Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.2.1. Maternal
Sociodemographic Data
Lifestyle Habits
Anthropometric Measurements
Psychological Data
Biochemical Data
2.2.2. Infant
Obstetrical and Birth Data
Psychological Data
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Associations of Maternal Vitamin B12 Levels with BSID-III Scores
3.3. Maternal Vitamin B12 Levels and the Risk of Scoring >75th Percentile on the BSID-III Scores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Francis, E.; Hinkle, S.N.; Ajjarapu, A.S.; Zhang, C. Preconception and Prenatal Nutrition and Neurodevelopmental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- England-Mason, G.; Deborah, D. Strengthening research investigating maternal nutrition and children’s neurodevelopment: How can we do it better? Where do we go from here? AJCN 2021, 114, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Behere, R.V.; Deshmukh, A.S.; Otiv, S.; Gupte, M.D.; Yajnik, C.S. Maternal Vitamin B12 Status During Pregnancy and Its Association with Outcomes of Pregnancy and Health of the Offspring: A Systematic Review and Implications for Policy in India. Front. Endocrinol. 2021, 12, 619176. [Google Scholar] [CrossRef] [PubMed]
- Heppe, D.H.; Medina-Gomez, C.; Hofman, A.; Franco, O.H.; Rivadeneira, F.; Jaddoe, V.W. Maternal first-trimester diet and childhood bone mass: The Generation R Study. Am. J. Clin. Nutr. 2013, 98, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.C.; Caric, V.; Hair, M.; Jones, O.; Wark, L.; McColl, M.D.; Ramsay, J.E. Pregnancy-specific reference ranges for haematological variables in a Scottish population. J. Obstet. Gynaecol. 2011, 31, 286–289. [Google Scholar] [CrossRef]
- Adaikalakoteswari, A.; Wood, C.; Mina, T.H.; Webster, C.; Goljan, I.; Weldeselassie, Y.; Reynolds, R.M.; Saravanan, P. Vitamin B12 deficiency and altered one-carbon metabolites in early pregnancy is associated with maternal obesity and dyslipidaemia. Sci. Rep. 2020, 10, 11066. [Google Scholar] [CrossRef]
- Saravanan, P.; Sukumar, N.; Adaikalakoteswari, A.; Goljan, I.; Venkataraman, H.; Gopinath, A.; Bagias, C.; Yajnik, C.S.; Stallard, N.; Ghebremichael-Weldeselassie, Y.; et al. Association of maternal vitamin B12 and folate levels in early pregnancy with gestational diabetes: A prospective UK cohort study (PRiDE study). Diabetologia 2021, 64, 2170–2182. [Google Scholar] [CrossRef]
- Hasbaoui, B.E.; Mebrouk, N.; Saghir, S.; Yajouri, A.E.; Abilkassem, R.; Agadr, A. Vitamin B12 deficiency: Case report and review of literature. Pan Afr. Med. J. 2021, 38, 237. [Google Scholar]
- Smith, A.D.; Warren, M.J.; Refsum, H. Vitamin B12. Adv. Food Nutr. Res. 2018, 83, 215–279. [Google Scholar]
- Chittaranjan, Y. Vitamin B12: An Intergenerational Story. Glob. Nestle Nutr. Inst. Workshop Ser. 2020, 93, 91–102. [Google Scholar]
- Cruz-Rodríguez, J.; Canals, J.; Basora, J.; Arija, V. Prevalence of vitamin B12 deficiency and associated factors in healthy pregnant Spanish women. ECLIPSES study. Eur. J. Nutr. 2023; submitted. [Google Scholar]
- Shepherd, G.; Velez, L.I. Role of hydroxocobalamin in acute cyanide poisoning. Ann. Pharmacother. 2008, 42, 661–669. [Google Scholar] [CrossRef] [PubMed]
- De Batlle, J.; Matejcic, M.; Chajes, V.; Moreno-Macias, H.; Amadou, A.; Slimani, N.; Cox, D.G.; Clavel-Chapelon, F.; Fagherazzi, G.; Romieu, I. Determinants of folate and vitamin B12 plasma levels in the French E3N-EPIC cohort. Eur. J. Nutr. 2018, 57, 751–760. [Google Scholar] [CrossRef]
- Grarup, N.; Sulem, P.; Sandholt, C.H.; Thorleifsson, G.; Ahluwalia, T.S.; Steinthorsdottir, V.; Bjarnason, H.; Gudbjartsson, D.F.; Magnusson, O.T.; Sparsø, T.; et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet 2013, 9, e1003530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuzo, C.A.; da Veiga Ued, F.; Moco, S.; Cominetti, O.; Métairon, S.; Pruvost, S.; Charpagne, A.; Carayol, J.; Torrieri, R.; Silva, W.A., Jr.; et al. Contribution of genetic ancestry and polygenic risk score in meeting vitamin B12 needs in healthy Brazilian children and adolescents. Sci. Rep. 2021, 11, 11992. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Siblini, Y.; Hergalant, S.; Chéry, C.; Rouyer, P.; Cavicchi, C.; Guerrini, R.; Morange, P.; Trégouët, D.; Pupavac, M.; et al. Epimutations in both the TESK2 and MMACHC promoters in the Epi-cblC inherited disorder of intracellular metabolism of vitamin B12. Clin. Epigenetics 2022, 14, 52. [Google Scholar] [CrossRef]
- Szczuko, M.; Hawryłkowicz, V.; Kikut, J.; Drozd, A. The implications of vitamin content in the plasma in reference to the parameters of carbohydrate metabolism and hormone and lipid profiles in PCOS. J. Steroid Biochem. Mol. Biol. 2020, 198, 105570. [Google Scholar] [CrossRef]
- Knight, B.A.; Shields, B.M.; Brook, A.; Hill, A.; Bhat, D.S.; Hattersley, A.T.; Yajnik, C.S. Lower Circulating B12 Is Associated with Higher Obesity and Insulin Resistance during Pregnancy in a Non-Diabetic White British Population. PLoS ONE 2015, 10, e0135268. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, J.L.; Layden, A.J.; Stover, P.J. Vitamin B-12 and Perinatal Health. Adv. Nutr. 2015, 6, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.C.; Katre, P.; Yajnik, C.S. Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutr. 2014, 68, 2–7. [Google Scholar] [CrossRef]
- Thomas, S.; Thomas, T.; Bosch, R.J.; Ramthal, A.; Bellinger, D.C.; Kurpad, A.V.; Duggan, C.P.; Srinivasan, K. Effect of Maternal Vitamin B12 Supplementation on Cognitive Outcomes in South Indian Children: A Randomized Controlled Clinical Trial. Matern. Child Health J. 2019, 23, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Fernandez-Ballart, J.D.; Molloy, A.M.; Canals, J. Moderately elevated maternal homocysteine at preconception is inversely associated with cognitive performance in children 4 months and 6 years after birth. Matern. Child Nutr. 2017, 13, e12289. [Google Scholar] [CrossRef] [PubMed]
- Black, M.M. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr. Bull. 2008, 29, S126–S131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goraya, J.S.; Kaur, S.; Mehra, B. Neurology of Nutritional Vitamin B12 Deficiency in Infants: Case Series From India and Literature Review. J. Child Neurol. 2015, 30, 1831–1837. [Google Scholar] [CrossRef]
- Valentini, N.C.; Pereira, K.R.G.; Chiquetti, E.M.D.S.; Formiga, C.K.M.R.; Linhares, M.B.M. Motor trajectories of preterm and full-term infants in the first year of life. Pediatr. Int. 2019, 61, 967–977. [Google Scholar] [CrossRef]
- Keskin, E.Y.; Keskin, M.; Karaibrahimoğlu, A. Association of Maternal Vitamin B12 Status with Infant Findings and Neurodevelopment in Vitamin B12-Deficient Breast-fed Babies. J. Pediatr. Hematol. Oncol 2022, 44, e91–e95. [Google Scholar] [CrossRef]
- Lai, J.S.; Mohamad Ayob, M.N.; Cai, S.; Quah, P.L.; Gluckman, P.D.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; Godfrey, K.M.; et al. Maternal plasma vitamin B12 concentrations during pregnancy and infant cognitive outcomes at 2 years of age. Br. J. Nutr. 2019, 121, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Bhate, V.K.; Joshi, S.M.; Ladkat, R.S.; Deshmukh, U.S.; Lubree, H.G.; Katre, P.A.; Bhat, D.S.; Rush, E.C.; Yajnik, C.S. Vitamin B12 and folate during pregnancy and offspring motor, mental and social development at 2 years of age. J. Dev. Orig. Health Dis. 2012, 3, 123–130. [Google Scholar] [CrossRef]
- Bhate, V.; Deshpande, S.; Bhat, D.; Joshi, N.; Ladkat, R.; Watve, S.; Fall, C.; de Jager, C.A.; Refsum, H.; Yajnik, C. Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr. Bull. 2008, 29, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Veena, S.R.; Krishnaveni, G.V.; Srinivasan, K.; Wills, A.K.; Muthayya, S.; Kurpad, A.V.; Yajnik, C.S.; Fall, C.H. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India. J. Nutr. 2010, 140, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.T.; Dyer, R.A.; King, D.J.; Richardson, K.J.; Innis, S.M. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS ONE 2012, 7, e43448. [Google Scholar] [CrossRef] [Green Version]
- Ars, C.L.; Nijs, I.M.; Marroun, H.E.; Muetzel, R.; Schmidt, M.; Steenweg-de Graaff, J.; van der Lugt, A.; Jaddoe, V.W.; Hofman, A.; Steegers, E.A.; et al. Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: The Generation R Study. Br. J. Nutr. 2019, 122, S1–S9. [Google Scholar] [CrossRef] [Green Version]
- D’souza, N.; Behere, R.V.; Patni, B.; Deshpande, M.; Bhat, D.; Bhalerao, A.; Sonawane, S.; Shah, R.; Ladkat, R.; Yajnik, P.; et al. Pre-conceptional Maternal Vitamin B12 Supplementation Improves Offspring Neurodevelopment at 2 Years of Age: PRIYA Trial. Front. Pediatr. 2021, 9, 755977. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W. Child development and the physical environment. Annu. Rev. Psychol. 2006, 57, 423–451. [Google Scholar] [CrossRef] [Green Version]
- Duggan, C.; Srinivasan, K.; Thomas, T.; Samuel, T.; Rajendran, R.; Muthayya, S.; Finkelstein, J.L.; Lukose, A.; Fawzi, W.; Allen, L.H.; et al. Vitamin B12 supplementation during pregnancy and early lactation increases maternal, breast milk and infant measures of vitamin B12 status. J. Nutr. 2014, 144, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Arija, V.; Fargas, F.; March, G.; Abajo, S.; Basora, J.; Canals, J.; Ribot, B.; Aparicio, E.; Serrat, N.; Hernández-Martínez, C.; et al. Adapting iron dose supplementation in pregnancy for greater effectiveness on mother and child health: Protocol of the ECLIPSES randomized clinical trial. BMC Pregnancy Childbirth 2014, 14, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institut d’Estadística de Catalunya. Catalan Classification of Occupations; Institut d’Estadística de Catalunya: Catalonia, Spain, 2011. [Google Scholar]
- Hollingshead, A.B. Four Factor Index of Social Status; Yale University: New Haven, CT, USA, 2011. [Google Scholar]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerström, K.O. The Fagerström Test for Nicotine Dependence: A revision of the Fagerström Tolerance Questionnaire. Br. J. Addict. 1991, 86, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, I.T.; Ballart, J.F.; Pastor, G.C.; Jordà, E.B.; Val, V.A. Validation of a short questionnaire on frequency of dietary intake: Reproducibility and validity. Nutr. Hosp. 2008, 23, 242–252. [Google Scholar]
- Favier, J.C.; Ireland-Ripert, J.; Toque, C.; Feinberg, M. Répertoire Général Des Aliments: Tables De Composition; Technique & Documentation; INRA: Paris, France, 1995; p. 897.
- Mataix, J.; García-Diz, L.; Mañas, M.; Martínez, E.; Llopis, J. Food Composition Tables, 5th ed.; Publisher University of Granada: Granada, Spain, 2009. [Google Scholar]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Global Dabatase on Body Mass Index; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. STAI Cuestionario de Ansiedad Estado Rasgo. (Adaptación Española: Nicolás Seisdedos Cubero); TEA Ediciones: Madrid, Spain, 1994. [Google Scholar]
- Abidin, R.R. Parenting Stress Index (PSI) Manual. 3; Pediatric Psychology Press: Charlottesville, VA, USA, 1995. [Google Scholar]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Seaman, S.R.; Bartlett, J.W.; White, I.R. Multiple imputation of missing covariates with non-linear effects and interactions: An evaluation of statistical methods. BMC Med. Res. Methodol. 2012, 12, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis. Multiple Regression Analysis (3); Kennesaw State University: Kennesaw, GA, USA, 2009; Volume 4, pp. 193–292. [Google Scholar]
- De Benoist, B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef] [PubMed]
- Marrus, N.; Eggebrecht, A.T.; Todorov, A.; Elison, J.T.; Wolff, J.J.; Cole, L.; Gao, W.; Pandey, J.; Shen, M.D.; Swanson, M.R.; et al. Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers. Cereb. Cortex 2018, 28, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Baillieu, N.; Potterton, J. The extent of delay of language, motor, and cognitive development in HIV-positive infants. J. Neurol. Phys. Ther. 2008, 32, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Boonzaaijer, M.; Oudgenoeg-Paz, O.; Suir, I.; Westers, P.; Nuysink, J.; Volman, M.; Jongmans, M. Modeling a gross motor curve of typically developing Dutch infants from 3.5 to 15.5 months based on the Alberta Infant Motor Scale. Early Hum. Dev. 2021, 157, 105366. [Google Scholar] [CrossRef] [PubMed]
- Boonzaaijer, M.; Suir, I.; Mollema, J.; Nuysink, J.; Volman, M.; Jongmans, M. Factors associated with gross motor development from birth to independent walking: A systematic review of longitudinal research. Child Care Health Dev. 2021, 47, 525–561. [Google Scholar] [CrossRef]
- Valentini, N.C.; de Borba, L.S.; Panceri, C.; Smith, B.A.; Procianoy, R.S.; Silveira, R.C. Early Detection of Cognitive, Language, and Motor Delays for Low-Income Preterm Infants: A Brazilian Cohort Longitudinal Study on Infant Neurodevelopment and Maternal Practice. Front. Psychol. 2021, 12, 753551. [Google Scholar] [CrossRef]
- Schwarzenberg, S.J.; Georgieff, M.K.; Committee on Nutrition. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef] [Green Version]
- Del Río Garcia, C.; Torres-Sánchez, L.; Chen, J.; Schnaas, L.; Hernández, C.; Osorio, E.; Portillo, M.G.; López-Carrillo, L. Maternal MTHFR 677C > T genotype and dietary intake of folate and vitamin B (12): Their impact on child neurodevelopment. Nutr. Neurosci. 2009, 12, 13–20. [Google Scholar] [CrossRef]
- Joseph, R.M.; O’Shea, T.M.; Allred, E.N.; Heeren, T.; Kuban, K.K. Maternal educational status at birth, maternal educational advancement, and neurocognitive outcomes at age 10 years among children born extremely preterm. Pediatr. Res. 2018, 83, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.; Greene, M.M.; Patel, A.L.; Meier, P. Maternal Education Level Predicts Cognitive, Language, and Motor Outcome in Preterm Infants in the Second Year of Life. Am. J. Perinatol. 2016, 33, 738–744. [Google Scholar] [PubMed] [Green Version]
- Tucker-Drob, E.M.; Rhemtulla, M.; Harden, K.P.; Turkheimer, E.; Fask, D. Emergence of a Gene x socioeconomic status interaction on infant mental ability between 10 months and 2 years. Psychol. Sci. 2011, 22, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polańska, K.; Jurewicz, J.; Hanke, W. Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment-A review of epidemiological studies. Int. J. Occup. Med. Environ. Health 2015, 28, 419–443. [Google Scholar] [CrossRef]
- Hernández-Martínez, C.; Voltas Moreso, N.; Ribot Serra, B.; Arija Val, V.; Escribano Macías, J.; Canals Sans, J. Effects of Prenatal Nicotine Exposure on Infant Language Development: A Cohort Follow Up Study. Matern. Child Health J. 2017, 21, 734–744. [Google Scholar] [CrossRef]
- Al-Musharaf, S.; McTernan, P.G.; Hussain, S.D.; Aleisa, K.A.; Alnaami, A.M.; Wani, K.; Saravanan, P.; Al-Daghri, N. Prevalence and Indicators of Vitamin B12 Insufficiency among Young Women of Childbearing Age. Int. J. Environ. Res. Public Health 2020, 18, 1. [Google Scholar] [CrossRef]
- Obeid, R.; Heil, S.G.; Verhoeven, M.M.A.; van den Heuvel, E.G.H.M.; de Groot, L.C.P.G.M.; Eussen, S.J.P.M. Vitamin B12 Intake From Animal Foods, Biomarkers, and Health Aspects. Front. Nutr. 2019, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Dullemeijer, C.; Souverein, O.W.; Doets, E.L.; van der Voet, H.; van Wijngaarden, J.P.; de Boer, W.J.; Plada, M.; Dhonukshe-Rutten, R.A.; In’t Veld, P.H.; Cavelaars, A.E.; et al. Systematic review with dose-response meta-analyses between vitamin B-12 intake and European Micronutrient Recommendations Aligned’s prioritized biomarkers of vitamin B-12 including randomized controlled trials and observational studies in adults and elderly persons. Am. J. Clin. Nutr. 2013, 97, 390–402. [Google Scholar]
- Niño Cruz, G.I.; Ramirez Varela, A.; da Silva, I.C.M.; Hallal, P.C.; Santos, I.S. Physical activity during pregnancy and offspring neurodevelopment: A systematic review. Paediatr. Perinat. Epidemiol. 2018, 32, 369–379. [Google Scholar] [CrossRef]
- Valentine, G.; Sofuoglu, M. Cognitive Effects of Nicotine: Recent Progress. Curr. Neuropharmacol. 2018, 16, 403–414. [Google Scholar] [CrossRef]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.M.; Tan, S.; Bell, E.F.; Duncan, A.F.; Guillet, R.; Stoll, B.J.; D’Angio, C.T.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes among extremely premature infants with linear growth restriction. J. Perinatol. 2019, 39, 193–202. [Google Scholar] [CrossRef] [PubMed]
Maternal Characteristics | Summary Statistics |
---|---|
Age (years) # | 30.8 ± 5.0 |
BMI initial (kg/m2) # | 24.8 ± 4.3 |
Gestational weight gain (kg) # | 10.3 ± 3.6 |
Educational level, n (%) | |
Low (primary/secondary) | 278 (64.1) |
High (university) | 156 (35.9) |
Social class, n (%) | |
Low/medium | 354 (81.6) |
High | 80 (18.4) |
Smoking during pregnancy, n (%) | |
No | 371 (85.5) |
Yes | 63 (14.5) |
Alcohol consumption during pregnancy, n (%) | |
No | 363 (86.4) |
Yes | 57 (13.6) |
Physical activity during pregnancy (METs/min/week) # | 2362.8 ± 2473.7 |
Tertile 1 (METs/min/week) | 730.4 ± 626.5 |
Tertile 2 (METs/min/week) | 1578.3 ± 289.8 |
Tertile 3 (METs/min/week) | 4801.0 ± 3007.5 |
MedDiet during pregnancy (score) # | 9.7 ± 2.1 |
Energy intake during pregnancy (kcal) # | 2087.1 ± 470.3 |
Vitamin B12 intake during pregnancy (µg) # | 4.3 ± 1.2 |
Folate intake during pregnancy (µg) # | 199.9 ± 59.3 |
Previous parity, n (%) | |
No | 190 (43.8) |
Yes | 244 (56.2) |
Parenting Stress Index # | 50.6 ± 7.9 |
Mother’s anxiety state 1st trimester (score) # | 17.3 ± 8.5 |
Mother’s anxiety state 3rd trimester (score) # | 19.2 ± 8.7 |
Vitamin B12 levels 1st trimester (pg/mL) # | 374.2 ± 127.7 |
Marginal vitamin B12 deficiency (200 to <300 pg/mL), n (%) | 115 (26.5) |
Vitamin B12 deficiency (<200 pg/mL), n (%) | 14 (3.2) |
Vitamin B12 levels 3rd trimester (pg/mL) # + | 305.2 ± 138.0 |
Marginal vitamin B12 deficiency (200 to <300 pg/mL), n (%) | 154 (43.6) |
Vitamin B12 deficiency (<200 pg/mL), n (%) | 62 (17.5) |
RBC folate levels (nmol/L) | 570.4 ± 207.3 |
Baby Characteristics | |
Sex, n (%) | |
Male | 221 (50.9) |
Female | 213 (49.1) |
Gestational age at delivery (weeks) + | 39.6 ± 2.2 |
Type of feeding, n (%) | |
Breastfeeding | 315 (72.6) |
Mixed feeding/infant formula | 119 (27.4) |
Birth weight (g) + | 3284.7 ± 463.0 |
Birth height (cm) + | 49.2 ± 2.1 |
Birth head circumference (cm) + | 34.5 ± 1.5 |
Weight–length ratio neonatal (g/m) + | 66.4 ± 7.6 |
BSID-III at 40 days | |
Motor scale (score) + | 107.5 ± 11.2 |
Fine motor (score) + * | 11.3 ± 1.2 |
Gross motor (score) + | 11.8 ± 2.3 |
Language scale (score) + | 96.2 ± 8.2 |
Receptive language (score) + | 10.6 ± 2.1 |
Expressive language (score) + | 8.0 ± 1.5 |
Cognitive scale (score) + * | 101.3 ± 1.1 |
BSID-III | Vitamin B12 in the 1st Trimester | Vitamin B12 in the 3rd Trimester | ||||||
---|---|---|---|---|---|---|---|---|
Determinants | Tertile 1 (<312 pg/mL) (n = 146) | Tertile 2 (312–408 pg/mL) (n = 145) | Tertile 3 (≥409 pg/mL) (n = 143) | p Value | Tertile 1 (<232 pg/mL) (n = 118) | Tertile 2 (232–318 pg/mL) (n = 118) | Tertile 3 (≥319 pg/mL) (n = 117) | p Value |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
Motor scale | 106.9 ± 10.0 | 108.8 ± 13.2 | 107.7 ± 10.7 | 0.340 | 107.1 ± 13.8 | 107.1 ± 10.4 | 107.5 ± 10.0 | 0.948 |
Fine motor subscale * | 11.2 ± 1.2 | 11.6 ± 1.2 | 11.2 ± 1.2 | 0.219 | 11.2 ± 1.2 | 11.4 ± 1.2 | 11.1 ± 1.2 | 0.655 |
Gross motor subscale | 10.8 ± 2.2 | 11.4 ± 2.3 | 11.1 ± 2.3 | 0.162 | 11.1 ± 2.4 | 10.8 ± 2.3 | 11.1 ± 2.1 | 0.388 |
Language scale | 95.1 ± 7.9 | 97.2 ± 8.3 | 96.0 ± 8.6 | 0.095 | 96.2 ± 8.0 | 96.1 ± 8.9 | 96.7 ± 7.9 | 0.830 |
Expressive-language subscale | 7.8 ± 1.4 | 8.1 ± 1.6 | 8.1 ± 1.6 | 0.219 | 8.0 ± 1.3 | 8.1 ± 1.7 | 8.1 ± 1.5 | 0.860 |
Receptive-language subscale | 10.4 ± 2.1 | 10.8 ± 2.0 | 10.4 ± 2.0 | 0.110 | 10.5 ± 2.2 | 10.4 ± 2.2 | 10.7 ± 1.9 | 0.574 |
Cognitive scale * | 100.5 ± 1.1 | 103.0 ± 1.1 | 100.9 ± 1.1 | 0.051 | 100.8 ± 1.1 | 101.4 ± 1.1 | 102.0 ± 1.1 | 0.564 |
Determinants, BSID-III | First Trimester | Third Trimester | ||||
---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | |
Motor Scale | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 2.766 | 0.029, 5.504 | 0.048 | 0.567 | −2.537, 3.671 | 0.720 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.918 | −1.787, 3.624 | 0.505 | 0.000 | −3.052, 3.053 | 1.000 |
Educational level (0: primary/secondary, 1: university) | 3.011 | 0.344, 5.678 | 0.027 | 3.126 | 0.132, 6.119 | 0.041 |
Smoking habit (0: no, 1: yes) | 5.140 | 1.695, 8.585 | 0.004 | 4.489 | 0.684, 8.293 | 0.021 |
Physical activity (METS/min/week) tertiles (0: T1, 1: T2) | 2.901 | 0.170, 5.631 | 0.037 | 3.346 | 0.220, 6.472 | 0.036 |
Physical activity (METS/min/week) tertiles (0: T1, 1: T3) | 3.590 | 0.875, 6.306 | 0.010 | 4.297 | 1.209, 7.385 | 0.007 |
R2 = 0.039, F = 23, 410 = 1.59, p = 0.041 | R2 = 0.043, F = 23, 328 = 1.50, p = 0.068 | |||||
Fine Motor Subscale * | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 0.035 | −0.008, 0.079 | 0.115 | 0.019 | −0.032, 0.070 | 0.460 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.003 | −0.041, 0.046 | 0.901 | −0.007 | −0.057, 0.043 | 0.767 |
Educational level (0: primary/secondary, 1: university) | 0.058 | 0.014, 0.101 | 0.009 | |||
Smoking habit (0: no, 1: yes) | 0.073 | 0.017, 0.129 | 0.010 | 0.067 | 0.005, 0.130 | 0.035 |
R2 = 0.050, F = 23, 410 = 1.83, p = 0.013 | R2 = 0.050, F = 23, 328 = 1.30, p = 0.162 | |||||
Gross Motor Subscale | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 0.706 | 0.153, 1.260 | 0.012 | −0.207 | −0.824, 0.410 | 0.510 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.279 | −0.267, 0.827 | 0.315 | −0.033 | −0.640, 0.573 | 0.914 |
Physical activity (METS/min/week) tertiles (0: T1, 1: T2) | 0.396 | −0.166, 0.958 | 0.167 | 0.522 | −0.108, 1.152 | 0.104 |
Physical activity (METS/min/week) tertiles (0: T1, 1: T3) | 0.858 | 0.307, 1.409 | 0.002 | 0.923 | 0.310, 1.536 | 0.003 |
Vitamin B12 intake (g) | 0.278 | 0.035, 0.522 | 0.025 | |||
Neonatal weight–length ratio (g/m) | 0.047 | 0.012, 0.082 | 0.007 | 0.053 | 0.014, 0.091 | 0.007 |
Birth head circumference (cm) | −0.250 | −0.491, −0.009 | 0.041 | |||
R2 = 0.047, F = 23, 410 = 1.61, p = 0.037 | R2 = 0.046, F = 23, 328 = 1.54, p = 0.055 | |||||
Language Scale | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 2.199 | 0.191, 4.207 | 0.032 | −0.115 | −2.358, 2.128 | 0.919 |
Vitamin B12 tertiles (0: T1, 1: T3) | 1.083 | −0.890, 3.056 | 0.281 | 0.809 | −1.394, 3.013 | 0.471 |
Vitamin B12 intake (g) | −0.929 | −1.807, −0.051 | 0.038 | −1.519 | −2.520, −0.518 | 0.003 |
Gestational age at birth (weeks) | 0.522 | 0.149, 0.895 | 0.006 | |||
Mother’s anxiety state 3rd trimester (score) | −0.166 | −0.316, −0.015 | 0.031 | |||
R2 = 0.062, F = 23, 410 = 1.58, p = 0.043 | R2 = 0.063, F = 23, 328 = 1.31, p = 0.158 | |||||
Receptive-Language Subscale | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 0.545 | 0.040, 1.050 | 0.034 | −0.164 | −0.746, 0.416 | 0.577 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.056 | −0.440, 0.554 | 0.822 | 0.222 | −0.348, 0.794 | 0.444 |
Vitamin B12 intake (g) | −0.325 | −0.584, −0.066 | 0.014 | |||
Gestational age at birth (weeks) | 0.127 | 0.033, 0.221 | 0.008 | |||
R2 = 0.055, F = 23, 410 = 1.42, p = 0.094 | R2 = 0.052, F = 23, 328 = 1.17, p = 0.268 | |||||
Expressive-Language Subscale | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 0.216 | −0.163, 0.596 | 0.263 | 0.128 | −0.282, 0.539 | 0.540 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.323 | −0.050, 0.697 | 0.090 | 0.057 | −0.346, 0.461 | 0.780 |
Total energy intake (kcal/day) | 0.000 | 0.000, 0.001 | 0.019 | |||
Vitamin B12 intake (g) | −0.199 | −0.381, −0.017 | 0.032 | |||
Parenting Stress Index (score) | 0.027 | 0.006, 0.048 | 0.010 | 0.024 | 0.001, 0.046 | 0.038 |
R2 = 0.052, F = 23, 410 = 1.47, p = 0.074 | R2 = 0.057, F = 23, 328 = 1.19, p = 0.249 | |||||
Cognitive Scale * | ||||||
Vitamin B12 tertiles (0: T1, 1: T2) | 0.267 | 0.005, 0.048 | 0.017 | 0.007 | −0.015, 0.029 | 0.538 |
Vitamin B12 tertiles (0: T1, 1: T3) | 0.003 | −0.019, 0.024 | 0.798 | 0.011 | −0.011, 0.033 | 0.315 |
Educational level (0: primary/secondary, 1: university) | 0.028 | 0.0068, 0.049 | 0.010 | |||
Smoking habit (0: no, 1: yes) | 0.032 | 0.005, 0.050 | 0.021 | |||
Gestational age at birth (weeks) | 0.005 | 0.001, 0.009 | 0.022 | |||
R2 = 0.047, F = 23, 410 = 1.56, p = 0.048 | R2 = 0.057, F = 23, 328 = 0.98, p = 0.489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Rodríguez, J.; Díaz-López, A.; Canals-Sans, J.; Arija, V. Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2023, 15, 1529. https://doi.org/10.3390/nu15061529
Cruz-Rodríguez J, Díaz-López A, Canals-Sans J, Arija V. Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study. Nutrients. 2023; 15(6):1529. https://doi.org/10.3390/nu15061529
Chicago/Turabian StyleCruz-Rodríguez, Josué, Andrés Díaz-López, Josefa Canals-Sans, and Victoria Arija. 2023. "Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study" Nutrients 15, no. 6: 1529. https://doi.org/10.3390/nu15061529
APA StyleCruz-Rodríguez, J., Díaz-López, A., Canals-Sans, J., & Arija, V. (2023). Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study. Nutrients, 15(6), 1529. https://doi.org/10.3390/nu15061529