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Abstract: Changes in gut microbiota composition and in epigenetic mechanisms have been proposed
to play important roles in energy homeostasis, and the onset and development of obesity. However,
the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The
main objective of this study was to establish a link between the gut microbiota and DNA methylation
patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs)
that could be potentially regulated by the gut microbiota. DNA methylation and bacterial DNA
sequencing analysis were performed on 342 subjects with a BMI between 18 and 40 kg/m2. DNA
methylation analyses identified a total of 2648 DMRs associated with BMI, while ten bacterial genera
were associated with BMI. Interestingly, only the abundance of Ruminococcus was associated with
one BMI-related DMR, which is located between the MACROD2/SEL1L2 genes. The Ruminococcus
abundance negatively correlated with BMI, while the hypermethylated DMR was associated with
reduced MACROD2 protein levels in serum. Additionally, the mediation test showed that 19% of the
effect of Ruminococcus abundance on BMI is mediated by the methylation of the MACROD2/SEL1L2
DMR. These findings support the hypothesis that a crosstalk between gut microbiota and epigenetic
markers may be contributing to obesity development.

Keywords: obesity; methylation; DMR; microbiota; MACROD2

1. Introduction

Obesity is a global epidemic and an independent risk factor for several metabolic
disorders. US and global studies suggest an increasing trend in obesity since 1980 [1].
Furthermore, the prevalence of severe obesity rose from 4.7% to 9.2% and was highest
among those aged between 40 and 59 [2]. Obesity is a leading disorder that involves
the accumulation of excessive fat in the body. There are various factors that have been
shown to play a role in the pathophysiology and pathogenesis of obesity such as genetic
susceptibility, dietary patterns, ethnic differences, antibiotic intake, and environmental
factors. The environmental factors include increased energy intake, reduced consumption of
high-fiber foods, and reduced physical activity due to a sedentary lifestyle [3]. Moreover, it
has been reported that gut microbiota and their metabolites can modulate the pathogenesis
of obesity and metabolic traits [4].
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A recent study has reported that microbial diversity is decreased in subjects with
obesity and different levels of obesity have distinct microbial signatures, where the genera
Akkermansia was a biomarker for normal weight subjects and Negativicutes was a biomarker
for extreme obesity [5]. Corroborating the idea that patients with different metabolic
diseases present a specific microbiota pattern, patients diagnosed with type 2 diabetes
exhibited lower levels of the Clostridiales order, including the genera Ruminococcus and
Subdoligranulum [6]. Several mechanisms have been proposed as a link between obesity and
gut microbiota, for instance, the production of microbial metabolites that regulate energy
metabolism, metabolic endotoxemia, or the modulation of the secretion of hormones by
intestinal cells [4].

Dietary components can modulate gut microbiota, which in turn, modulate microbiota-
derived metabolites, such as bile acids and short-chain fatty acids (SCFAs), including
butyrate, propionate, and acetate, which are end-products of microbial fermentation [7,8].
Furthermore, diet-derived microbial metabolites appear to produce substrates and enzy-
matic regulators for epigenetic modifications such as DNA methylation (DNAmet), histone
modifications, chromatin restructuring, and regulation of gene expression by non-coding
RNA [9,10]. Metabolites generated by the gut microbiota such as SCFAs, folates, biotin,
and trimethylamine-N-oxide can act as epigenetic modulators by affecting DNAmet and
inducing histone modifications [10]. Epigenetic changes mediated by microbial metabolites
can impact intestinal permeability, immune responses, glucose and lipid metabolism, and
energy expenditure [11–14].

DNAmet is one of the most studied epigenetic modifications and involves the transfer
of a methyl group (-CH3) on carbon-5 of the cytosine in cytosine–guanine dinucleotide-rich
(CpG) regions, in a reaction catalyzed by DNA methyltransferases [15]. It has been re-
ported that DNAmet plays an important role in insulin sensitivity and glucose homeostasis,
and the expression of HDAC7 and IGF2BP2 genes, associated with glucose and energy
homeostasis might be epigenetically regulated by microbiome composition [16–18]. In
this context, metabolites such as folate, vitamin B12, betaine and choline are potentially
involved in the synthesis of 6-methyltetrahydrofolate, which is a methyl group donor for
the generation of S-adenosylmethionine (SAM), which participates in DNA methylation
processes [19,20]. These methyl-donating nutrients are regulated by specific intestinal
microbial communities, such as Lactobacillus and Bifidobacterium, known for folate pro-
duction [21,22]. Another nutrient that plays a crucial role in the regulation of DNAmet
is choline. Gut communities can metabolize choline into several metabolites that impact
human health, such as trimethylamine (TMA) [15]. TMA can be further metabolized by
flavin monooxygenase (FMO) enzymes into trimethylamine-N-oxide (TMAO) [23], which
has been linked to obesity, metabolic syndrome, and diabetes [24–26]. This choline-derived
metabolite, TMAO, has been also found to be involved in the vast production of ROS [27],
that can influence epigenetic programming as it can lead to deamination or depurination
of nucleic acids, which may trigger DNA repair mechanisms and replacement with a
nonmethylated cytosine, resulting in transcriptional changes [28].

A study in germ-free C57BL/6 female mice fed a high fat diet and supplemented
with choline demonstrated a relationship between choline and metabolic disturbances
via DNmet. These animals were split in two groups based on gut colonization: (a) mice
with bacteria that use choline, or (b) with bacteria that are incapable of using choline
and unable to produce TMA. As a result, lower levels of methylation were found in the
heart, colon, brain, and liver tissues in the first group of mice compared to the other group.
In addition, mice colonized with choline-using bacteria exhibited adiposity traits. The
authors concluded that choline-using bacteria compete for choline uptake with the host,
decreasing levels of choline and methyl donors for the host and making the host more
prone to metabolic disorders [29]. Based on the above, there is a role for epigenetics in the
development of obesity and related metabolic disorders. Recent evidence has proposed
that certain metabolites produced by gut microbiota can modulate the epigenetic profile
under various conditions [30]. Furthermore, variations in gut microbiota composition
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may regulate epigenetic markers, which have been proposed as key determinants in
the onset and development of obesity and other metabolic diseases. Even though there
is a potential role of the intestinal microbiota as an epigenetic modulator, the number
of studies associating the intestinal microbiome with epigenetic modifications is sparse.
Furthermore, most of these studies have focused on histone acetylation, with little attention
given to the methylation state of DNA. Thus, the aim of this study was to establish a link
between microbiota and DNAmet in individuals with obesity and to identify differentially
methylated DNA regions (DMRs) potentially associated with energy homeostasis that
could be regulated by the intestinal microbiota.

2. Materials and Methods
2.1. Study Population

The present study was designed following the STROBE guidelines for performing
and reporting association studies [31] and included the baseline data from 342 Caucasian
adults from the OBEKIT trial (NCT02737267). The sample comprised 64 eutrophic subjects
(controls, BMI from 18 to 24.9 kg/m2) and 278 subjects with overweight or obesity (cases,
BMI from 25 to 40.29 kg/m2). Obesity was classified according to the World Health
Organization (WHO) criteria [32]. The intervention lasted from October 2015 to February
2016. Exclusion criteria included pregnant or lactating women; a history of cardiovascular
disease, hypertension, or diabetes mellitus; current use of lipid drugs that affect serum
lipid levels; and body weight and weight change ≥ 3 kg within three months before the
recruitment. All samples were collected in the morning, after a 12 h fast. The ethnic group
was defined based on self-classification. All patients were self-defined as Caucasians. A
written informed consent was signed before the inclusion in the study and the protocol was
approved by the Research Ethics Committee of the University of Navarra (ref. 132/2015)
and registered at clinicaltrials.gov (reg. no. NCT02737267). Throughout the project, the
Ethical principles of the Helsinki Declaration were rigorously followed [33].

2.2. Anthropometric Measurements

All patients underwent laboratory and anthropometric measurements as previously
described [34]. Body weight (kg), height (cm), and waist circumference (cm) were collected
by trained nutritionists following validated procedures [34]. BMI was calculated as weight
(kg) divided by the square of height (m2). Body composition was quantified by dual-energy
X-ray absorptiometry according to the supplier’s instructions (Lunar Prodigy 6.0, Madison,
WI, USA).

2.3. Biochemical Measurements

Total cholesterol (TC, mg/dL), high-density lipoprotein cholesterol (HDL-c, mg/dL),
triglycerides (TG, mg/dL) and fasting glucose (mg/dL), were determined with an auto-
matic analyzer (Pentra C200, HORIBA Medical, Kyoto, Japan), following standardized
procedures. Adiponectin, leptin, insulin, C-reactive protein (CRP), and tumor necrosis
factor (TNF) were quantified using commercial ELISA kits and read with an automated
analyzer system (Triturus, Grifols, Barcelona, Spain): adiponectin (BioVendor, Brno, Czech
Republic), leptin and insulin (Mercodia, Uppsala, Sweden), CRP (Demeditec, Kiel, Ger-
many), and TNF (R&D Systems, Minneapolis, MN, USA). Insulin resistance was assessed
according to the homeostatic model assessment-insulin resistance (HOMA-IR) index: (fast-
ing insulin (mU/L) × plasma glucose (mmol/L)/22.5).

2.4. Gut Microbiota Analysis
2.4.1. Fecal Sample Collection and DNA Isolation

Volunteers self-collected fecal samples were using OMNIgene GUT kits (DNA Genotek,
Ottawa, ON, Canada). Fecal DNA was isolated using the QIAamp® DNA kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol.

clinicaltrials.gov
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2.4.2. 16 S rRNA Sequencing and Sequence Analysis

The Servei de Genòmica i Bioinformàtica (Autonomous University of Barcelona,
Barcelona, Spain) sequenced the bacterial DNA as previously reported [35,36]. They
used the Illumina 16S protocol, based on the amplification of the V3-V4 variable regions
of the 16S rRNA gene. Paired-end sequencing was performed using the MiSeq System
(Illumina, San Diego, CA, USA). The OTU processing pipeline LotuS (release 1.58) was used
to filter the 16S rRNA sequences [37]. For the identification of Operational Taxonomic Units
(OTUs) and their abundance matrix generation, this pipeline includes UPARSE de novo
sequence clustering and the removal of phix contaminants and chimeric sequences [38,39].
OTU refers to a cluster of 16S sequences showing 97% sequence similarity. Taxonomy was
assigned using BLAST and HITdb. The abundance matrices were first filtered and then
normalized in R/Bioconductor at each classification level [40–43].

2.5. DNA Methylation Studies
2.5.1. DNA Isolation and Bisulfite Conversion

Blood samples were centrifuged at 4 ◦C for 15 min to obtain plasma and isolate
the buffy coat fraction. DNA from the buffy coat was extracted using MasterPure DNA
purification Kit for blood version II (Epicentre Biotechnologies, Madison, WI, USA). In
a second step, a total of 500 ng of DNA was reacted with sodium bisulfite using the
EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, CA, USA), to convert
unmethylated cytosines into uracils.

2.5.2. Microarray Analysis

Bisulfite-treated DNA samples were scanned using an Illumina HiScanSQ system.
The image intensities were extracted with GenomeStudio v1.9 (Illumina, CA, USA) and
analyzed as previously reported [44]. Briefly, raw intensity data files were processed
using the methylation Pipeline package for R software (version 1.11.0). Then, probes were
filtered out according to these criteria: located on X and Y chromosomes, presence of single
nucleotide polymorphisms, alignment to multiple locations, beadcounts < 3 in minimum
5% of samples, or p-values > 0.01 in at least one sample. The results obtained from the
platform were improved with the Subset-quantile Within Array Normalization method
(SWAN) that reduces the technical variation within and between arrays. The ComBat
method was used to eliminate technical variation and adjust for batch effects [45,46]. The
Houseman algorithm was used to correct DNAmet by cell composition (B cells, monocytes,
granulocytes, CD4+ helper T cells, CD8+ cytotoxic cells, and natural killer cells) [47]. The
LIMMA package for the R statistical software was used to compute a linear regression
(for quantitative outcome) or moderated F-statistic (for qualitative outcome) to identify
differentially methylated probes (DMP). CpG selection criteria were B ≥ 0 and a raw
p-value < 0.05. Finally, a function of ChAMP (Chip Analysis Methylation Pipeline) in
R software was used to identify differentially methylated regions (DMR), as previously
reported [48].

2.6. Protein Expression of MACROD2

Serum MACROD2 protein concentrations were determined using a commercially avail-
able ELISA kit according to the manufacturer’s instructions (#MBS1606521, MyBioSource,
San Diego, CA, USA). MACROD2 protein quantification was performed in a subset of
samples from volunteers with extreme values of BMI and DMRs. To select this subset, the
volunteers were divided into three tertiles according to their BMI values (three groups of
114 volunteers). The 37 and 36 subjects with the highest and lowest DMR, respectively,
were selected from the highest and lowest third of BMI.

2.7. Statistical Analysis

Quantitative variables are presented as mean ± standard deviation (SD), while cate-
gorical data are shown as percentages. The data were compared between groups using Stu-
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dent’s t or χ2 tests, as appropriate. Differences among tertile groups were determined using
the one-way analysis of variance (ANOVA) followed by Bonferroni’s Multiple Comparisons
test. Correlations were assessed using Pearson correlation tests. After pre-processing of the
methylation data, linear regression adjusted for potential confounding factors was carried
out using the LIMMA package for R software (v. 3.3.2). A False Discovery Rate (FDR)
cut-off of 0.05 and LIMMA B-statistics values above 0 in the outcome-related analyses
were used as statistical significance thresholds. The LIMMA B-statistic is the log-odds
of differential methylation, where B-values > 0 imply that the CpG is more likely to be
differentially methylated than not to be differentially methylated. FDR values (p < 0.0001)
were used to select those CpGs whose methylation levels strongly correlated with BMI, and
DMRs were considered significant with an adjusted p-value < 0.05 and with a minimum
of 7 CpG sites. Mediation by DMR of MACROD2/SEL1L2 in the relationship between
Ruminococcus and BMI was assessed using structural equation modeling following Zhao
et al.’s approach [49]. Statistical analyses were performed using IBM SPSS 20 (IBM Inc.,
Armonk, NY, USA) and plots were generated with GraphPad Prism® 6.0 C (San Diego,
CA, USA).

3. Results
3.1. Anthropometric and Clinical Data of the Sample

Clinical and anthropometric data of subjects with obesity and normal weight con-
trols are shown in Table 1. The participants were categorized into eutrophic individuals
and subjects with obesity, according to their BMI levels. As we can verify from Table 1,
there were no differences between groups in regard to age and gender. In comparison
to eutrophic individuals, subjects with obesity had higher blood pressure levels, waist
circumference, and glucose, triglyceride, and total cholesterol levels accompanied by lower
HDL cholesterol levels. Individuals with obesity also exhibited elevated levels of leptin,
C-reactive protein, insulin, and HOMA-IR index. No differences were found for circulating
TNF levels between groups.

Table 1. Anthropometric and clinical data of the study population.

Parameter Eutrophic Individuals
(Controls, n = 64)

Obese Individuals
(Cases, n = 278) p-Value

Age (years) 39.6 ± 9.2 45.9 ± 10.2 <0.001
Gender (M%) 28.1 31.3 -
BMI (kg/m2) 22.1 ± 1.8 37.9 ± 3.4 <0.001

WC (cm) 75.6 ± 7.2 102.8 ± 10.4 <0.001
HC (cm) 94.7 ± 6.0 112.1 ± 8.0 <0.001

SBP (mmHg) 110 ± 13 129 ± 18 <0.001
DBP (mmHg) 69 ± 9 80 ± 11 <0.001

Fasting Glucose (mg/dL) 85 ± 7 97 ± 14 <0.001
Total Cholesterol (mg/dL) 193 ± 34 217 ± 38 <0.001
HDL Cholesterol (mg/dL) 63 ± 11 55 ± 13 <0.001

Triglycerides (mg/dL) 68 ± 33 106 ± 58 <0.001
HOMA-IR index 0.9 ± 0.5 2.1 ± 1.4 <0.001

Adiponectin (ng/mL) 13.8 ± 5.2 11.3 ± 5 <0.001
Insulin (mU/L) 4.4 ± 2 8.3 ± 4.9 <0.001
Leptin (ng/dL) 10.9 ± 8.8 38.2 ± 28.7 <0.001

C-reactive Protein (µg/mL) 1.3 ± 4.7 3.0 ± 3.2 <0.001
TNF (pg/mL) 0.8 ± 0.3 0.9 ± 0.4 0.303

Variables are shown as mean ± SD or %, as appropriate. p-values were calculated using Student’s t-test; p < 0.05
was considered statistically significant. BMI: body mass index; WC: waist circumference; HC: hip circumference;
SBP: systolic blood pressure; DBP: diastolic blood pressure; HOMA-IR index: homeostatic model assessment-
insulin resistance index; TNF: tumor necrosis factor.
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3.2. Microbiota and DNA Methylation Analysis

The relationship between gut microbiota and obesity was analyzed at the genera and
species levels. Ten bacterial genera were significantly correlated with BMI levels. Nine
genera were negatively correlated with BMI, while Prevotella showed a positive correlation.
Interestingly, as shown in Table 2 and Figure 1A, Ruminococcus was negatively correlated
with BMI.

Table 2. Bacterial genera associated with BMI.

ID Genera Correlation Coefficient p-Value

1 Allisonella −0.220 0.0001
2 Bifidobacterium −0.130 0.014
3 Christensenella −0.152 0.004
4 Coprococcus −0.224 0.0001
5 Faecalibacterium −0.189 0.0001
6 Fusicatenibacter −0.123 0.02
7 Lactobacilus −0.135 0.01
8 Oscillospira −0.223 0.001
9 Prevotella 0.136 0.01
10 Ruminococcus −0.188 0.0001
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Figure 1. Correlations between bacterial abundance, BMI, and DMR. (A) Correlation between BMI
and Ruminococcus abundance; (B) correlation between MACROD2/SEL1L2 DMR and Ruminococcus
abundance; (C) correlation between BMI and MACROD2/SEL1L2 DMR. Dots indicate each sample
analyzed. Line indicates the correlation tendency. (n = 342 subjects).

Considering that variations in gut microbiota composition can regulate epigenetic
markers, we analyzed DNAmet in this population. To analyze the DNAmet signatures
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among groups, a methylation array was performed and a total of 17,777 CpG sites were
associated with BMI levels. A total of 2649 DMRs were associated with BMI. When we
overlapped DMRs with bacterial genera associated with BMI, only one DMR was associated
with the one of the bacterial genera. This DMR is located on chromosome 20, between the
MACROD2 and SEL1L2 genes and it is composed of seven CpG sites (Table 3). Moreover,
this DMR was positively correlated with BMI (Figure 1C). Furthermore, MACROD2 DMR
media was negatively associated with Ruminococcus abundance (1B). The hypothesized rela-
tionship between gut microbiota, DNAmet, and BMI was tested through structural equation
modeling (SEM), which showed that 19% of the effect of the Ruminococcus abundance on
BMI was mediated by the methylation of the MACROD2/SEL1L2 DMR (Figure 2).

Table 3. Data of the seven CpG sites located at MACROD2/SEL1L2 DMR.

ID CHR 1 MAPINFO Strand 2 Gene Region 3 Cgi 4

cg04624110 20 13976093 R MACROD2 TSS200 Island
cg01552272 20 13976096 R MACROD2 TSS200 Island
cg23169957 20 13976106 R MACROD2 TSS200 Island
cg25557432 20 13976117 R MACROD2 TSS200 Island
cg06571075 20 13976143 R MACROD2 TSS200 Island
cg26059153 20 13976190 R MACROD2 TSS200 Island
cg05677624 20 13976218 R MACROD2 TSS200 Island

1 CpG locations were mapped using GRCh37 version of the genome from Ensembl platform. FDR < 0.05. 2 Strand:
Reverse (R), Forward (F) designation of the design strand; 3 TSS200: Transcription Start Site that covers 0 to
200 nucleotides upstream of TSS. 4 CGI: location of the CpG relative to the CpG island.

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 2. Mediation analysis. Mediation by MACROD2/SEL1L2 DMR DNA methylation in the rela-
tionship between Ruminococcus abundance and BMI. 

Similar to BMI, other variables from Table 1 also correlate with MACROD2 methyla-
tion. In particular, a high correlation was observed between MACROD2 methylation and 
serum glucose levels (Rho = 0.2260, p = 0.00002) and between waist circumference and 
MACROD2 methylation (Rho = 0.2080, p = 0.0001). This result was not surprising because 
both parameters, glycemia and visceral adiposity, are usually correlated with BMI (and 
this is the case in our population). 

3.3. MACROD2 Protein Levels 
Due to the potential impact of the MACROD2 DMR on metabolic outcomes, we ana-

lyzed if this methylation signature was associated with MACROD2 serum levels. To per-
form this analysis, a total of 73 subjects from the total sample were selected according to 
their BMI and DMR methylation as explained in Section 2.6. Their clinical and anthropo-
metric data are shown in Table 4. We can observe that subjects from the higher tertile of 
BMI exhibited metabolic disturbances and exhibited significantly lower MACROD2 pro-
tein levels in comparison to subjects with a lower BMI (Figure 3). 

Table 4. Anthropometric and clinical data of the study population for MACROD2 protein quantifi-
cation according to MACROD2 DMR levels in the higher and lower BMI tertiles. 

Parameter 

Lowest MACROD2 
DMR of the Lower 

BMI Tertile 
(n = 36) 

Highest MACROD2 
DMR of the Upper 

BMI Tertile 
(n = 37) 

p-Value 

BMI (kg/m2) 24.0 ± 3.1 35.0 ± 1.9 <0.001 
MACROD2/SEL1L2 DMR 0.1344 ± 0.0196 0.2288 ± 0.0196 <0.001 

WC (cm) 81.5 ± 10.3 110.8 ± 7.0 <0.001 
HC (cm) 99.7 ± 6.9 116.9 ± 7.1 <0.001 

SBP (mmHg) 112.3 ± 10.9 134.3 ± 15.4 <0.001 
DBP (mmHg) 70.5 ± 8.1 84.0 ± 9.5 <0.001 

Fasting Glucose (mg/dL) 87.5 ± 6.9 102.3 ± 13.1 <0.001 
Total Cholesterol (mg/dL) 202.1 ± 32. 219.2 ± 39.5 <0.05 
HDL Cholesterol (mg/dL) 62.3 ± 13.1 51.8 ± 12.4 <0.001 

Triglycerides (mg/dL) 76.7 ± 44.3 126.2 ± 68.7 <0.001 
HOMA-IR index 1.1 ± 0.7 2.7 ± 1.5 <0.001 

Adiponectin (ng/mL) 13.4 ± 4.7 10.7 ± 4.6 <0.05 
Insulin (mU/L) 5.2 ± 2.9 10.6 ± 5.1 <0.001 
Leptin (ng/dL) 20.1 ± 18.0 43.1 ± 28.1 <0.001 

C-reactive Protein (µg/mL) 0.8 ± 1.3 4.4 ± 3.7 <0.001 
TNF (pg/mL) 0.7 ± 0.3 0.8 ± 0.2 0.125 

Figure 2. Mediation analysis. Mediation by MACROD2/SEL1L2 DMR DNA methylation in the
relationship between Ruminococcus abundance and BMI.

Similar to BMI, other variables from Table 1 also correlate with MACROD2 methylation.
In particular, a high correlation was observed between MACROD2 methylation and serum
glucose levels (Rho = 0.2260, p = 0.00002) and between waist circumference and MACROD2
methylation (Rho = 0.2080, p = 0.0001). This result was not surprising because both
parameters, glycemia and visceral adiposity, are usually correlated with BMI (and this is
the case in our population).

3.3. MACROD2 Protein Levels

Due to the potential impact of the MACROD2 DMR on metabolic outcomes, we an-
alyzed if this methylation signature was associated with MACROD2 serum levels. To
perform this analysis, a total of 73 subjects from the total sample were selected according to
their BMI and DMR methylation as explained in Section 2.6. Their clinical and anthropo-
metric data are shown in Table 4. We can observe that subjects from the higher tertile of
BMI exhibited metabolic disturbances and exhibited significantly lower MACROD2 protein
levels in comparison to subjects with a lower BMI (Figure 3).
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Table 4. Anthropometric and clinical data of the study population for MACROD2 protein quantifica-
tion according to MACROD2 DMR levels in the higher and lower BMI tertiles.

Parameter
Lowest MACROD2 DMR of

the Lower BMI Tertile
(n = 36)

Highest MACROD2 DMR of
the Upper BMI Tertile

(n = 37)
p-Value

BMI (kg/m2) 24.0 ± 3.1 35.0 ± 1.9 <0.001
MACROD2/SEL1L2 DMR 0.1344 ± 0.0196 0.2288 ± 0.0196 <0.001

WC (cm) 81.5 ± 10.3 110.8 ± 7.0 <0.001
HC (cm) 99.7 ± 6.9 116.9 ± 7.1 <0.001

SBP (mmHg) 112.3 ± 10.9 134.3 ± 15.4 <0.001
DBP (mmHg) 70.5 ± 8.1 84.0 ± 9.5 <0.001

Fasting Glucose (mg/dL) 87.5 ± 6.9 102.3 ± 13.1 <0.001
Total Cholesterol (mg/dL) 202.1 ± 32. 219.2 ± 39.5 <0.05
HDL Cholesterol (mg/dL) 62.3 ± 13.1 51.8 ± 12.4 <0.001

Triglycerides (mg/dL) 76.7 ± 44.3 126.2 ± 68.7 <0.001
HOMA-IR index 1.1 ± 0.7 2.7 ± 1.5 <0.001

Adiponectin (ng/mL) 13.4 ± 4.7 10.7 ± 4.6 <0.05
Insulin (mU/L) 5.2 ± 2.9 10.6 ± 5.1 <0.001
Leptin (ng/dL) 20.1 ± 18.0 43.1 ± 28.1 <0.001

C-reactive Protein (µg/mL) 0.8 ± 1.3 4.4 ± 3.7 <0.001
TNF (pg/mL) 0.7 ± 0.3 0.8 ± 0.2 0.125

Variables are shown as mean ± SD or %, as appropriate. p-values were calculated using one-way ANOVA.
p < 0.05 was considered statistically significant. BMI: body mass index; WC: waist circumference; HC: hip
circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; HOMA-IR index: homeostatic model
assessment-insulin resistance index; TNF: tumor necrosis factor.
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Figure 3. MACROD2 protein levels in serum. Values reflect MACROD2 protein levels (ng/L) in the
subjects with the lowest MACROD2 DMR levels of the lower BMI tertile (Lower tertile; n = 36) and
the highest MACROD2 DMR of the upper BMI tertile (Upper tertile; n = 37). t-test * p < 0.05 *.

Interestingly, MACROD2 protein levels in the serum were negatively associated with
BMI (Figure 4A) and positively correlated with Ruminococcus abundance (Figure 4B).
Moreover, we found a negative correlation between MACROD2 protein levels and average
DMR methylation, supporting the role of methylation in gene repression (Figure 4C).
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Figure 4. Correlations between MACROD2 protein levels and DMR, BMI, and bacterial abundance.
(A) Correlation between MACROD2 protein levels (ng/L) and BMI (n = 73 subjects). (B) Correlation
between MACROD2 protein levels (ng/L) and Ruminococcus abundance. (C) Correlation between
MACROD2 protein levels (ng/L) and average DMR. Dots indicate each sample analyzed. Line
indicates the correlation tendency.

4. Discussion

Obesity is an alarming health issue that is highly associated with lifestyle. Epigenome
and gut microbiota composition are two factors clearly impacted by lifestyle, especially
dietary patterns. The gut microbiome is involved in important metabolic and immune
processes, and alterations in function and bacterial abundance have been associated with
the development of metabolic diseases [50]. Interestingly, changes in gut microbiota
can induce epigenetic changes associated with DNAmet, non-coding RNAs, and histone
modifications [51]. Moreover, epigenetic modifications can be modulated by gut microbiota-
derived metabolites like SCFAs, folates, biotin, etc. [51]. In this sense, the crosstalk between
microbiota and epigenetics is key to understand the pathogenesis of obesity.

In the present study, we found ten bacterial genera associated with BMI including
Prevotella and Ruminococcus. A negative correlation between BMI and Ruminoccoccus
abundance was observed. In addition, recent data showed that relative Ruminococcus
abundance was significantly reduced in a population with obesity and cardiovascular
disease risk [52]. Furthermore, it has been reported that non-alcoholic fatty liver disease
(NAFLD) patients exhibited a lower relative abundance of the genus Ruminococcus in
comparison with healthy individuals [53]. Ruminococcus has a key role in the production of
SCFAs, such as butyrate, through the fermentation of dietary fiber. Butyrate is an important
energy source for intestinal epithelial cells and also can regulate the expression of several
genes associated with lipid metabolism and inflammatory and immune responses [54–56],
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through several mechanisms such as inhibiting histone deacetylation, secretion of glucagon-
like peptide 1, PPAR-γ pathway activation, etc. [57–59]. However, more studies are required
to establish whether these bacterial genera are the cause or consequence of obesity and
metabolic disturbances [50].

On the other hand, DNAmet analysis exhibited a differential methylation pattern in
subjects with obesity in comparison to controls, with a total of 2649 DMRs associated with
BMI. However, only one DMR located between MACROD2/SEL1L2 genes was associated
with the Ruminococcus genus. It has been reported that DNA methylation patterns are
associated with gut bacterial populations, mainly in gene promoters regions associated
with lipid metabolism and obesity [60]. Interestingly, the structural equation modeling
(SEM) showed that 19% of the effect of the Ruminococcus abundance on BMI was mediated
by the methylation of this DMR. Moreover, it has been proposed that epigenetic markers
may be determined by microbiota and their derived metabolites [61].

The mono-ADP ribosylhydrolase 2 (MACROD2) gene encodes a nuclear protein that
translocates to the cytoplasm upon DNA damage. MACROD2 is a deacetylase that is
able to remove ADP-ribose from mono-ADP-ribosylated proteins, an important post-
translational modification on damaged DNA [62,63]. MACROD2 is involved in immune
responses, chromatin regulation, transcription, and insulin secretion, among others. The
SEL1L2 Adaptor Subunit Of ERAD E3 Ligase (SEL1L2) gene is predicted to contribute
to ubiquitin-protein transferase activity and is an integral component of membranes [64].
However, there is little information available for this gene; thus, a more complex analysis
was performed with MACROD2 gene.

As mentioned before, MACROD2 gene methylation was positively correlated with
BMI. Unfortunately, MACROD2 gene expression is very low in white blood cells; therefore,
we analyzed protein levels in the sera of a subset of samples. A negative correlation
between protein levels and DNAmet was found, supporting the role of this mechanism in
transcriptional silencing [43]. Studies have shown that genetic variants in the MACROD2
gene were associated with hypertension in a Korean population, and the deletion of an
exon in the MACROD2 gene was related to early onset of obesity [44,45]. Moreover,
MACROD2 gene variants (rs6079275, rs6079272, and rs10470062) were associated with
obesity in a Korean population [46]. Furthermore, genetic variants within the MACROD2
gene have been positively associated with VAP-1 levels in adipose tissue, a key protein
during adipogenesis, and serum levels of VAP-1 can predict mortality in patients with
diabetes after 10 years of follow up [47]. Genetic loci near the MACROD2 gene were
associated with circulating VAP-1 levels in females. Knockdown of MACROD2 reduced
VAP-1 expression in induced human primary visceral adipocytes and its release into the
culture medium. Knockdown of MACROD2 also significantly suppressed the expression of
other key adipogenic genes. These data indicate MACROD2 as a genetic loci regulating
VAP-1 expression, probably through adipogenesis modulation [65].

This study has strengths and limitations. The strengths include the analyses of a
well-characterized cohort of obese and eutrophic subjects. Likewise, we determined that
the effect of Ruminococcus abundance on BMI was mediated by the methylation of the
MACROD2/SEL1L2 DMR, which can be directly validated and explored in model systems.
Even though these methods are powerful, this study has some limitations, including the
fact that we only have methylation data from blood cells, and the lack of MACROD2
gene expression due to its low expression in buffy coat cells. These results should be
analyzed in other populations due to the differences in Ruminococcus abundance in people
from different origins. However, this study brings new knowledge to understand the
involvement of the gut microbiota in the epigenetic regulation of human diseases.

5. Conclusions

Our study showed that Ruminococcus abundance was reduced in subjects with obesity,
which might affect BMI through changes in DNAmet, specifically in a DMR located at the
MACROD2 gene. However, further mechanistic studies are required to determine the role
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of the epigenetic regulation of this gene in obesity. These findings support the hypothesis
that obesity is regulated by a crosstalk between gut microbiota and epigenetic mechanisms,
which constitutes a promising area of research in the understanding of the pathogenesis
of obesity. The gut microbiota and epigenetic mechanisms are dynamic processes during
the life cycle and are under the influence of environmental, dietary, and genetic factors,
suggesting a potential interaction between them. A deeper analysis of these associations is
required to identify novel therapeutic targets.
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