Vitamin B6 Levels and Impaired Folate Status but Not Vitamin B12 Associated with Low Birth Weight: Results from the MAASTHI Birth Cohort in South India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Data Collection
2.3. Anthropometric Measurements
2.4. Biochemical Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF. Low Birth Weight. Available online: https://data.unicef.org/topic/nutrition/low-birthweight/ (accessed on 14 February 2023).
- Marete, I.; Ekhaguere, O.; Bann, C.M.; Bucher, S.L.; Nyongesa, P.; Patel, A.B.; Hibberd, P.L.; Saleem, S.; Goldenberg, R.L.; Goudar, S.S.; et al. Regional trends in birth weight in low- and middle-income countries 2013–2018. Reprod. Health 2020, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Bhilwar, M.; Upadhyay, R.P.; Yadav, K.; Kumar, R.; Chinnakali, P.; Sinha, S.; Kant, S. Estimating the burden of ‘weighing less’: A systematic review and meta-analysis of low birth-weight in India. Natl. Med. J. India 2016, 29, 73–81. [Google Scholar] [PubMed]
- MoHFW. National Family Health Survey—5 2019-21; International Institue for Population Sciences: Mumbai, India, 2021. [Google Scholar]
- Khanal, V.; Zhao, Y.; Sauer, K. Role of antenatal care and iron supplementation during pregnancy in preventing low birth weight in Nepal: Comparison of national surveys 2006 and 2011. Arch. Public Health 2014, 72, 4. [Google Scholar] [CrossRef] [Green Version]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.; Yajnik, C.S.; Kanade, A.; Fall, C.H.D.; Margetts, B.M.; Jackson, A.A.; Shier, R.; Joshi, S.; Rege, S.; Lubree, H.; et al. Intake of Micronutrient-Rich Foods in Rural Indian Mothers Is Associated with the Size of Their Babies at Birth: Pune Maternal Nutrition Study. J. Nutr. 2001, 131, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Family Welfare (MoHFW) GoI. Comprehensive National Nutrition Survey (CNNS) National Report; UNICEF and Population Council: New Delhi, India, 2019. [Google Scholar]
- Pathak, P.; Kapil, U.; Yajnik, C.S.; Kapoor, S.K.; Dwivedi, S.N.; Singh, R. Iron, folate, and vitamin B12 stores among pregnant women in a rural area of Haryana State, India. Food Nutr. Bull. 2007, 28, 435–438. [Google Scholar] [CrossRef]
- Krishnaveni, G.; Hill, J.; Veena, S.; Bhat, D.; Wills, A.; Karat, C.; Yajnik, C.; Fall, C. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’and later diabetes. J. Diabetol. 2009, 52, 2350–2358. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, L.M.; Himes, K.P.; Venkataramanan, R.; Chen, J.Y.; Evans, R.W.; Meyer, J.L.; Simhan, H.N. Maternal serum folate species in early pregnancy and risk of preterm birth. Am. J. Clin. Nutr. 2010, 92, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Ronnenberg, A.G.; Goldman, M.B.; Chen, D.; Aitken, I.W.; Willett, W.C.; Selhub, J.; Xu, X. Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. Am. J. Clin. Nutr. 2002, 76, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- ICF IIfPSIa. National Family Health Survey (NFHS-4), 2015–2016; IIPS: Mumbai, India, 2017. [Google Scholar]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Hannibal, L.; Lysne, V.; Bjørke-Monsen, A.L.; Behringer, S.; Grünert, S.C.; Spiekerkoetter, U.; Jacobsen, D.W.; Blom, H.J. Biomarkers and Algorithms for the Diagnosis of Vitamin B12 Deficiency. Front. Mol. Biosci. 2016, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- de Benoist, B.J.F.; Bulletin, N. Conclusions of a WHO Technical Consultation on Folate and Vitamin B12 Deficiencies; The United Nations University: Geneva, Switzerland, 2008; Volume 29, pp. S238–S244. [Google Scholar]
- Fedosov, S.N.; Brito, A.; Miller, J.W.; Green, R.; Allen, L.H. Combined indicator of vitamin B12 status: Modification for missing biomarkers and folate status and recommendations for revised cut-points. Clin. Chem. Lab. Med. 2015, 53, 1215–1225. [Google Scholar] [CrossRef]
- Sukumar, N.; Rafnsson, S.B.; Kandala, N.-B.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 1232–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggan, C.; Srinivasan, K.; Thomas, T.; Samuel, T.; Rajendran, R.; Muthayya, S.; Finkelstein, J.L.; Lukose, A.; Fawzi, W.; Allen, L.H.; et al. Vitamin B-12 Supplementation during Pregnancy and Early Lactation Increases Maternal, Breast Milk, and Infant Measures of Vitamin B-12 Status. J. Nutr. 2014, 144, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Muthayya, S.; Kurpad, A.V.; Duggan, C.P.; Bosch, R.J.; Dwarkanath, P.; Mhaskar, A.; Mhaskar, R.; Thomas, A.; Vaz, M.; Bhat, S.; et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. Eur. J. Clin. Nutr. 2006, 60, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Behere, R.V.; Deshmukh, A.S.; Otiv, S.; Gupte, M.D.; Yajnik, C.S. Maternal Vitamin B12 Status During Pregnancy and Its Association With Outcomes of Pregnancy and Health of the Offspring: A Systematic Review and Implications for Policy in India. Front. Endocrinol. 2021, 12, 619176. [Google Scholar] [CrossRef] [PubMed]
- Rogne, T.; Tielemans, M.J.; Chong, M.F.; Yajnik, C.S.; Krishnaveni, G.V.; Poston, L.; Jaddoe, V.W.; Steegers, E.A.; Joshi, S.; Chong, Y.S.; et al. Associations of Maternal Vitamin B12 Concentration in Pregnancy With the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data. Am. J. Epidemiol. 2017, 185, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Wolffenbuttel, B.H.R.; Wouters, H.; de Jong, W.H.A.; Huls, G.; van der Klauw, M.M. Association of vitamin B12, methylmalonic acid, and functional parameters. Neth. J. Med. 2020, 78, 10–24. [Google Scholar]
- Choi, R.; Choi, S.; Lim, Y.; Cho, Y.Y.; Kim, H.J.; Kim, S.W.; Chung, J.H.; Oh, S.-Y.; Lee, S.-Y. A Prospective Study on Serum Methylmalonic Acid and Homocysteine in Pregnant Women. Nutrients 2016, 8, 797. [Google Scholar] [CrossRef] [Green Version]
- Yajnik, C.S.D. Urmila Shailesh Fetal programming: Maternal nutrition and role of one-carbon metabolism. Rev. Endocr. Metab. Disord. 2012, 13, 121–127. [Google Scholar] [CrossRef]
- Furness, D.; Fenech, M.; Dekker, G.; Khong, T.Y.; Roberts, C.; Hague, W. Folate, vitamin B12, vitamin B6 and homocysteine: Impact on pregnancy outcome. Matern. Child Nutr. 2013, 9, 155–166. [Google Scholar] [CrossRef]
- Hogeveen, M.; Blom, H.J.; van der Heijden, E.H.; Semmekrot, B.A.; Sporken, J.M.; Ueland, P.M.; den Heijer, M. Maternal homocysteine and related B vitamins as risk factors for low birthweight. Am. J. Obstet. Gynecol. 2010, 202, 572.e1–572.e6. [Google Scholar] [CrossRef] [PubMed]
- Yajnik, C.S.; Deshpande, A.V.; Naik, S.S.; Deshpande, J.A.; Coyaji, K.J.; Fall, C.; Refsum, H. Maternal total homocysteine concentration and neonatal size in India. Asia Pac. J. Clin. Nutr. 2005, 14, 179. [Google Scholar] [PubMed]
- McCullough, L.E.; Miller, E.E.; Mendez, M.A.; Murtha, A.P.; Murphy, S.K.; Hoyo, C. Maternal B vitamins: Effects on offspring weight and DNA methylation at genomically imprinted domains. Clin. Epigenetics 2016, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeda, M.; Riyazi, N.; de Vries, J.I.P.; Jakobs, C.; van Geijn, H.P.; Dekker, G.A. Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction. Am. J. Obstet. Gynecol. 1998, 179, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Interventions with vitamins B6, B12 and C in pregnancy. Paediatr. Perinat. Epidemiol. 2012, 26, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Katre, P.; Joshi, S.; Bhat, D.; Deshmukh, M.; Gurav, N.; Pandit, S.; Lubree, H.; Marczewski, S.; Bennett, C.; Gruca, L. Effect of multi-nutrient insufficiency on markers of one carbon metabolism in young women: Response to a methionine load. Eur. J. Clin. Nutr. 2016, 70, 687–693. [Google Scholar] [CrossRef] [Green Version]
Characteristics of the Cohort | Categories | Low Birth Weight | Total | p-Value | |
---|---|---|---|---|---|
Yes (n = 65) | No (n = 166) | Mean or n (%) | |||
Age (years) | Mean ± SD | 24.6 ± 3.8 | 24.1 ± 4.3 | 24.2 ± 4.2 | 0.351 |
Gestational Age at the Time of Sample Collection (weeks) | Mean ± SD | 27.8 ± 2.3 | 27.5 ± 2.2 | 27.6 ± 2.2 | 0.354 |
Religion, n (%) | Hinduism | 31 (47.6) | 68 (40.9) | 99 (42.8) | 0.567 |
Christianity | 3 (4.61) | 6 (3.61) | 9 (3.8) | 0.314 | |
Islam | 31 (47.6) | 92 (55.4) | 123 (53.2) | 0.592 | |
Participant Education, n (%) | Illiterate/Primary/Middle School | 16 (24.6) | 41 (24.6) | 57 (24.6) | 0.735 |
High School | 25 (38.4) | 72 (43.3) | 97 (41.9) | 0.698 | |
Pre-University College or Graduation | 24 (36.9) | 53 (31.9) | 77 (33.3) | 0.432 | |
Husband’s Education, n (%) | Illiterate/Primary/Middle School | 25 (38.5) | 69 (41.6) | 96 (41.8) | 0.969 |
High School | 27 (41.5) | 64 (38.6) | 91 (39.4) | 0.999 | |
Pre-University College or Graduation | 13 (20) | 31 (18.7) | 44 (19.0) | 0.999 | |
Participant’s Occupation, n (%) | Unemployed | 62 (95.4) | 152 (91.6) | 214 (92.6) | |
Employed | 3 (4.6) | 14 (8.4) | 17 (7.4) | 0.325 | |
Husband’s Occupation, n (%) | Unskilled | 35 (53.8) | 79 (47.6) | 114 (49.4) | 0.629 |
Semi-skilled | 18 (27.7) | 48 (28.9) | 66 (28.6) | 0.347 | |
Skilled/ Professional | 12 (18.5) | 39 (23.5) | 51 (22.1) | 0.646 | |
Socioeconomic Class, n (%) | Lower | 43 (66.2) | 107 (64.5) | 150 (64.9) | 0.808 |
Middle | 22 (33.8) | 59 (35.5) | 81 (35.1) | ||
Gravida, n (%) | One | 27 (41.5) | 57 (34.3) | 84 (36.4) | 0.565 |
Two | 24 (36.9) | 72 (43.4) | 96 (41.6) | 0.290 | |
Three or more | 14 (21.5) | 37 (22.3) | 51 (22.1) | 0.566 | |
Parity, n (%) | Nulliparous | 29 (44.6) | 66 (39.8) | 95 (41.1) | 0.574 |
Primiparous | 32 (49.2) | 83 (50) | 115 (49.8) | 0.668 | |
Multiparous | 4 (6.2) | 17 (10.2) | 21 (9.1) | 0.297 | |
Sex of Child, n (%) | Male | 26 (40) | 88 (53) | 114 (49.4) | 0.077 |
Female | 39 (60) | 78 (47) | 117 (50.6) |
Characteristics of the Cohort | Categories | Low Birth Weight | Total | p-Value | |
---|---|---|---|---|---|
Yes (n = 65) | No (n = 166) | ||||
Anemia, n (%) | Present | 27 (41.5) | 73 (44) | 100 (43.3) | 0.737 |
Absent | 38 (58.5) | 93 (56) | 131 (56.7) | ||
Gestational Diabetes, n (%) | Present | 10 (15.4) | 34 (20.5) | 44 (19) | 0.377 |
Absent | 55 (84.6) | 132 (79.5) | 187 (81) | ||
Vitamin B12 (pmol/L) | Median (IQR) | 232.2 (184.8) | 221.4 (106.9) | 222.6 (134.7) | |
Homocysteine (μmol/L) | Median (IQR) | 6.8 (2.3) | 6.5 (2.3) | 6.6 (2.3) | |
MMA (μmol/L) | Median (IQR) | 0.34 (0.3) | 0.38 (0.1) | 0.38 (0.23) | |
Serum Folate (nmol/L) | Median (IQR) | 6.7 (7.8) | 4.7 (7.7) | 5.1 (7.5) | |
Vitamin B6 (nmol/L) | Median (IQR) | 71 (47.7) | 61 (45.8) | 64.7 (47.2) | |
Had Received Iron and Folic Acid Supplementation at the Time of Interview (IFA) | Yes | 41 (63.1) | 121 (72.9) | 162 (70.1) | 0.144 |
No | 24 (36.9) | 45 (27.1) | 69 (29.9) | ||
Sum of Skinfold Thickness (mm) | Mean ± SD | 43.66 ± 13.7 | 48.44 ± 13.4 | 47.10 ± 13.6 | 0.018 |
Body Mass Index (BMI) | Normal (18.5–22.9) | 25 (38.5) | 53 (31.9) | 78 (33.8) | 0.221 |
Underweight (<18.5) | 7 (10.8) | 8 (4.8) | 15 (6.5) | 0.089 | |
Overweight (23–24.9) | 8 (12.3) | 30 (18.1) | 38 (16.5) | 0.300 | |
Obese (≥25) | 25 (38.5) | 75 (45.2) | 100 (43.3) | 0.628 |
Variable | Pearson’s Correlation | p-Value |
---|---|---|
B12 (pmol/L) and MMA(μmol/L) | 0.03 | 0.63 |
B12 (pmol/L) and Hcys(μmol/L) | −0.300 | >0.001 |
Folate (nmol/L) and Hcys(μmol/L) | −0.132 | 0.04 |
B6 (pmol/L) and Hcys(μmol/L) | 0.05 | 0.42 |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Exposure | β(SE) | p-Value | β(SE) | p-Value |
Vitamin B12 | 4.83 (0.0) | 0.813 | 0.00 (0.0) | 0.473 |
MMA | 0.15 (0.16) | 0.346 | 0.18 (0.16) | 0.265 |
Homocysteine | −0.02 (0.01) | 0.091 | −0.02 (0.01) | 0.118 |
Folate | −0.004 (0.05) | 0.388 | −0.003 (0.05) | 0.562 |
Composite B12 (cB12) | 0.08 (0.107) | 0.415 | 0.12 (0.10) | 0.252 |
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | Reference | |
---|---|---|---|---|---|---|---|
Vitamin B6 (nmol/L) * | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
Unadjusted | 2.33 (1.01, 5.35) | 0.004 | 1.59 (0.71, 3.54) | 0.25 | 1.40 (0.64, 3.07) | 0.39 | 1 |
Model 1 † | 2.66 (1.12, 6.29) | 0.02 | 1.94 (0.83, 4.52) | 0.12 | 1.69 (0.73, 3.93) | 0.21 | 1 |
Model 2 ‡ | 2.80 (1.17, 6.68) | 0.02 | 1.97 (0.84, 4.60) | 0.11 | 1.75 (0.74, 4.11) | 0,19 | 1 |
Vitamin B12 (pmol/L) * | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
Unadjusted | 1.26 (0.38, 4.15) | 0.70 | 0.81 (0.34, 1.90) | 0.62 | 0.92 (0.39, 2.18) | 0.86 | 1 |
Model 1 † | 1.51 (0.44, 5.10) | 0.50 | 0.98 (0.40, 2.39) | 0.97 | 0.90 (0.37, 2.17) | 0.81 | 1 |
Model 2 ‡ | 2.09 (0.59, 7.40) | 0.25 | 1.41 (0.55, 3.60) | 0.47 | 1.14 (0.45, 2.86) | 0.77 | 1 |
Folate (nmol/L) * | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
Unadjusted | 1.62 (0.69, 3.81) | 0.26 | 1.45 (0.64, 3.31) | 0.37 | 0.61 (0.28, 1.35) | 0.23 | 1 |
Model 1 † | 1.54 (0.63, 3.70) | 0.33 | 1.41 (0.60, 3.27) | 0.42 | 0.61 (0.27, 1.37) | 0.23 | 1 |
Model 2 ‡ | 1.99 (0.77, 5.12) | 0.15 | 1.70 (0.71, 4.04) | 0.22 | 0.72 (0.31, 1.68) | 0.45 | 1 |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Exposure | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Vitamin B12 | 0.99 (0.9, 1.00) | 0.43 | 0.99 (0.99, 1.00) | 0.414 |
MMA | 7.09 (0.42, 1.18) | 0.17 | 6.89 (0.41, 1.14) | 0.178 |
Homocysteine | 1.95 (0.72, 1.16) | 0.49 | 0.91 (0.70, 1.18) | 0.490 |
Folate | 1.03 (0.96, 1.11) | 0.29 | 1.03 (0.95, 1.10) | 0.409 |
Composite B12 | 0.79 (0.15, 4.21) | 0.79 | 0.78 (0.13, 4.53) | 0.786 |
Vitamin B6 | 1.00 (1.0, 1.01) | 0.05 | 1.0 (0.9, 1.01) | 0.462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deepa, R.; Mandal, S.; Van Schayck, O.C.P.; Babu, G.R. Vitamin B6 Levels and Impaired Folate Status but Not Vitamin B12 Associated with Low Birth Weight: Results from the MAASTHI Birth Cohort in South India. Nutrients 2023, 15, 1793. https://doi.org/10.3390/nu15071793
Deepa R, Mandal S, Van Schayck OCP, Babu GR. Vitamin B6 Levels and Impaired Folate Status but Not Vitamin B12 Associated with Low Birth Weight: Results from the MAASTHI Birth Cohort in South India. Nutrients. 2023; 15(7):1793. https://doi.org/10.3390/nu15071793
Chicago/Turabian StyleDeepa, R., Siddhartha Mandal, Onno C. P. Van Schayck, and Giridhara R. Babu. 2023. "Vitamin B6 Levels and Impaired Folate Status but Not Vitamin B12 Associated with Low Birth Weight: Results from the MAASTHI Birth Cohort in South India" Nutrients 15, no. 7: 1793. https://doi.org/10.3390/nu15071793
APA StyleDeepa, R., Mandal, S., Van Schayck, O. C. P., & Babu, G. R. (2023). Vitamin B6 Levels and Impaired Folate Status but Not Vitamin B12 Associated with Low Birth Weight: Results from the MAASTHI Birth Cohort in South India. Nutrients, 15(7), 1793. https://doi.org/10.3390/nu15071793