolic Effects of Coumestrol in OVX Mice Are Primarily Mediated by ERβ

As coumestrol showed estrogen-mimetic effects on metabolic parameters in OVX mice,
we examined whether the effects of coumestrol were dependent on the ER (Figure 6). In a
separate animal study, OVX mice received coumestrol orally in combination with an SC
injection of an ERα-selective antagonist, ERβ-selective antagonist, or ER antagonist. As
expected from the previous experiments, coumestrol protected OVX mice against increased
body weight, fat accumulation, elevated body temperature, and reduced voluntary activity
(Figure 6A–D). In contrast, the protective effects of coumestrol were lost when mice were
treated with an ERβ antagonist. In addition, the increased protein expression of p-p38 in
WAT and FGF21 in the liver induced by coumestrol was reversed by the ERβ antagonist
(Figure 6E,F). The protein expression of PPARα in WAT, and that of p-AKT and GLUT4 in
skeletal muscle, was increased by coumestrol but reversed by both ERα and ERβ antag-
onists (Figure 6E,G). These findings indicate that coumestrol improves lipid and glucose
homeostasis via ERβ in OVX female mice, although ERα is also involved, according to the
target tissues.
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Figure 6. ER-mediated actions of coumestrol in the regulation of energy homeostasis. OVX mice were
orally administered with 10 mg/kg coumestrol in combination with MPP (ERα-selective antagonist),
PHTPP (ERβ-selective antagonist), or ICI 182,780 (ER antagonist) for 7 weeks. (A) Weight gain and
(B) body fat weight. (C) Body temperature was measured in the ear using an infrared thermometer
4 weeks after ovariectomy. (D) Voluntary running distance was recorded 6 weeks after surgery.
Protein expression of (E) PPARα, p-p38, and p38 in white adipose tissue, (F) FGF21 in the liver, and
(G) p-PI3K, PI3K, p-Akt, Akt, and GLUT4 in skeletal muscle were measured by Western blotting.
Values represent means ± SEM (n = 6 for A-D, n = 4 for E-G). CON, control; COU, coumestrol; ERα
ant., ERα-selective antagonist; ERβ ant., ERβ-selective antagonist; ERα/β ant., ERα/β antagonist;
OVX, ovariectomized; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KDa, kilodaltons.
* Significantly different from the OVX control group (* p < 0.05, ** p < 0.01, *** p < 0.001).
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4. Discussion

We recently studied the estrogenic activities of 15 known phytoestrogens, using an
in vitro ER transactivation assay and an in vivo uterotrophic assay, and found that coume-
strol and 8-prenylnaringenin had the most potent estrogenic properties [6]. Therefore, we
evaluated the protective effects of coumestrol on menopausal metabolic disorders and its
mechanism of action in estrogen-deficient female mice. The current results showed that
coumestrol could prevent adiposity and improve the signal transduction involved in the
browning of white fat and insulin sensitivity in HFD-fed OVX mice. These beneficial effects
of coumestrol were comparably observed when mice were treated through the SC and
oral routes. The improved insulin signal transduction in muscle and liver with coumestrol
observed in this study is consistent with a previous report, wherein coumestrol improved
glucose tolerance and increased hepatic glycogen content in type-2 diabetic mice [21]. In ad-
dition, Kim et al. [14] recently reported that coumestrol exerted anti-obesity effects through
the activation of BAT metabolism in male mice. Thus, these studies support the current
finding that coumestrol improves energy metabolism in OVX female mice. Notably, the
protein expression of FGF21, which is a key regulator in maintaining whole-body energy
balance and protecting the liver from steatosis [22], was markedly decreased in the liver and
WAT following ovariectomy, but was restored by E2 and coumestrol treatments (Figure 4).
Serum FGF21 is primarily secreted by the liver and exerts its endocrine action on the central
nervous system and adipose tissue [22]. It has been demonstrated that E2 replacement in
OVX mice increases hepatic FGF21 production and enhances energy expenditure [23,24],
suggesting that FGF21 is an important mediator in the regulation of energy homeostasis by
E2. Therefore, our results suggest that coumestrol exerts estrogen-mimetic effects in the
control of energy homeostasis, in part by stimulating hepatic FGF21 production. Moreover,
because FGF21 is known to modulate the hepatic metabolic pathway to suppress steato-
sis [25], the observed reduced FAS expression and lipid accumulation by E2 and coumestrol
in the liver (Figure 3) might be associated with increased FGF21 production.

It has been suggested that coumestrol may have favorable effects on insulin sensitivity.
In insulin-resistant hepatocyte, coumestrol suppressed sphingolipid accumulation through
inhibition of the ceramide de novo synthesis pathway [12]. In cultured muscle cells,
coumestrol promoted mitochondrial biogenesis and ATP synthesis in a Sirt1-dependent
manner [26]. Since mitochondrial dysfunction is known to be closely related with the
pathogenesis of insulin resistance, this result suggests a novel mechanism of coumestrol in
the muscular regulation of insulin sensitivity. In addition, dietary treatment of coumestrol
decreased the levels of fasting blood glucose and HbA1c and improved glucose tolerance in
a genetically-induced mouse model of diabetes, although the underlying mechanism was
not studied [21]. Alongside this evidence, we here observed that coumestrol increased the
phosphorylation of PI3K and Akt—the key regulators of the insulin signaling pathway—
in the skeletal muscle and liver of OVX female mice (Figure 5). It was demonstrated
that a damaged PI3K/Akt pathway in various tissues, such as skeletal muscle, liver,
adipose tissue, pancreas, and brain, leads to insulin resistance [20]. Thus, these findings
support the beneficial effects of coumestrol as a modulator of insulin sensitivity and glucose
homeostasis. However, further studies are needed to elucidate more clearly its mechanism
of action.

It has been shown that ERα and ERβ have distinct actions in the regulation of energy
homeostasis and that their action is tissue-specific in the brain, skeletal muscle, adipose
tissue, liver, and pancreas [27,28]. The interaction of coumestrol with the ER has been
studied using in vitro, in vivo, and in silico methods. The majority of these studies found
that, similarly to other phytoestrogens, coumestrol has a greater selective affinity for ERβ
than ERα, although its affinity is weaker than that of E2 [2,29–31]. Consistently, our results
demonstrated that the metabolic effects of coumestrol in OVX mice were abolished with an
ERβ-selective antagonist but not with an ERα-selective antagonist, although the protein
expression data showed that ERα is also involved in the mechanism of action of coumestrol
(Figure 6). These findings indicate that the metabolic action of coumestrol is ERβ-dependent.
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In addition, Fekri et al. [32] recently reported that the memory enhancing and anxiolytic
effects of coumestrol were reversed by treatment with an ERβ-selective antagonist in a male
mouse model of chronic restraint stress. In their study, the antioxidant and anti-apoptotic
effects of coumestrol in brain tissue were lost following co-administration with an ERβ
antagonist. Therefore, alongside our current data, these results suggest that ERβ-mediated
actions of coumestrol occur in metabolic tissues, including the brain, in both male and
female rodents. However, it is also important that coumestrol, in addition to classical ER
signaling, may act via other cellular pathways. In OVX rats, the neuroprotective effects
of E2 were abolished by ICI 182,780 (ERα/ERβ antagonist) administration, whereas the
effects of coumestrol were only partially abolished by the antagonist [8]. Thus, additional
research using an ER knockout animal model is needed, to determine the ER-dependent
and ER-independent mechanisms of action of coumestrol.

As the uterine response to estrogens involves the activation of a large spectrum of
estrogen-responsive genes, the uterus has been used as a classical target organ to deter-
mine the estrogenicity of natural and synthetic compounds [33]. In this study, coumestrol
treatment with 5 mg/kg SC injection significantly increased uterine weight in OVX mice,
but oral administration did not (Figure 1). Consistent with these changes in uterine growth,
ERβ gene expression in the uterus was increased by E2 and SC coumestrol treatments.
Although we failed to observe an uterotrophic effect of coumestrol following oral adminis-
tration, previous short-term studies using a higher oral dose (50–100 mg/kg) of coumestrol
showed an obvious uterotrophic effect in immature intact, immature OVX, and mature OVX
rats [6,34]. Moreover, in our pilot study, oral administration of coumestrol at 10 mg/kg
significantly increased uterine weight in OVX mice. Furthermore, Markaverich et al. [35]
found that acute (SC injection) or chronic (oral administration) treatment with coumestrol
significantly increased uterine weight but failed to cause cytosolic ER depletion and nuclear
ER accumulation in immature OVX rats, suggesting a lack of true estrogenic activity from
coumestrol. However, in our previous study, the uterotrophic effect of coumestrol was com-
pletely abolished by co-treatment with an ER antagonist, and coumestrol showed strong
ER-mediated transcriptional activity in a luciferase reporter gene assay using VM7Luc4E2
cells (a variant of MCF-7 human breast cancer cells) [6]. Taken together, coumestrol is
believed to act as an ER agonist, although its activity can vary depending on the target
tissue and experimental conditions (administration dosage, route, etc.).

Through identifying the biological activities of coumestrol, several studies have fo-
cused on increasing the coumestrol content in its plant sources. Recently, Ohta et al. [36]
investigated the optimal cultivation conditions for producing soybean sprouts with high
coumestrol contents. In their study, they found that the content of coumestrol depended
on temperature but not on light, bacteria, and sprout color. In addition, Fields et al. [37]
reported that alfalfa plants inoculated with stemphylium had a higher coumestrol content
than uninfected samples; however, there was no change in coumestrol in response to aphids
or development stage. In general, the use of phytoestrogens, including coumestrol, has
been limited, due to their low concentrations in plant sources. Therefore, these studies will
help to extend their industrial application for use as a therapeutic agent.

In conclusion, the current study demonstrated that coumestrol exhibits estrogen-
mimetic effects in preventing metabolic dysfunctions such as adiposity and defects in
cellular signaling involved in white fat browning and muscle insulin sensitivity in OVX
mice. Importantly, the metabolic regulation of coumestrol was primarily mediated by ERβ.
These findings provide novel insights into the mechanisms underlying the beneficial effects
of coumestrol in postmenopausal treatment and warrant further studies to validate its
effects in a broad spectrum of postmenopausal diseases.
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