Functional Neuroplasticity of Adults with Partial or Complete Denture Rehabilitation with or without Implants: Evidence from fMRI Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overview of the Nine Included Studies
3.2. Brain Functions of Rehabilitated Partial/Complete Edentulous Jaws during Various Tasks
3.2.1. Jaw-Clenching
3.2.2. Gum-Chewing
3.3. Rehabilitation Protocol and Brain Function
3.4. Uncharted Waters and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kossioni, A.E. The association of poor oral health parameters with malnutrition in older adults: A review considering the potential implications for cognitive impairment. Nutrients 2018, 10, 1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzolino, D.; Passarelli, P.C.; De Angelis, P.; Piccirillo, G.B.; D’addona, A.; Cesari, M. Poor oral health as a determinant of malnutrition and sarcopenia. Nutrients 2019, 11, 2898. [Google Scholar] [CrossRef] [Green Version]
- Algra, Y.; Haverkort, E.; Kok, W.; van Etten-Jamaludin, F.; van Schoot, L.; Hollaar, V.; Naumann, E.; de van der Schueren, M.; Jerković-Ćosić, K. The association between malnutrition and oral health in older people: A systematic review. Nutrients 2021, 13, 3584. [Google Scholar] [CrossRef] [PubMed]
- Zelig, R.; Goldstein, S.; Touger-Decker, R.; Firestone, E.; Golden, A.; Johnson, Z.; Kaseta, A.; Sackey, J.; Tomesko, J.; Parrott, J. Tooth loss and nutritional status in older adults: A systematic review and meta-analysis. JDR Clin. Transl. Res. 2022, 7, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Phipps, K.R.; Stevens, V.J. Relative contribution of caries and periodontal disease in adult tooth loss for an HMO dental population. J. Public Health Dent. 1995, 55, 250–252. [Google Scholar] [CrossRef]
- Shigli, K.; Hebbal, M.; Angadi, G.S. Relative contribution of caries and periodontal disease in adult tooth loss among patients reporting to the Institute of Dental Sciences, Belgaum, India. Gerodontology 2009, 26, 214–218. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kubota, M.; Takahashi, T.; Nakasato, A.; Nomura, T.; Furuya, J.; Kondo, H. Effects of tooth loss on brain structure: A voxel-based morphometry study. J. Prosthodont. Res. 2018, 62, 337–341. [Google Scholar] [CrossRef]
- Lin, C.-S.; Lin, H.-H.; Fann, S.-W.; Lee, W.-J.; Hsu, M.-L.; Wang, S.-J.; Fuh, J.-L. Association between tooth loss and gray matter volume in cognitive impairment. Brain Imaging Behav. 2020, 14, 396–407. [Google Scholar] [CrossRef]
- Lin, C.-S.; Lin, H.-H.; Wang, S.-J.; Fuh, J.-L. Association between regional brain volume and masticatory performance differed in cognitively impaired and non-impaired older people. Exp. Gerontol. 2020, 137, 110942. [Google Scholar] [CrossRef]
- Dintica, C.S.; Rizzuto, D.; Marseglia, A.; Kalpouzos, G.; Welmer, A.-K.; Wårdh, I.; Bäckman, L.; Xu, W. Tooth loss is associated with accelerated cognitive decline and volumetric brain differences: A population-based study. Neurobiol. Aging 2018, 67, 23–30. [Google Scholar] [CrossRef]
- Weng, H.-H.; Chen, C.-F.; Tsai, Y.-H.; Wu, C.-Y.; Lee, M.; Lin, Y.-C.; Yang, C.-T.; Tsai, Y.-H.; Yang, C.-Y. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis. Neurosci. Biobehav. Rev. 2015, 59, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Ishii, Y.; Halford, J.C.; Blundell, J.E. Orexins and appetite regulation. Neuropeptides 2002, 36, 303–325. [Google Scholar] [CrossRef] [PubMed]
- Sekido, D.; Otsuka, T.; Shimazaki, T.; Ohno, A.; Fuchigami, K.; Nagata, K.; Yamaguchi, T.; Kimoto, K. Comparison of cerebral cortex activation induced by tactile stimulation between natural teeth and implants. J. Clin. Exp. Dent. 2020, 12, e1021. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. 2011, 22, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-S.; Niddam, D.; Hsu, M.-L. Meta-analysis on brain representation of experimental dental pain. J. Dent. Res. 2014, 93, 126–133. [Google Scholar] [CrossRef]
- Huang, H.; Yan, J.; Lin, Y.; Lin, J.; Hu, H.; Wei, L.; Zhang, X.; Zhang, Q.; Liang, S. Brain functional activity of swallowing: A meta-analysis of functional magnetic resonance imaging. J. Oral Rehabil. 2023, 50, 165–175. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Basic taste processing recruits bilateral anteroventral and middle dorsal insulae: An activation likelihood estimation meta-analysis of fMRI studies. Brain Behav. 2017, 7, e00655. [Google Scholar] [CrossRef] [Green Version]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. Affective value, intensity and quality of liquid tastants/food discernment in the human brain: An activation likelihood estimation meta-analysis. Neuroimage 2018, 169, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Fukami, H.; Ishikawa, E.; Shibata, K.; Kubota, M.; Kondo, H.; Sahara, Y. An fMRI study of the brain network involved in teeth tapping in elderly adults. Front. Aging Neurosci. 2020, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, R.T.F.; de Oliveira Limirio, J.P.J.; do Egito Vasconcelos, B.C.; Pellizzer, E.P.; de Moraes, S.L.D. Rehabilitation with dental prostheses and its influence on brain activity: A systematic review. J. Prosthet. Dent. 2022, Epub ahead of print. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.-J.; Sheen, S.-S.; Hahn, S.; Jang, B.-H.; Son, H.-J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Nakasato, A.; Kobayashi, T.; Kubota, M.; Yamashita, F.; Nakaya, T.; Sasaki, M.; Kihara, H.; Kondo, H. Increase in masseter muscle activity by newly fabricated complete dentures improved brain function. J. Prosthodont. Res. 2021, 65, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, H.; Vijayakumar, S.S.; Kumar, V.A. Comparison of the effect of conventional and implant-retained overdentures on brain activity and cognition in a geriatric population-A functional MRI study. J. Prosthodont. Res. 2022, 66, 431–437. [Google Scholar] [CrossRef]
- Shoi, K.; Fueki, K.; Usui, N.; Taira, M.; Wakabayashi, N. Influence of posterior dental arch length on brain activity during chewing in patients with mandibular distal extension removable partial dentures. J. Oral Rehabil. 2014, 41, 486–495. [Google Scholar] [CrossRef]
- White, G.S. Treatment of the edentulous patient. Oral Maxillofac. Surg. Clin. 2015, 27, 265–272. [Google Scholar] [CrossRef]
- Yan, C.; Ye, L.; Zhen, J.; Ke, L.; Gang, L. Neuroplasticity of edentulous patients with implant-supported full dentures. Eur. J. Oral Sci. 2008, 116, 387–393. [Google Scholar] [CrossRef]
- Bhattacharjee, B.; Saneja, R.; Bhatnagar, A.; Verma, A.; Soni, R.; Singh, A.; Dubey, P. A comparative evaluation of neurophysiological activity, active tactile sensibility and stereognostic ability of complete denture prosthesis, and implant-supported prosthesis wearer—A pilot study. Clin. Implant Dent. Relat. Res. 2022, 24, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Luraschi, J.; Korgaonkar, M.S.; Whittle, T.; Schimmel, M.; Müller, F.; Klineberg, I. Neuroplasticity in the adaptation to prosthodontic treatment. J. Orofac. Pain 2013, 27, 206–216. [Google Scholar] [CrossRef]
- Kimoto, K.; Ono, Y.; Tachibana, A.; Hirano, Y.; Otsuka, T.; Ohno, A.; Yamaya, K.; Obata, T.; Onozuka, M. Chewing-induced regional brain activity in edentulous patients who received mandibular implant-supported overdentures: A preliminary report. J. Prosthodont. Res. 2011, 55, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Foster, S.; Korgaonkar, M.S.; Oxenham, V.; Whittle, T.; Klineberg, I. The role of progressive oral implant rehabilitation in mastication, cognition and oral health-related quality of life outcomes—A pilot to define the protocol. J. Oral Rehabil. 2020, 47, 1368–1381. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Bhatnagar, A.; Kumar, I.; Verma, A. Enhancement of Sensorimotor Cortical Adaptation after Dental Implantation in Comparison to the Conventional Denture—Demonstration by Functional MRI at 1–5 T. Neurol. India 2021, 69, 665–669. [Google Scholar] [CrossRef]
- Ames III, A. CNS energy metabolism as related to function. Brain Res. Rev. 2000, 34, 42–68. [Google Scholar] [CrossRef]
- Morgen, K.; Kadom, N.; Sawaki, L.; Tessitore, A.; Ohayon, J.; Frank, J.; McFarland, H.; Martin, R.; Cohen, L.G. Kinematic specificity of cortical reorganization associated with motor training. Neuroimage 2004, 21, 1182–1187. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; Fanjiang, G. Mini-Mental State Examination: MMSE-2; Psychological Assessment Resources: Lutz, FL, USA, 2010. [Google Scholar]
- Lee, Y.-C.; Lee, S.-C.; Chiu, E.-C. Practice effect and test-retest reliability of the Mini-Mental State Examination-2 in people with dementia. BMC Geriatr. 2022, 22, 67. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Wong, N.S.M.; Eickhoff, S.B. Empirical assessment of changing sample-characteristics in task-fMRI over two decades: An example from gustatory and food studies. Hum. Brain Mapp. 2020, 41, 2460–2473. [Google Scholar] [CrossRef]
- van der Laan, L.; Papies, E.; Ly, A.; Smeets, P. Examining the neural correlates of goal priming with the NeuroShop, a novel virtual reality fMRI paradigm. Appetite 2022, 170, 105901. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Miyamoto, T.; Terao, A.; Yokoyama, A. Cerebral activation related to the control of mastication during changes in food hardness. Neuroscience 2007, 145, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Smeets, P.A.; Erkner, A.; De Graaf, C. Cephalic phase responses and appetite. Nutr. Rev. 2010, 68, 643–655. [Google Scholar] [CrossRef]
- Saper, C.B.; Chou, T.C.; Elmquist, J.K. The need to feed: Homeostatic and hedonic control of eating. Neuron 2002, 36, 199–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eickhoff, S.B.; Nichols, T.E.; Laird, A.R.; Hoffstaedter, F.; Amunts, K.; Fox, P.T.; Bzdok, D.; Eickhoff, C.R. Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 2016, 137, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, V.I.; Cieslik, E.C.; Laird, A.R.; Fox, P.T.; Radua, J.; Mataix-Cols, D.; Tench, C.R.; Yarkoni, T.; Nichols, T.E.; Turkeltaub, P.E. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2018, 84, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Robertson, M.; Uecker, A.; Fox, P.T.; Eickhoff, S.B. Trends in the sample size, statistics, and contributions to the BrainMap database of activation likelihood estimation meta-analyses: An empirical study of 10-year data. Hum. Brain Mapp. 2023, 44, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S. Meta-analysis of brain mechanisms of chewing and clenching movements. J. Oral Rehabil. 2018, 45, 627–639. [Google Scholar] [CrossRef]
Study | Edentulism | Results Comparison | Study Site | Participants | Mean Age in Years ± SD (Range) | Denture Rehabilitation Sequence | Task during fMRI Scan | Evaluation Timing | Conclusions from fMRI Results |
---|---|---|---|---|---|---|---|---|---|
Yan et al., 2008 [27] | Complete | Between-group | China | 20 (13M, 7F): 8 CD (5M, 3F), 9 IOD (5M, 4F), 3 IFD (3M) | 59.9 ± 7.4. CD: 61.5 ± 8.1. IOD: 59.1 ± 8.3. IFD: 58.0 ± 2.6 | CD, IOD, or IFD. IOD group: either IOD for both arches, or CD/Mx + IOD/Md. Implant no. for IOD/IFD: 0–12/Mx and 4–12/Md | Clenching | With dentures (worn for 8 months–5 years 8 months) | higher proportion of IFD patients had brain activation than IOD and CD patients |
Kimoto et al., 2011 [30] | Complete | Within-group | Japan | 4 (3M, 1F) | (64–79) | CD, then IOD. IOD: CD/Mx + IOD/Md. Implant no. for IOD: 2/Md (standard Brånemark-system protocol) | Gum-chewing | 1 month after wearing CD, and 1 month after wearing IOD | brain activation with CD > IOD |
Luraschi et al., 2013 [29] | Complete | Within-group | Australia | 11 (6M, 5F) | 71.4 ± 4.8 | CD | Clenching, denture teeth-tapping, and lip-pursing | Wearing old CD, right after receiving new CD, 1 month and 3 months after wearing new CD | Clenching: brain activation at 1 month with new CD > old CD, but back to normal level at 3 months with new CD. Tapping and lip-pursing: no temporal change in brain activation |
Shoi et al., 2014 [25] | Partial | Within-group | Japan | 11 (1M, 10F) | 66.1 ± 8.9 | Lower RPD with full dental arch, then RPD with shortened dental arch (up to 2nd premolar). Or vice versa (2 randomized crossover groups) | Gum-chewing | 2 weeks after wearing each of the lower RPD | Brain activation with full dental arch RPD > shortened dental arch RPD |
Tan et al., 2020 [31] | Complete | Within-group | Australia | 4 (2M, 2F) | 73.0 ± 1.4 | CD, then IOD. IOD: CD/Mx + IOD/Md. Implant no. for IOD: 2/Md | Clenching, continuous performance task, Go/No-Go task | 3 months after wearing CD, 1 week after wearing IOD, and 6 weeks after wearing IOD | Brain activation at 1 week with IOD < CD, but back to normal level at 6 weeks with IOD |
Nakasato et al., 2021 [23] | Complete | Within-group | Japan | 14 (4M, 10F) | 80.2 ± 5.9 | CD | Gum-chewing | Wearing old CD, and 3 months after wearing new CD | Brain activation with new CD > old CD |
Verma et al., 2021 [32] | Complete | Within-group | India | 12 (gender undisclosed) | 59.2 (40–70) | CD, then IOD. IOD: Details unclear. Likely to be CD/Mx + IOD/Md. Implant no. for IOD: 2/Md (standard Brånemark-system protocol) | Clenching | 3 months after wearing CD, and 3 months after wearing IOD | Brain activation with IOD > CD |
Padmanabhan et al., 2022 [24] | Complete | Within-group | India | 10 (4M, 6F) | (62–91) | CD, then IOD. IOD: CD/Mx + IOD/Md. Implant no. for IOD: 2/Md | Gum-chewing, and memory recall | Before treatment, 3 months after wearing CD, and 3 months after wearing IOD | Gum-chewing: brain activation with IOD < edentulous; IOD vs CD—mixed results Memory recall: brain activation with IOD > CD MMSE score (median): before treatment (20.5) < complete denture (24.0) < IOD (25.5) |
Bhattacharjee et al., 2022 [28] | Complete | Between-group | India | 18 (10M, 8F): 6 CD (2M, 4F), 6 IOD (4M, 2F), 6 IFD (4M, 2F) | 60.7 ± 4.0. CD: 61.0 ± 4.7. IOD: 59.8 ± 4.0. IFD: 61.3 ± 3.7 | CD, IOD, or IFD. IOD group: CD/Mx + IOD/Md. IFD group: IFD for both arches. Implant no. for IOD: 2/Md, and for IFD: all-on-4 or on a case-by-case basis | Clenching | With dentures | Higher proportion of IFD patients had brain activation than IOD and CD patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeung, A.W.K.; Leung, W.K. Functional Neuroplasticity of Adults with Partial or Complete Denture Rehabilitation with or without Implants: Evidence from fMRI Studies. Nutrients 2023, 15, 1577. https://doi.org/10.3390/nu15071577
Yeung AWK, Leung WK. Functional Neuroplasticity of Adults with Partial or Complete Denture Rehabilitation with or without Implants: Evidence from fMRI Studies. Nutrients. 2023; 15(7):1577. https://doi.org/10.3390/nu15071577
Chicago/Turabian StyleYeung, Andy Wai Kan, and Wai Keung Leung. 2023. "Functional Neuroplasticity of Adults with Partial or Complete Denture Rehabilitation with or without Implants: Evidence from fMRI Studies" Nutrients 15, no. 7: 1577. https://doi.org/10.3390/nu15071577
APA StyleYeung, A. W. K., & Leung, W. K. (2023). Functional Neuroplasticity of Adults with Partial or Complete Denture Rehabilitation with or without Implants: Evidence from fMRI Studies. Nutrients, 15(7), 1577. https://doi.org/10.3390/nu15071577