Early-Life Slow Enteral Feeding Progression Pattern Is Associated with Longitudinal Head-Size Growth Faltering and Neurodevelopmental Impairment Outcomes in Extremely Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Settings and Design
2.2. Nutritional Care Policy
2.3. Covariates
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Risks Associated with Slow Progression Feeding Pattern
3.2. Slow Progression Feeding Pattern Negatively Associated with the Trend Changes of Longitudinal Head-Size Growth
3.3. Microcephaly and Neurodevelopmental Impairment Outcomes at Corrected Age 24 Months after Slow-Feeding Progression Pattern
3.4. The Model including Feeding Patterns Better Predicted Neurodevelopmental Outcomes
4. Discussion
4.1. Characterizing the Patterns of Early-Life Feeding Progression
4.2. Early-Life Feeding Patterns, Extrauterine Head-Size Growth by TEA, and Longitudinal Head-Size Growth from TEA to CA 24 Months
4.3. Close Relationship between Early-Life Feeding Patterns, Longitudinal Head-Size Growth and Neurodevelopmental Outcomes
4.4. Early-Life Slow Progression Feeding Pattern Depicted by Clustering Analysis as an Important Risk for Head-Size Growth Faltering and NDI
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shankaran, S. Childhood neurodevelopmental outcome following extremely preterm birth. Lancet Child Adolesc. Health 2018, 2, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Younge, N.; Goldstein, R.F.; Bann, C.M.; Hintz, S.R.; Patel, R.M.; Smith, P.B.; Bell, E.F.; Rysavy, M.A.; Duncan, A.F.; Vohr, B.R.; et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N. Engl. J. Med. 2017, 376, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.F.; Bann, C.M.; Dempsey, A.; Peralta-Carcelen, M.; Hintz, S.; Eunice Kennedy Shriver National Institute of Child Health; Development Neonatal Research Network. Behavioral Deficits at 18–22 Months of Age Are Associated with Early Cerebellar Injury and Cognitive and Language Performance in Children Born Extremely Preterm. J. Pediatr. 2019, 204, 148–156.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lithoxopoulou, M.; Rallis, D.; Christou, H.; Goutsiou, E.; Varaklioti, A.; Karagianni, P.; Tsakalidis, C.; Domeyer, P.; Kuriakeli, G.; Soubasi, V. Early caloric deprivation in preterm infants affects Bayley-III scales performance at 18–24 months of corrected age. Res. Dev. Disabil. 2019, 91, 103429. [Google Scholar] [CrossRef] [PubMed]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; de Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chu, C.H.; Chen, Y.J.; Chen, R.B.; Huang, C.C. Gestational Age-Related Associations between Early-Life Feeding Trajectories and Growth Outcomes at Term Equivalent Age in Very Preterm Infants. Nutrients 2022, 14, 1032. [Google Scholar] [CrossRef]
- Kwok, T.C.; Dorling, J.; Gale, C. Early enteral feeding in preterm infants. Semin. Perinatol. 2019, 43, 151159. [Google Scholar] [CrossRef]
- Walsh, V.; Brown, J.V.E.; Copperthwaite, B.R.; Oddie, S.J.; McGuire, W. Early full enteral feeding for preterm or low birth weight infants. Cochrane Database Syst. Rev. 2020, 12, Cd013542. [Google Scholar] [CrossRef]
- Landau-Crangle, E.; Rochow, N.; Fenton, T.R.; Liu, K.; Ali, A.; So, H.Y.; Fusch, G.; Marrin, M.L.; Fusch, C. Individualized Postnatal Growth Trajectories for Preterm Infants. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
- Raghuram, K.; Yang, J.; Church, P.T.; Cieslak, Z.; Synnes, A.; Mukerji, A.; Shah, P.S. Head Growth Trajectory and Neurodevelopmental Outcomes in Preterm Neonates. Pediatrics 2017, 140, e20170216. [Google Scholar] [CrossRef] [Green Version]
- Guellec, I.; Marret, S.; Baud, O.; Cambonie, G.; Lapillonne, A.; Roze, J.C.; Fresson, J.; Flamant, C.; Charkaluk, M.L.; Arnaud, C.; et al. Intrauterine Growth Restriction, Head Size at Birth, and Outcome in Very Preterm Infants. J. Pediatr. 2015, 167, 975–981.e2. [Google Scholar] [CrossRef]
- Cheong, J.L.Y.; Hunt, R.W.; Anderson, P.J.; Howard, K.; Thompson, D.K.; Wang, H.X.; Bear, M.J.; Inder, T.E.; Doyle, L.W. Head growth in preterm infants: Correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 2008, 121, E1534–E1540. [Google Scholar] [CrossRef]
- Tan, M.; Abernethy, L.; Cooke, R. Improving head growth in preterm infants—A randomised controlled trial II: MRI and developmental outcomes in the first year. Arch. Dis. Child.-Fetal Neonatal Ed. 2008, 93, F342–F346. [Google Scholar] [CrossRef] [PubMed]
- Vinall, J.; Grunau, R.E.; Brant, R.; Chau, V.; Poskitt, K.J.; Synnes, A.R.; Miller, S.P. Slower Postnatal Growth Is Associated with Delayed Cerebral Cortical Maturation in Preterm Newborns. Sci. Transl. Med. 2013, 5, 168ra8. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K.; Neonatal, N.I.H.H.D. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranke, M.B.; Krageloh-Mann, I.; Vollmer, B. Growth, head growth, and neurocognitive outcome in children born very preterm: Methodological aspects and selected results. Dev. Med. Child. Neurol. 2015, 57, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.A.; Hayes, B.C. Head size and growth in the very preterm infant: A literature review. Res. Rep. Neonatol. 2015, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Genolini, C.; Ecochard, R.; Benghezal, M.; Driss, T.; Andrieu, S.; Subtil, F. kmlShape: An Efficient Method to Cluster Longitudinal Data (Time-Series) According to Their Shapes. PLoS ONE 2016, 11, e0150738. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Chen, Y.J.; Huang, C.C.; Shieh, C.C. Concentrated Preterm Formula as a Liquid Human Milk Fortifier at Initiation Stage in Extremely Low Birth Weight Preterm Infants: Short Term and 2-year Follow-up Outcomes. Nutrients 2020, 12, 2229. [Google Scholar] [CrossRef]
- Terrin, G.; Di Chiara, M.; Sabatini, G.; Senterre, T.; De Curtis, M. Enteral Nutrition in Preterm Neonates. In Textbook of Pediatric Gastroenterology, Hepatology and Nutrition: A Comprehensive Guide to Practice; Guandalini, S., Dhawan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–85. [Google Scholar]
- Brune, K.D.; Donn, S.M. Enteral Feeding of the Preterm Infant. NeoReviews 2018, 19, e645–e653. [Google Scholar] [CrossRef]
- Taiwan-Society-of-Neonatology. Recommendation on Nutritional Care of Taiwan Preterm Infants; Taiwan Society of Neonatology: Taiwan, 2015. [Google Scholar]
- Salas, A.A.; Cuna, A.; Bhat, R.; McGwin, G., Jr.; Carlo, W.A.; Ambalavanan, N. A randomised trial of re-feeding gastric residuals in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F224–F228. [Google Scholar] [CrossRef]
- Glackin, S.J.; O’Sullivan, A.; George, S.; Semberova, J.; Miletin, J. High flow nasal cannula versus NCPAP, duration to full oral feeds in preterm infants: A randomised controlled trial. Arch. Dis Child. Fetal Neonatal Ed. 2017, 102, F329–F332. [Google Scholar] [CrossRef]
- Travers, C.P.; Wang, T.; Salas, A.A.; Schofield, E.; Dills, M.; Laney, D.; Yee, A.; Bhatia, A.; Winter, L.; Ambalavanan, N.; et al. Higher or Usual Volume Feedings in Very Preterm Infants: A Randomized Clinical Trial. J. Pediatr. 2020, 224, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Dai, S.; Lalari, V.; Alshaikh, B. Neonatal and Preterm Infant Growth Assessment. Clin. Perinatol. 2022, 49, 295–311. [Google Scholar] [CrossRef]
- Fenton, T.R.; Nasser, R.; Eliasziw, M.; Kim, J.H.; Bilan, D.; Sauve, R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013, 13, 92. [Google Scholar] [CrossRef] [Green Version]
- Fenton, T.R.; Cormack, B.; Goldberg, D.; Nasser, R.; Alshaikh, B.; Eliasziw, M.; Hay, W.W.; Hoyos, A.; Anderson, D.; Bloomfield, F.; et al. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J. Perinatol. 2020, 40, 704–714. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, S.H.; Cho, H.; Shin, S.H.; Kim, S.H.; Song, I.G.; Kim, E.K.; Kim, H.S. Extrauterine growth restriction in extremely preterm infants based on the Intergrowth-21st Project Preterm Postnatal Follow-up Study growth charts and the Fenton growth charts. Eur. J. Pediatr. 2020, 180, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Pampanini, V.; Boiani, A.; De Marchis, C.; Giacomozzi, C.; Navas, R.; Agostino, R.; Dini, F.; Ghirri, P.; Cianfarani, S. Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood. Eur. J. Pediatr. 2015, 174, 33–41. [Google Scholar] [CrossRef]
- Kalliomaki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.H.; Chu, C.H.; Lin, Y.C.; Chen, R.B.; Iwata, O.; Huang, C.C. Early-life respiratory trajectories and neurodevelopmental outcomes in infants born very and extremely preterm: A retrospective study. Dev. Med. Child. Neurol. 2022, 64, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Wang, S.T.; Wang, L.W.; Kao, Y.C.; Chu, C.L.; Wu, C.C.; Chiang, C.H.; Huang, C.C. Early Neurodevelopmental Trajectories for Autism Spectrum Disorder in Children Born Very Preterm. Pediatrics 2020, 146, e20200297. [Google Scholar] [CrossRef]
- Alshaikh, B.; Dharel, D.; Yusuf, K.; Singhal, N. Early total enteral feeding in stable preterm infants: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2021, 34, 1479–1486. [Google Scholar] [CrossRef]
- Behnke, J.; Estreich, V.; Oehmke, F.; Zimmer, K.P.; Windhorst, A.; Ehrhardt, H. Compatibility of rapid enteral feeding advances and noninvasive ventilation in preterm infants-An observational study. Pediatr. Pulmonol. 2022, 57, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Thoene, M.; Anderson-Berry, A. Early Enteral Feeding in Preterm Infants: A Narrative Review of the Nutritional, Metabolic, and Developmental Benefits. Nutrients 2021, 13, 2289. [Google Scholar] [CrossRef] [PubMed]
- Cester, E.A.; Bloomfield, F.H.; Taylor, J.; Smith, S.; Cormack, B.E. Do recommended protein intakes improve neurodevelopment in extremely preterm babies? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F243–F247. [Google Scholar] [CrossRef] [PubMed]
- Strommen, K.; Blakstad, E.W.; Moltu, S.J.; Almaas, A.N.; Westerberg, A.C.; Amlien, I.K.; Ronnestad, A.E.; Nakstad, B.; Drevon, C.A.; Bjornerud, A.; et al. Enhanced nutrient supply to very low birth weight infants is associated with improved white matter maturation and head growth. Neonatology 2015, 107, 68–75. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Jennings, A.; Przystac, L.; Phornphutkul, C.; Tucker, R.; Vohr, B.; Stephens, B.E.; Bliss, J.M. Growth and Neurodevelopmental Outcomes of Early, High-Dose Parenteral Amino Acid Intake in Very Low Birth Weight Infants: A Randomized Controlled Trial. JPEN J. Parenter. Enter. Nutr. 2018, 42, 597–606. [Google Scholar] [CrossRef]
- Lafeber, H.N.; van de Lagemaat, M.; Rotteveel, J.; van Weissenbruch, M. Timing of nutritional interventions in very-low-birth-weight infants: Optimal neurodevelopment compared with the onset of the metabolic syndrome. Am. J. Clin. Nutr. 2013, 98, 556S–560S. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chang, S.S.; Poon, W.B. Relationship Between Amino Acid and Energy Intake and Long-Term Growth and Neurodevelopmental Outcomes in Very Low Birth Weight Infants. JPEN J. Parenter. Enter. Nutr. 2016, 40, 820–826. [Google Scholar] [CrossRef]
- Dorling, J.; Abbott, J.; Berrington, J.; Bosiak, B.; Bowler, U.; Boyle, E.; Embleton, N.; Hewer, O.; Johnson, S.; Juszczak, E.; et al. Controlled Trial of Two Incremental Milk-Feeding Rates in Preterm Infants. N. Engl. J. Med. 2019, 381, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Tahir, W.; Monahan, M.; Dorling, J.; Hewer, O.; Bowler, U.; Linsell, L.; Partlett, C.; Berrington, J.E.; Boyle, E.; Embleton, N.; et al. Economic evaluation alongside the Speed of Increasing milk Feeds Trial (SIFT). Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 587–592. [Google Scholar] [CrossRef]
- Hartel, C.; Haase, B.; Browning-Carmo, K.; Gebauer, C.; Kattner, E.; Kribs, A.; Segerer, H.; Teig, N.; Wense, A.; Wieg, C.; et al. Does the enteral feeding advancement affect short-term outcomes in very low birth weight infants? J. Pediatr. Gastroenterol. Nutr. 2009, 48, 464–470. [Google Scholar] [CrossRef]
- Fabrizio, V.; Shabanova, V.; Taylor, S.N. Factors in Early Feeding Practices That May Influence Growth and the Challenges that Arise in Growth Outcomes Research. Nutrients 2020, 12, 1939. [Google Scholar] [CrossRef] [PubMed]
- Zozaya, C.; Avila-Alvarez, A.; Arruza, L.; Garcia-Munoz Rodrigo, F.; Fernandez-Perez, C.; Castro, A.; Cuesta, M.T.; Vacas, B.; Couce, M.L.; Vento Torres, M.; et al. The Effect of Morbidity and Sex on Postnatal Growth of Very Preterm Infants: A Multicenter Cohort Study. Neonatology 2019, 115, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.J.; Maucort-Boulch, D.; Essomo Megnier-Mbo, C.M.; Remontet, L.; Claris, O. Early parenteral lipids and growth velocity in extremely-low-birth-weight infants. Clin. Nutr. 2014, 33, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Rifas-Shiman, S.L.; Sullivan, T.; Collins, C.T.; McPhee, A.J.; Ryan, P.; Kleinman, K.P.; Gillman, M.W.; Gibson, R.A.; Makrides, M. Infant Growth Before and After Term: Effects on Neurodevelopment in Preterm Infants. Pediatrics 2011, 128, E899–E906. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Spada, E.; Giuliani, F.; Maiocco, G.; Raia, M.; Cresi, F.; Bertino, E.; Coscia, A. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients 2020, 12, 1224. [Google Scholar] [CrossRef]
- Zhang, X.; Donnelly, B.; Thomas, J.; Sams, L.; O’Brien, K.; Taylor, S.N.; Jump, C.S. Growth in the High-Risk Newborn Infant Post-Discharge: Results from a Neonatal Intensive Care Unit Nutrition Follow-up Clinic. Nutr. Clin. Pract. 2020, 35, 738–744. [Google Scholar] [CrossRef]
- Martínez-Jiménez, M.D.; Gómez-García, F.J.; Gil-Campos, M.; Pérez-Navero, J.L. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: A scoping review. Eur. J. Pediatr. 2020, 179, 1255–1265. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Barros, F.; Roggero, P.; Coronado Zarco, I.A.; Rego, M.A.S.; Ochieng, R.; Gianni, M.L.; Rao, S.; Lambert, A.; et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics 2018, 141, e20172467. [Google Scholar] [CrossRef] [Green Version]
- Young, A.; Andrews, E.T.; Ashton, J.J.; Pearson, F.; Beattie, R.M.; Johnson, M.J. Generating longitudinal growth charts from preterm infants fed to current recommendations. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Healy, D.B.; Ryan, C.A.; Ross, R.P.; Stanton, C.; Dempsey, E.M. Clinical implications of preterm infant gut microbiome development. Nat. Microbiol. 2022, 7, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Uzan-Yulzari, A.; Turta, O.; Belogolovski, A.; Ziv, O.; Kunz, C.; Perschbacher, S.; Neuman, H.; Pasolli, E.; Oz, A.; Ben-Amram, H.; et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat. Commun. 2021, 12, 443. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.; Dunn, M.; Asztalos, E.; Corey, M.; Mulvihill-Jory, B.; O'Connor, D.L. Pattern of growth of very low birth weight preterm infants, assessed using the WHO Growth Standards, is associated with neurodevelopment. Appl. Physiol. Nutr. Metab. 2011, 36, 562–569. [Google Scholar] [CrossRef]
- Frondas-Chauty, A.; Simon, L.; Branger, B.; Gascoin, G.; Flamant, C.; Ancel, P.Y.; Darmaun, D.; Roze, J.C. Early growth and neurodevelopmental outcome in very preterm infants: Impact of gender. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F366–F372. [Google Scholar] [CrossRef] [PubMed]
- Ruys, C.A.; Hollanders, J.J.; Broring, T.; van Schie, P.E.M.; van der Pal, S.M.; van de Lagemaat, M.; Lafeber, H.N.; Rotteveel, J.; Finken, M.J.J. Early-life growth of preterm infants and its impact on neurodevelopment. Pediatr. Res. 2019, 85, 283–292. [Google Scholar] [CrossRef]
- De Rose, D.U.; Cota, F.; Gallini, F.; Bottoni, A.; Fabrizio, G.C.; Ricci, D.; Romeo, D.M.; Mercuri, E.; Vento, G.; Maggio, L. Extra-uterine growth restriction in preterm infants: Neurodevelopmental outcomes according to different definitions. Eur. J. Paediatr. Neurol. 2021, 33, 135–145. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chiu, H.-Y.; Lee, S.-C.; Chang, H.-Y.; Chang, J.-H.; Chen, Y.-J.; Kang, L.; Shen, S.-P.; Lin, Y.-C. Growth of Very Preterm Infants in a Low-Resourced Rural Setting after Affiliation with a Human Milk Bank. Children 2022, 9, 80. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chang, W.-H.; Li, T.-C.; Iwata, O.; Chen, H.-L. Health Risk of Infants Exposed to Lead and Mercury Through Breastfeeding. Expo. Health 2022, 15, 255–267. [Google Scholar] [CrossRef]
- MacBean, V.; Lunt, A.; Drysdale, S.B.; Yarzi, M.N.; Rafferty, G.F.; Greenough, A. Predicting healthcare outcomes in prematurely born infants using cluster analysis. Pediatr. Pulmonol. 2018, 53, 1067–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bua, J.; Risso, F.M.; Bin, M.; Vallon, F.; Travan, L.; Paviotti, G. Association between body composition at term equivalent age and Bayley scores at 2 years in preterm infants. J. Perinatol. 2021, 41, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Ramel, S.E.; Haapala, J.; Super, J.; Boys, C.; Demerath, E.W. Nutrition, Illness and Body Composition in Very Low Birth Weight Preterm Infants: Implications for Nutritional Management and Neurocognitive Outcomes. Nutrients 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feeding Trajectories | Fast Progression | Slow Progression | |
---|---|---|---|
Risks and Exposures | N = 131 | N = 69 | p Values |
Demographics | |||
Male, n (%) | 64 (49) | 40 (58) | 0.237 |
Gestational age, weeks, mean (SD) | 25.9 (1.3) | 25.2 (1.3) | <0.001 |
Birth bodyweight z score, mean (SD) | 0.10 (0.82) | −0.24 (0.81) | 0.006 |
Small for gestational age, n (%) | 7 (5) | 6 (9) | 0.377 |
Birth head circumference z score, mean (SD) | −0.02 (0.96) | −0.39 (0.95) | 0.011 |
Maternal education level (<college), n (%) | 50 (38) | 29 (42) | 0.649 |
Prenatal period | |||
Antenatal steroid, n (%) | 123 (94) | 66 (96) | 0.751 |
Multiple gestation, n (%) | 39 (30) | 21 (30) | 1.000 |
Preeclampsia, n (%) | 20 (15) | 12 (17) | 0.690 |
Gestational diabetes, n (%) | 4 (3) | 1 (1) | 0.661 |
Neonatal period | |||
Respiratory/hemodynamics, n (%) | 109 (83) | 62 (90) | 0.291 |
RDS requiring surfactant therapy, n (%) | 64 (49) | 36 (52) | 0.766 |
Hypotension requiring vasopressors, n (%) | 82 (63) | 57 (83) | 0.006 |
hs-PDA requiring surgery, n (%) | 26 (20) | 28 (41) | 0.002 |
Postnatal steroid, n (%) | 26 (20) | 21 (30) | 0.114 |
Infection events, n (%) | 17 (13) | 30 (43) | 0.001 |
Early-onset sepsis, n (%) | 5 (4) | 5 (7) | 0.318 |
Late-onset sepsis, n (%) | 14 (11) | 26 (38) | <0.001 |
Severe brain injury, n (%) | 10 (8) | 11 (16) | 0.089 |
IVH (≥III), n (%) | 8 (6) | 6 (9) | 0.563 |
cPVL, n (%) | 4 (3) | 9 (13) | 0.012 |
GI morbidities, n (%) | 13 (10) | 25 (36) | <0.001 |
NEC ≥ stage II, n (%) | 10 (8) | 12 (17) | 0.055 |
Non-NEC events requiring surgery, n (%) | 4 (3) | 16 (23) | <0.001 |
Feeding progression | |||
Postnatal age at initial feeding, days, mean (SD) | 4.2 (3.9) | 5.9 (5.3) | 0.024 |
Postnatal age at reaching full feeding, days, mean (SD) | 33 (9.5) | 56 (20.6) | <0.001 |
Growth differences between TEA and birth | |||
Delta z score of bodyweight <−1, n (%) | 60 (46) | 59 (86) | <0.001 |
Delta z score of head circumference <−1, n (%) | 55 (42) | 50 (73) | <0.001 |
Early-Life Feeding Trajectories | Slow Progression | Fast Progression | * Adjusted Odds Ratio (aOR) | |||
---|---|---|---|---|---|---|
Outcomes | N = 69 | N = 131 | p Values | aOR | 95% CI | p Values |
Head circumference < 10th percentile, n (%) | 28 (42) | 21 (16) | <0.001 | 3.269 | 1.634, 6.54 | 0.001 |
Neurodevelopmental impairment, n (%) | 26 (38) | 25 (19) | 0.007 | 2.095 | 1.052, 4.171 | 0.035 |
Moderate to severe cerebral palsy, n (%) | 8 (11.6) | 6 (4.6) | 0.082 | 2.507 | 0.799, 7.866 | 0.115 |
Cognitive impairment, n (%) | 15 (22) | 19 (15) | 0.252 | 1.462 | 0.663, 3.223 | 0.347 |
Profound hearing/vision impairment, n (%) | 7 (10.1) | 6 (4.6) | 0.142 | 1.923 | 0.597, 6.193 | 0.273 |
Logistic Regression Model | Univariate | Multivariate Model 1, Without Feeding Progression Patterns | Multivariate Model 2, With Feeding Progression Patterns | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | OR | 95% CI | p | aOR | 95% CI | p | aOR | 95% CI | p | |||
Small for gestational age | None | 0.512 | 0.110, 2.392 | 0.395 | --- | --- | --- | --- | --- | --- | ||
Gestational age 23–25 weeks | 26–27 | 1.868 | 0.983, 3.551 | 0.056 | --- | --- | 0.225 | --- | --- | 0.634 | ||
Male | Female | 2.859 | 1.444, 5.661 | 0.003 | 2.316 | 1.136, 4.720 | 0.021 | 2.224 | 1.078, 4.575 | 0.030 | ||
Low maternal education level | (≥college) | 2.099 | 1.101, 3.999 | 0.024 | 2.231 | 1.124, 4.431 | 0.022 | 2.200 | 1.098, 4.406 | 0.026 | ||
Pulmonary/hemodynamics a | None | 2.369 | 0.783, 7.171 | 0.127 | --- | --- | --- | --- | --- | --- | ||
Infection events b | None | 1.157 | 0.554, 2.418 | 0.698 | --- | --- | --- | --- | --- | --- | ||
NEC ≥ stage II | None | 1.421 | 0.544, 3.710 | 0.473 | --- | --- | --- | --- | --- | --- | ||
Severe brain injury c | None | 4.786 | 1.88, 12.183 | 0.001 | 4.331 | 1.614, 11.616 | 0.004 | 3.854 | 1.408, 10.550 | 0.009 | ||
Slow progression feeding pattern | Fast | 2.564 | 1.334, 4.928 | 0.005 | 2.232 | 1.114, 4.473 | 0.024 | |||||
Model goodness of fit | ||||||||||||
Akaike information criterion | NA | 212.57 | 209.48 | |||||||||
Log likelihood | 204.57 | 199.48 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Chu, C.-H.; Chen, Y.-J.; Chen, R.-B.; Huang, C.-C. Early-Life Slow Enteral Feeding Progression Pattern Is Associated with Longitudinal Head-Size Growth Faltering and Neurodevelopmental Impairment Outcomes in Extremely Preterm Infants. Nutrients 2023, 15, 1277. https://doi.org/10.3390/nu15051277
Lin Y-C, Chu C-H, Chen Y-J, Chen R-B, Huang C-C. Early-Life Slow Enteral Feeding Progression Pattern Is Associated with Longitudinal Head-Size Growth Faltering and Neurodevelopmental Impairment Outcomes in Extremely Preterm Infants. Nutrients. 2023; 15(5):1277. https://doi.org/10.3390/nu15051277
Chicago/Turabian StyleLin, Yung-Chieh, Chi-Hsiang Chu, Yen-Ju Chen, Ray-Bing Chen, and Chao-Ching Huang. 2023. "Early-Life Slow Enteral Feeding Progression Pattern Is Associated with Longitudinal Head-Size Growth Faltering and Neurodevelopmental Impairment Outcomes in Extremely Preterm Infants" Nutrients 15, no. 5: 1277. https://doi.org/10.3390/nu15051277
APA StyleLin, Y. -C., Chu, C. -H., Chen, Y. -J., Chen, R. -B., & Huang, C. -C. (2023). Early-Life Slow Enteral Feeding Progression Pattern Is Associated with Longitudinal Head-Size Growth Faltering and Neurodevelopmental Impairment Outcomes in Extremely Preterm Infants. Nutrients, 15(5), 1277. https://doi.org/10.3390/nu15051277