Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Neuropsychological Assessment
2.3. Combined Weight and Metabolic Status Definition
2.4. Statistical Analysis
3. Results
3.1. Participants Characteristics Based on Their Obesity and Metabolic Health Status at Baseline
3.2. Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Kivimäki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2017, 2, e277–e285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2019. Dementia Forecasting Collaborators Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Eckel, N.; Meidtner, K.; Kalle-Uhlmann, T.; Stefan, N.; Schulze, M.B. Metabolically healthy obesity and cardiovascular events: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2016, 23, 956–966. [Google Scholar] [CrossRef]
- Fan, J.; Song, Y.; Chen, Y.; Hui, R.; Zhang, W. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2013, 168, 4761–4768. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.K.; Zinman, B.; Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 758–769. [Google Scholar] [CrossRef]
- Lavie, C.J.; Laddu, D.; Arena, R.; Ortega, F.B.; Alpert, M.A.; Kushner, R.F. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1506–1531. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhou, D.; Zhu, Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: A systematic review and meta-analysis. J. Epidemiol. Community Health 2016, 70, 1024–1031. [Google Scholar] [CrossRef]
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C.; Investigators, A.S. Transition from metabolically benign to metabolically unhealthy obesity and 10-year cardiovascular disease incidence: The ATTICA cohort study. Metabolism 2019, 93, 18–24. [Google Scholar] [CrossRef]
- Kouvari, M.; Chrysohoou, C.; Skoumas, J.; Pitsavos, C.; Panagiotakos, D.B.; Mantzoros, C.S. ATTICA study Investigators The presence of NAFLD influences the transition of metabolically healthy to metabolically unhealthy obesity and the ten-year cardiovascular disease risk: A population-based cohort study. Metabolism 2022, 128, 154893. [Google Scholar] [CrossRef]
- Dahl, A.K.; Löppönen, M.; Isoaho, R.; Berg, S.; Kivelä, S.-L. Overweight and obesity in old age are not associated with greater dementia risk. J. Am. Geriatr. Soc. 2008, 56, 2261–2266. [Google Scholar] [CrossRef]
- Pedditzi, E.; Peters, R.; Beckett, N. The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age Ageing 2016, 45, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-Z.; Huang, Y.-Y.; Wang, Z.-T.; Li, J.-Q.; Hou, X.-H.; Shen, X.-N.; Ou, Y.-N.; Dong, Q.; Tan, L.; Yu, J.-T.; et al. Metabolically healthy obesity reduces the risk of Alzheimer’s disease in elders: A longitudinal study. Aging 2019, 11, 10939–10951. [Google Scholar] [CrossRef]
- Cho, Y.K.; Lee, J.; Kim, H.S.; Park, J.-Y.; Lee, W.J.; Kim, Y.-J.; Jung, C.H. The risk of Alzheimer’s disease according to dynamic changes in metabolic health and obesity: A nationwide population-based cohort study. Aging 2021, 13, 16974–16989. [Google Scholar] [CrossRef]
- Farruggia, M.C.; Small, D.M. Effects of adiposity and metabolic dysfunction on cognition: A review. Physiol. Behav. 2019, 208, 112578. [Google Scholar] [CrossRef]
- Feinleib, M.; Kannel, W.B.; Garrison, R.J.; McNamara, P.M.; Castelli, W.P. The Framingham Offspring Study. Design and preliminary data. Prev. Med. 1975, 4, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Bangen, K.J.; Armstrong, N.M.; Au, R.; Gross, A.L. Metabolic Syndrome and Cognitive Trajectories in the Framingham Offspring Study. J. Alzheimers Dis. 2019, 71, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. A Standardized Memory Scale for Clinical Use. J. Psychol. 1945, 19, 87–95. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler-Belllevue Intelligence Scale; Psychological Corporation: San Antonio, TX, USA, 1939. [Google Scholar]
- Kaplan, E.; Goodglass, H.; Weintraub, S. The Boston Naming Test; Lea & Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Atti, A.R.; Palmer, K.; Volpato, S.; Winblad, B.; De Ronchi, D.; Fratiglioni, L. Late-life body mass index and dementia incidence: Nine-year follow-up data from the Kungsholmen Project. J. Am. Geriatr. Soc. 2008, 56, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.L.; Kuller, L.H.; Lopez, O.L.; Diehr, P.; O’Meara, E.S.; Longstreth, W.T.; Luchsinger, J.A. Midlife and late-life obesity and the risk of dementia: Cardiovascular health study. Arch. Neurol. 2009, 66, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.F.; Borenstein, A.R.; Schofield, E.; Wu, Y.; Larson, E.B. Association between late-life body mass index and dementia: The Kame Project. Neurology 2009, 72, 1741–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchman, A.S.; Schneider, J.A.; Wilson, R.S.; Bienias, J.L.; Bennett, D.A. Body mass index in older persons is associated with Alzheimer disease pathology. Neurology 2006, 67, 1949–1954. [Google Scholar] [CrossRef]
- Ye, B.S.; Jang, E.Y.; Kim, S.Y.; Kim, E.-J.; Park, S.A.; Lee, Y.; Hong, C.H.; Choi, S.H.; Yoon, B.; Yoon, S.J.; et al. Unstable Body Mass Index and Progression to Probable Alzheimer’s Disease Dementia in Patients with Amnestic Mild Cognitive Impairment. J. Alzheimers Dis. 2016, 49, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Ngandu, T.; Fratiglioni, L.; Viitanen, M.; Kåreholt, I.; Winblad, B.; Helkala, E.-L.; Tuomilehto, J.; Soininen, H.; Nissinen, A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol. 2005, 62, 1556–1560. [Google Scholar] [CrossRef] [Green Version]
- Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.; Yaffe, K. Obesity in middle age and future risk of dementia: A 27 year longitudinal population based study. BMJ 2005, 330, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, R.; Cheng, H.L.; O’Dwyer, N.; Raymond, J.; Rooney, K.; Steinbeck, K.; O’Connor, H. The relationship between overweight, obesity and cognitive function in adults: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2014, 8, 21. [Google Scholar] [CrossRef]
- Ng, T.P.; Feng, L.; Nyunt, M.S.Z.; Feng, L.; Gao, Q.; Lim, M.L.; Collinson, S.L.; Chong, M.S.; Lim, W.S.; Lee, T.S.; et al. Metabolic Syndrome and the Risk of Mild Cognitive Impairment and Progression to Dementia: Follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol. 2016, 73, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhanen, M.; Koivisto, K.; Moilanen, L.; Helkala, E.L.; Hänninen, T.; Soininen, H.; Kervinen, K.; Kesäniemi, Y.A.; Laakso, M.; Kuusisto, J. Association of metabolic syndrome with Alzheimer disease: A population-based study. Neurology 2006, 67, 843–847. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A.; et al. Metabolic syndrome and the risk of vascular dementia: The Italian Longitudinal Study on Ageing. J. Neurol. Neurosurg. Psychiatry 2010, 81, 433–440. [Google Scholar] [CrossRef]
- Kivimäki, M.; Luukkonen, R.; Batty, G.D.; Ferrie, J.E.; Pentti, J.; Nyberg, S.T.; Shipley, M.J.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018, 14, 601–609. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Han, K.; Han, E.; Kim, G.; Cho, H.; Kim, K.J.; Lee, B.W.; Kang, E.S.; Cha, B.-S.; Brayne, C.; et al. Risk of Incident Dementia According to Metabolic Health and Obesity Status in Late Life: A Population-Based Cohort Study. J. Clin. Endocrinol. Metab. 2019, 104, 2942–2952. [Google Scholar] [CrossRef]
- Kim, S.-R.; Kim, H.-N.; Song, S.-W. Associations Between Mental Health, Quality of Life, and Obesity/Metabolic Risk Phenotypes. Metab. Syndr. Relat. Disord. 2020, 18, 347–352. [Google Scholar] [CrossRef]
- Dixon, J.B.; Lambert, G.W. The obesity paradox--a reality that requires explanation and clinical interpretation. Atherosclerosis 2013, 226, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Beccano-Kelly, D.; Harvey, J. Leptin: A novel therapeutic target in Alzheimer’s disease? Int. J. Alzheimers Dis. 2012, 2012, 594137. [Google Scholar] [CrossRef] [Green Version]
- Westwood, A.J.; Beiser, A.; Decarli, C.; Harris, T.B.; Chen, T.C.; He, X.-M.; Roubenoff, R.; Pikula, A.; Au, R.; Braverman, L.E.; et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology 2014, 82, 1613–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleton, S.L.; Seaborn, C.J.; Visvanathan, R.; Hill, C.L.; Gill, T.K.; Taylor, A.W.; Adams, R.J. North West Adelaide Health Study Team Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: A cohort study. Diabetes Care 2013, 36, 2388–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongraw-Chaffin, M.; Foster, M.C.; Anderson, C.A.M.; Burke, G.L.; Haq, N.; Kalyani, R.R.; Ouyang, P.; Sibley, C.T.; Tracy, R.; Woodward, M.; et al. Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 71, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Fingeret, M.; Marques-Vidal, P.; Vollenweider, P. Incidence of type 2 diabetes, hypertension, and dyslipidemia in metabolically healthy obese and non-obese. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
Total Sample (N = 1990) | MHN (N = 271) | MUN (N = 333) | MHO (N = 234) | MUO (N = 1152) | p-Value | |
---|---|---|---|---|---|---|
Demographic characteristics | ||||||
Age at baseline examination [in years; Mean (SD)] | 60.7 (9.4) | 57.3 (9.0) | 63.4 (9.8) | 57.3 (8.1) | 61.4 (9.2) | <0.001 |
Women, n (%) | 1079 (54.2) | 213 (78.6) | 204 (61.3) | 125 (53.4) | 537 (49.6) | <0.001 |
Education group, n (%) | ||||||
<High school | 76 (3.8) | 3 (1.1) | 17 (5.1) | 6 (2.6) | 50 (4.3) | <0.001 |
High school | 613 (30.8) | 77 (28.4) | 97 (29.1) | 47 (20.2) | 392 (34.0) | |
Some college | 495 (24.9) | 59 (21.8) | 90 (27.0) | 72 (30.9) | 274 (23.8) | |
≥Some college | 805 (40.5) | 132 (48.7) | 129 (38.7) | 108 (46.4) | 436 (37.8) | |
Smoker at baseline examination, n (%) | 215 (10.8) | 37 (13.7) | 45 (13.5) | 28 (12.0) | 105 (9.1) | 0.036 |
Metabolic Syndrome components, n (%) | ||||||
Ever had glycaemic abnormality | 1158 (67.1) | 79 (33.1) | 185 (66.8) | 93 (45.6) | 801 (79.5) | <0.001 |
Ever had hypertension | 1152 (64.3) | 101 (40.4) | 202 (68.9) | 112 (51.9) | 737 (71.4) | <0.001 |
Ever had dyslipidaemia | 767 (45.9) | 31 (13.1) | 100 (39.2) | 45 (22.3) | 591 (60.4) | <0.001 |
Cognitive function at baseline, Mean (SD) | ||||||
General Cognitive Performance | 43.3 (4.8) | 44.3 (5.1) | 42.7 (5.2) | 43.7 (4.3) | 43.1 (4.7) | <0.001 |
Memory | 49.5 (7.9) | 51.7 (7.3) | 48.5 (8.7) | 50.8 (7.6) | 49.0 (7.7) | <0.001 |
Processing Speed/Executive Functioning | 40.4 (4.1) | 40.1 (4.1) | 40.5 (4.2) | 39.8 (2.9) | 40.5 (4.3) | 0.055 |
MHO (N = 230) * | Resilient (N = 66) | Non-Resilient (N = 164) | p-Value | |
---|---|---|---|---|
Demographic characteristics | ||||
Age at baseline examination [in years; Mean (SD)] | 57.3 (8.1) | 57.6 (6.9) | 57.0 (8.5) | 0.611 |
Women, n (%) | 125 (53.4) | 38 (57.6) | 85 (51.8) | 0.429 |
Education group, n (%) | ||||
<High school | 6 (2.6) | 2 (3.0) | 4 (2.5) | 0.504 |
High school | 47 (20.2) | 13 (19.7) | 33 (20.2) | |
Some college | 72 (30.9) | 16 (24.2) | 55 (33.7) | |
≥Some college | 108 (46.4) | 35 (53.1) | 71 (43.6) | |
Smoker at baseline examination, n (%) | 28 (12.0) | 8 (12.1) | 19 (11.6) | 0.909 |
MetS components, n (%) | ||||
Ever had glycaemic abnormality | 93 (45.6) | 0 (0.0) | 92 (56.1) | <0.001 |
Ever had hypertension | 112 (51.9) | 0 (0.0) | 112 (68.3) | <0.001 |
Ever had dyslipidaemia | 45 (22.3) | 0 (0.0) | 45 (27.4) | <0.001 |
Cognitive function at baseline, Mean (SD) | ||||
General Cognitive Performance | 43.7 (4.3) | 43.6 (5.5) | 43.7 (3.7) | 0.831 |
Memory | 50.8 (7.6) | 50.1 (7.4) | 51.4 (7.3) | 0.234 |
Processing Speed/Executive Functioning | 39.8 (2.9) | 40.2 (4.2) | 39.4 (1.3) | 0.144 |
Reference Category: MHN | General Cognitive Performance | Memory Scale | Processing Speed/Executive Functioning Scale |
---|---|---|---|
Model 1: Crude model | |||
MUO | −1.08 (−1.71, −0.45) ** | −2.72 (−3.74, −1.69) *** | −0.36 (−0.83, 0.10) |
MHO | −0.67 (−1.50, 0.17) | −0.75 (−2.11, 0.60) | −0.41 (−1.03, 0.20) |
MUN | −1.47 (−2.23, −0.70) *** | −3.34 (−4.58, −2.10) *** | −0.54 (−1.10, 0.02) * |
Model 2: Adjusted for age, sex, educational level | |||
MUO | −0.76 (−1.40, −0.12) ** | −2.05 (−3.09, −1.01) *** | −0.37 (−0.85, 0.10) |
MHO | −0.42 (−1.25, 0.42) | −0.23 (−1.59, 1.13) | −0.42 (−1.04, 0.20) |
MUN | −1.29 (−2.05, −0.53) ** | −2.98 (−4.21, −1.74) *** | −0.54 (−1.11, 0.02) * |
Model 3: Model 2 + Baseline smoking status | |||
MUO | −0.77 (−1.41, −0.13) ** | −2.05 (−3.09, −1.00) *** | −0.38 (−0.86, 0.10) |
MHO | −0.42 (−1.25, 0.42) | −0.23 (−1.59, 1.13) | −0.42 (−1.04, 0.20) |
MUN | −1.29 (−2.05, −0.53) ** | −2.98 (−4.22, −1.74) *** | −0.54 (−1.11, 0.02) * |
Model 4: Model 3 + Baseline waist circumference + LDL-cholesterol levels | |||
MUO | −0.43 (−1.23, 0.36) | −1.48 (−2.76, −0.19) ** | −0.29 (−0.77, 0.19) |
MHO | −0.16 (−1.07, 0.75) | 0.18 (−1.29, 1.65) | −0.36 (−0.98, 0.26) |
MUN | −1.23 (−2.00, −0.46) ** | −2.89 (−4.14, −1.64) *** | −0.51 (−1.08, 0.06) * |
General Cognitive Performance | Memory Scale | Processing Speed/Executive Functioning Scale | |
---|---|---|---|
Model 1: Crude model | |||
Resilient vs. non-resilient | 0.13 (−1.10, 1.36) | 1.09 (−0.85, 3.03) | −0.78 (−1.45, −0.10) ** |
Model 2: Adjusted for age, sex, educational level | |||
Resilient vs. non-resilient | 0.21 (−1.00, 1.43) | 1.25 (−0.68, 3.18) | −0.76 (−1.44, −0.08) ** |
Model 3: Model 2 + Baseline smoking status | |||
Resilient vs. non-resilient | 0.20 (−0.99, 1.40) | 1.26 (−0.67, 3.19) | −0.76 (−1.45, −0.08) ** |
Model 4: Model 3 + Baseline waist circumference + LDL- cholesterol levels | |||
Resilient vs. non-resilient | 0.22 (−1.01, 1.46) | 1.31 (−0.62, 3.24) | −0.76 (−1.44, −0.08) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouvari, M.; M. D’Cunha, N.; Tsiampalis, T.; Zec, M.; Sergi, D.; Travica, N.; Marx, W.; McKune, A.J.; Panagiotakos, D.B.; Naumovski, N. Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study. Nutrients 2023, 15, 1289. https://doi.org/10.3390/nu15051289
Kouvari M, M. D’Cunha N, Tsiampalis T, Zec M, Sergi D, Travica N, Marx W, McKune AJ, Panagiotakos DB, Naumovski N. Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study. Nutrients. 2023; 15(5):1289. https://doi.org/10.3390/nu15051289
Chicago/Turabian StyleKouvari, Matina, Nathan M. D’Cunha, Thomas Tsiampalis, Manja Zec, Domenico Sergi, Nikolaj Travica, Wolfgang Marx, Andrew J. McKune, Demosthenes B. Panagiotakos, and Nenad Naumovski. 2023. "Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study" Nutrients 15, no. 5: 1289. https://doi.org/10.3390/nu15051289
APA StyleKouvari, M., M. D’Cunha, N., Tsiampalis, T., Zec, M., Sergi, D., Travica, N., Marx, W., McKune, A. J., Panagiotakos, D. B., & Naumovski, N. (2023). Metabolically Healthy Overweight and Obesity, Transition to Metabolically Unhealthy Status and Cognitive Function: Results from the Framingham Offspring Study. Nutrients, 15(5), 1289. https://doi.org/10.3390/nu15051289