Ready-to-Eat Innovative Legumes Snack: The Influence of Nutritional Ingredients and Labelling Claims in Italian Consumers’ Choice and Willingness-to-Pay
Abstract
:1. Introduction
1.1. Broad Context
1.2. Aims and Significance
2. Materials and Methods
2.1. Hedonic Price Model (HPM)
2.1.1. Theoretical Background
2.1.2. Implementation and Statistical Data Analysis
2.2. Discrete Choice Experiment (DCE)
2.2.1. Theoretical Background
2.2.2. Implementation and Econometric Data Analysis
3. Results
3.1. Respondents’ Descriptive Statistics
3.2. Hedonic Price Results
3.2.1. Descriptive Statistics and Analysis of Variance
3.2.2. Linear Regression Analysis
3.3. Econometric Results
3.3.1. Multinomial Logit Model (MNL) and Latent Class Analysis (LCA)
3.3.2. Willingness-to-Pay
4. Discussion
4.1. Interpretation and Comparison of the Results
4.2. Importance and Implications of the Results
4.3. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Starch (g/100 g) | Sugar (g/100 g) | Dietary Fiber (g/100 g) | Fat (g/100 g) | Protein (g/100 g) | Water (g/100 g) | Energy Values (Kcal/100 g) | |
---|---|---|---|---|---|---|---|
Popcorn | 15.5 | 62.1 | 4.5 | 20 | 2.1 | 2.6 | 480 |
Potato crisps | 52.6 | 0.7 | 5.3 | 34.2 | 6.2 | 2.8 | 530 |
Tortilla chips | 58.9 | 1.2 | 6 | 22.6 | 7.6 | 0.9 | 459 |
Breadstick | 67.5 | 5 | 3.8 | 8.4 | 11.2 | 3.5 | 392 |
Cereal bar | 28.3 | 27.6 | 4.8 | 22.2 | 10.4 | 2.6 | 468 |
Kit Kat | 12.9 | 50.1 | 1.4 | 26 | 7.5 | 2 | 500 |
Crispbread | 67.4 | 3.2 | 11.7 | 0.6 | 9.4 | 6.4 | 308 |
Rice Krispie | 82.5 | 10.4 | 0.7 | 1 | 6.1 | 3 | 382 |
Corn Flakes | 81.4 | 8.2 | 0.6 | 0,9 | 7.9 | 3 | 376 |
Glycemic Index (Glucose = 100) | Glycemic Index (Bread = 100) | |
---|---|---|
All Bran | 30 | 43 |
Bagel | 72 | 103 |
Breakfast cereal bar | 78 | 111 |
Cheerios | 74 | 106 |
Corn chips | 63 | 90 |
Cupcake | 73 | 104 |
Mars bar | 68 | 97 |
Pretzel | 83 | 119 |
Puffed crisp bread | 81 | 116 |
Puffed rice cake | 91 | 128 |
Purchase Site | Frequency (%) | ||
---|---|---|---|
Low | Medium | High | |
Grocery stores | 21.00% | 22.00% | 16.00% |
Neighborhood shops | 15.00% | 19.00% | 20.00% |
Supermarkets | 51.00% | 39.00% | 36.00% |
Hypermarkets | 6.00% | 2.00% | 18.00% |
Discount stores | 6.00% | 18.00% | 10.00% |
E-commerce | 0.00% | 0.00% | 1.00% |
Features of Food | Number | % |
---|---|---|
Price | 224 | 43.20% |
Label | 190 | 36.70% |
Nutrition facts | 208 | 40.20% |
Type of ingredients | 238 | 45.90% |
Quality of ingredients | 167 | 32.20% |
Packaging | 94 | 18.10% |
Gluten-free | 34 | 6.63% |
Indication of the product origin | 143 | 27.65% |
Organic food | 58 | 11.22% |
Expiry date | 275 | 53.10% |
Type of Snack | Number | % |
---|---|---|
Fruits and vegetables (i.e., apple, banana, kiwi, peach, fennel, carrots, etc.) | 298 | 57.65% |
Salt snack (i.e., chips, crackers, gall salty biscuits) | 222 | 42.86% |
Sweet (i.e., croissants, chocolat cake, tarte, etc.) | 150 | 29.08% |
Sweet snack (i.e., wafers, biscuits, chocolates, etc.) | 116 | 22.45% |
Energy bars (i.e., protein, chocolate, red fruits, etc.) | 68 | 13.27% |
Sandwich | 29 | 5.61% |
Yogurt | 142 | 27.55% |
Other | 23 | 4.59% |
Frequency of Consumption of Legume Snacks | N. | % |
---|---|---|
Never | 137 | 26.45% |
Everyday | 3 | 0.58% |
Several times a week | 48 | 9.27% |
Several times a month | 55 | 10.62% |
Few times a month | 238 | 45.95% |
Once a week | 37 | 7.14% |
Reason for Purchase | n. | % |
---|---|---|
Flavour | 177 | 34.17% |
Healthy | 332 | 64.09% |
Upon a recommendation | 71 | 13.71% |
Upon the advice of the dietitian | 18 | 3.47% |
References
- Thurecht, R.L.; Pelly, F.E.; Cooper, S.L. The influence of current food and nutrition trends on dietitians’ perceptions of the healthiness of packaged food. Public Health Nutr. 2020, 23, 2124–2131. [Google Scholar] [CrossRef] [PubMed]
- Kanter, R.; Vanderlee, L.; Vandevijvere, S. Front-of-package nutrition labelling policy: Global progress and future directions. Public Health Nutr. 2018, 21, 1399–1408. [Google Scholar] [CrossRef] [Green Version]
- Pelly, F.E.; Swanepoel, L.; Rinella, J.; Cooper, S. Consumers’ perceptions of the Australian health star rating labelling scheme. Nutrients 2020, 12, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagmann, D.; Siegrist, M. Nutri-Score, multiple traffic light and incomplete nutrition labelling on food packages: Effects on consumers’ accuracy in identifying healthier snack options. Food Qual. Prefer. 2020, 83, 103894. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Valls, J.; Pasamontes, N.; Pantaleón, A.; Vinaixa, S.; Vaqué, M.; Soler, A.; Millán, S.; Gómez, X. Prospects of functional foods/nutraceuticals and markets. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2491–2525. [Google Scholar] [CrossRef]
- Leathwood, P.; Richardson, D.; Sträter, P.; Todd, P.; Van Trijp, H. Consumer understanding of nutrition and health claims: Sources of evidence. Br. J. Nutr. 2007, 98, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Kleef, E.V.; Dagevos, H. The growing role of front-of-pack nutrition profile labelling: A consumer perspective on key issues and controversies. Crit. Rev. Food Sci. Nutr. 2015, 55, 291–303. [Google Scholar] [CrossRef]
- Hartmann, C.; Hieke, S.; Taper, C.; Siegrist, M. European consumer healthiness evaluation of “free-from” labelled food products. Food Qual. Prefer. 2017, 68, 377–388. [Google Scholar] [CrossRef]
- Catucci, A.U.; Scogliamiglio, L.; Rossi, L. Lifestyle changes related to eating habits, physical activity, and weight status during COVID-19 quarantine in Italy and some European countries. Front. Nutr. 2021, 8, 718877. [Google Scholar] [CrossRef]
- Pot, G.; Almoosawi, S.; Stephen, A. Meal irregularity and cardiometabolic consequences: Results from observational and intervention studies. Proc. Nutr. Soc. 2016, 75, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Mcgill, R.; Appleton, K. Reasons for snack food choice and the prevalence of fruit snacking in Northern Ireland. Proc. Nutr. Soc. 2009, 68, E144. [Google Scholar] [CrossRef] [Green Version]
- Saldivar, S.O.S. Snack foods: Types and composition. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 13–18. [Google Scholar] [CrossRef]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. What is a snack, why do we snack, and how can we choose better snacks? A review of the definitions of snacking, motivations to snack, contributions to dietary intake, and recommendations for improvement. Adv. Nutr. 2017, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de Eguilaz, M.H.; de Morentin Aldabe, B.M.; Almiron-Roig, E.; Pérez-Diez, S.; Blanco, R.S.C.; Navas-Carretero, S.; Martínez, J.A. Multisensory influence on eating behavior: Hedonic consumption. Endocrinol. Diabetes Nutr. 2018, 65, 114–125. [Google Scholar] [CrossRef]
- Félix-Medina, J.V.; Montes-Ávila, J.; Reyes-Moreno, C.; Perales-Sánchez, J.X.K.; Gómez-Favela, M.A.; Aguilar-Palazuelos, E.; Gutiérrez-Dorado, R. Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. LWT 2020, 124, 109172. [Google Scholar] [CrossRef]
- Gandhi, N.; Kaur, K.; Kaur, A.; Singh, B.; Singh, P. Technological innovations in third generation snack foods. Prog. Res. J. 2018, 11, 4948–4958. [Google Scholar]
- Panak Balentic, J.; Babic, J.; Jozinovic, A.; Ackar, D.; Milicevic, B.; Muhamedbegovic, A.; Subaric, D.B. Production of third-generation snacks. Croat. J. Food sci. Technol. 2018, 10, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Karipidis, P.; Tsakiridou, E.; Tabakis, N.M.; Mattas, M. Hedonic analysis of retail egg prices. J. Food Distrib. 2005, 36, 1–6. [Google Scholar]
- Istituto Nazionale di Statistica. Available online: http://dati.istat.it/Index.aspx?QueryId=16815# (accessed on 10 January 2023).
- Petrontino, A.; Frem, M.; Fucilli, V.; Tricarico, G.; Bozzo, F. Health-nutrients and origin awareness: Implications for regional wine market-segmentation strategies using a latent analysis. Nutrients 2022, 14, 1385. [Google Scholar] [CrossRef]
- Schwartz, C.; Scholtens, P.A.; Lalanne, A.; Weenen, H.; Nicklaus, S. Development of healthy eating habits early in life. Review of recent evidence and selected guidelines. Appetite 2011, 57, 796–807. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Costanigro, M.; Mccluskey, J. Hedonic price analysis in food markets. In The Oxford Handbook of the Economics of Food Consumption and Policy; Oxford Univeristy Press: Oxford, UK, 2012; pp. 152–180. [Google Scholar] [CrossRef]
- Ladd, G.W.; Veraphol, S. A model of consumer goods characteristics. Am. J. Agric. Econ. 1976, 58, 504–510. [Google Scholar] [CrossRef]
- Carlucci, D.; Stasi, A.; Nardone, G.; Seccia, A. Explaining price variability in the Italian yogurt market: A hedonic analysis. Agribusinness 2013, 29, 194–206. [Google Scholar] [CrossRef]
- Bimbo, F.; Bonanno, A.; Liu, X.; Viscecchia, R. Hedonic analysis of the price of UHT treated milk in Italy. J. Dairy Sci. 2016, 99, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Batsell, R.R.; Lodish, L.M. A model and measurement methodology for predicting individual consumer choices. J. Mark. 1981, 18, 1–12. [Google Scholar] [CrossRef]
- Louvière, J.J.; Woodworth, G.C. Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. J. Mark. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000; p. 400. [Google Scholar]
- Mazzocchi, C.; Guido, S. Supporting Mountain agriculture through “mountain product” label: A choice experiment approach. Environ. Dev. Sustain. 2021, 24, 701–723. [Google Scholar] [CrossRef]
- Bliemer, M.C.J.; Rose, J.M.; Hess, S. Approximation of bayesian efficiency in experimental choice designs. J. Choice Model. 2008, 1, 98–127. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, S.R.; Rose, J.M. Stated choice experimentation, contextual influences and food choice: A case study. Food Qual. Prefer. 2008, 19, 539–564. [Google Scholar] [CrossRef]
- Kleinegesse, S.; Gutmann, M.U. Efficient Bayesian experimental design for implicit models. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, Naha, Japan, 16–18 April 2019. [Google Scholar]
- Frem, M.; Santeramo, F.G.; Lamonaca, E.; El Moujabber, M.; Choueiri, E.; La Notte, P.; Nigro, F.; Bozzo, F.; Fucilli, V. Landscape restoration due to Xylella fastidiosa invasion in Italy: Assessing the hypothetical public’s preferences. NeoBiota 2021, 66, 31–54. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica. Italian Population in 2021. Available online: https://dati.istat.it/ (accessed on 23 October 2021).
- Fang, C.H.; Lee, H.J. Food-related lifestyle segments in Taiwan: Application of the food-related lifestyle instrument. Am. J. Appl. Sci. 2009, 6, 2036–2042. [Google Scholar] [CrossRef] [Green Version]
- Bazzani, C.; Capitello, R.; Ricci, E.C.; Scarpa, R.; Begalli, D. Nutritional knowledge and health consciousness: Do they affect consumer wine choices? Evidence from a survey in Italy. Nutrients 2020, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Dziak, J.J.; Coffman, D.L.; Lanza, S.T.; Li, R.; Jermiin, L.S. Sensitivity and specificity of information criteria. Briefings 2020, 21, 553–565. [Google Scholar] [CrossRef]
- Hauber, A.B.; González, J.M.; Groothuis-Oudshoorn, C.G.; Prior, T.; Marshall, D.A.; Cunningham, C.; Bridges, J.F. Statistical methods for the analysis of discrete choice experiments: A report of the ISPOR conjoint analysis good research practices task force. Value Health 2016, 19, 300–315. [Google Scholar] [CrossRef] [Green Version]
- Bielefeld, D.; Hughes, J.; Grafenauer, S. The Changing landscape of Legume Products Available in Australian Supermarkets. Nutrients 2021, 13, 3226. [Google Scholar] [CrossRef]
- Cotacallapa-Sucapuca, M.; Vega, E.N.; Maieves, H.A.; De Berrios, J.; Morales, P.; Fernández-Ruiz, V.; Cámara, M. Extrusion Process as an Alternative to Improve Pulses Products Consumption. A Review. Foods 2021, 10, 1096. [Google Scholar] [CrossRef]
- Alemayehu, H.; Emire, S.A.; Henry, C. Effects of extrusion process parameters on the quality properties of ready-to-eat pulse-based snacks. Cogent Food Agric. 2019, 8, 1641903. [Google Scholar] [CrossRef]
- Chan, E.; Masatcioglu, T.M.; Koksel, F. Effects of different blowing agents on physical properties of extruded puffed snacks made from yellow pea and red lentil flours. J. Food Process Eng. 2019, 1, 12989. [Google Scholar] [CrossRef]
- Gupta, S.; Liu, C.; Sathe, S.K. Quality of a Chickpea-Based High Protein Snack. J. Food Sci. 2019, 84, 1621–1630. [Google Scholar] [CrossRef]
- Ahmed, J.; Tefera, T.; Kassie, G.T. Consumers’ preference and willingness to pay for enriched snack product traits in Shashamane and Hawassa cities, Ethiopia. Agric. Econ. 2020, 8, 14. [Google Scholar] [CrossRef]
- Sadrmousavigargari, S.; Cubero Dudinskaya, E.; Mandolesi, S.; Naspetti, S.; Mojaverian, S.M.; Zanoli, R. Assessing consumer willingness to pay for nutritional information using a dietary app. Nutrients 2022, 14, 5023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guan, B.; Huang, L. Would You Buy Plant-Based Beef Patties? A survey on product attribute preference and willingness to pay among consumers in Liaoning Province, China. Nutrients 2022, 14, 4393. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Q.; Zhu, C.; Bao, J. Paying for the greater good?—What information matters for Beijing consumers’ willingness to pay for plant-based meat? Foods 2022, 11, 2460. [Google Scholar] [CrossRef] [PubMed]
- Mollet, B.; Rowland, I. Functional foods: At the frontier between food and pharma. Curr. Opin. Biotechnol. 2002, 13, 483–485. [Google Scholar] [CrossRef]
- Petrontino, A.; Madau, F.; Frem, M.; Fucilli, V.; Bianchi, R.; Campobasso, A.A.; Pulina, P.; Bozzo, F. Seafood choice and consumption behavior: Assessing the Willingness-to-Pay for an edible sea urchin. Foods 2023, 12, 418. [Google Scholar] [CrossRef]
- Carzedda, M.; Gallenti, G.; Troiano, S.; Cosmina, M.; Marangon, F.; de Luca, P.; Pegan, G.; Nassivera, F. Consumer preferences for origin and organic attributes of extra virgin olive oil: A choice experiment in the Italian market. Foods 2021, 10, 994. [Google Scholar] [CrossRef]
- Acciani, C.; De Boni, A.; Bozzo, F.; Roma, R. Pulses for healthy and sustainable food systems: The effect of origin on market price. Sustainability 2021, 13, 185. [Google Scholar] [CrossRef]
- Juhl, H.J.; Fenger, M.H.J.; Thogersen, J. Will the consistent organic food consumer step forward? An empirical analysis. J. Consum. Res. 2017, 44, 519–535. [Google Scholar] [CrossRef]
- Loureiro, M.L.; McCluskey, J.; Mittelhammer, R.C. Assessing consumer response to organic, ecolabel, and regular apples. J. Agric. Econ. 2001, 26, 404–416. [Google Scholar] [CrossRef]
- Sriwaranun, Y.; Gan, C.; Lee, M.; Cohen, D.A. Consumers’ willingness to pay for organic products in Thailand. Int. J. Soc. Econ. 2015, 42, 480–510. [Google Scholar] [CrossRef]
- Bonti-Ankomah, S.; Yiridoe, E.K. Organic and Conventional Food: A Literature Review of the Economics of Consumer Precision and Preference (Final Report); Organic Agriculture Centre of Canada: Bible Hill, NS, Canada, 2006. [Google Scholar]
- Yiridoe, E.K.; Bonti-Ankomah, S.; Martin, R.C. Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: A review and update of the literature. Renew. Agric. Food Syst. 2005, 20, 193–205. [Google Scholar] [CrossRef]
- Uddin, A.; Gallardo, R.K. Consumers’ willingness to pay for organic, clean label, and processed with a new food technology: An application to ready meals. Int. Food Agribus. 2021, 24, 563–579. [Google Scholar] [CrossRef]
- Public Health England. Composition of Foods Integrated Dataset (CoFID). Available online: https://www.gov.uk/governement/publications/composition-of-food-integrated-dataset-cofid (accessed on 20 January 2022).
- Foster-Powell, K.; Brand-Miller, J. International tables of glycemic index. Am. J. Clin. Nutr. 1995, 62, 871–890. [Google Scholar] [CrossRef]
- Woolnough, J.W.; Monro, J.A.; Brennan, C.S.; Bird, A.R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardization. Int. J. Food Sci. Technol. 2012, 43, 2245–2256. [Google Scholar] [CrossRef]
- Struck, S.; Jaros, D.; Brennan, C.S.; Rohm, H. Sugar replacement in sweetened bakery goods. Int. J. Food Sci. Technol. 2014, 49, 1963–1976. [Google Scholar] [CrossRef]
- Ludmilla, C.O.; Rosell, C.M.; Steel, C.J. Effect of the addition of whole-grain wheat flour and of extrusion process parameters on dietary fibre content, starch transformation and mechanical properties of a ready-to-eat breakfast cereal. Int. J. Food Sci. Technol. 2015, 50, 1504–1514. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Bai, X.; Wang, F. Production of biscuits by substitution with different ratios of yellow pea flour. Grain Oil Sci. Technol. 2019, 2, 91–96. [Google Scholar] [CrossRef]
- De Meo, E.; Nardone, G.; Bimbo, F.; Carlucci, D. A hedonic analysis of processed tomato prices using Italian regional markets data. Foods 2022, 11, 816. [Google Scholar] [CrossRef]
Variable | Description | Category |
---|---|---|
Price | Dependent variable Sales price EUR/pack Explanatory variable | Continuous |
Package size | Package contents in grams | Continuous |
Organic certification | Organic = 1; Non-organic = 0 | Dichotomous |
Type of legumes | Lentils = 1; Other = 0 | Dichotomous |
Peas = 1; Other = 0 | Dichotomous | |
Chickpeas = 1; Other = 0 | Dichotomous | |
Presence of other flours/starches | Corn = 1; Other = 0 | Dichotomous |
Rice = 1; Other = 0 | Dichotomous | |
Potatoes = 1; Other = 0 | Dichotomous | |
Wheat = 1; Other = 0 | Dichotomous | |
Gluten-free | Gluten-free = 1; Non gluten-free = 0 | Dichotomous |
Fried | Fried = 1; Not fried = 0 | Dichotomous |
Spices | Spicy = 1; Unspicy = 0 | Dichotomous |
Oil | Absent = 1; Other = 0 | Dichotomous |
Extra Virgin Oil = 1; Other = 0 | Dichotomous | |
Seeds = 1; Other = 0 | Dichotomous | |
Claim—low fat | Present = 1; Absent = 0 | Dichotomous |
Claim—source of proteins | Present = 1; Absent = 0 | Dichotomous |
Claim—source of fibers | Present = 1; Absent = 0 | Dichotomous |
Claim—vegan | Present = 1; Absent = 0 | Dichotomous |
Pack | Recyclable = 1; Non-recyclable = 0 | Dichotomous |
Observation site | Neighborhood shop = 1; Other = 0 | Dichotomous |
Supermarket = 1; Other = 0 | Dichotomous | |
Hypermarket = 1; Other = 0 | Dichotomous | |
Discount = 1; Other = 0 | Dichotomous | |
E-commerce = 1; Other = 0 | Dichotomous |
Option A (Product A) | Attribute | Option B (Product B) | Attribute | Option C (No-Buy) |
---|---|---|---|---|
Certified organic (Bio) | Not certified organic (Bio) | |||
Type of legumes: | Type of legumes: | |||
Chickpeas | Lentils | |||
Gluten-free | Non gluten-free | |||
Presence of a nutritional claim | Absence of a nutritional claim | |||
Spiced | Not spiced | |||
Presence of origin indication | Presence of origin indication | |||
Recyclable package | Non-recyclable package | |||
Type of oil: Sunflower | Type of oil: No added oil | |||
Weight | Weight | |||
100 g | 100 g | |||
Price per pack | Price per pack | |||
EUR 2.25 | EUR 5.70 | |||
I will select: ☑ | Option A ☐ | Option B ☐ | Option C ☐ |
Attribute of the Snack | Levels | Brief Description | |
---|---|---|---|
Organic certification | −1: Absence | An organic snack is produced without the use of synthetic chemicals and genetically modified organisms. | |
+1: Presence | |||
Type of legumes | −1: Chickpeas | The type of legume that constitutes the main constituent of the snack. | |
0: Lentils | |||
+1: Peas | |||
Gluten claim | −1: Non gluten-free | Gluten is a cereal protein that causes intestinal inflammation for gluten intolerant consumers. | |
+1: Gluten-free | |||
Nutritional or health claim | −1: Absence | The nutritional claim states, suggests or implies that the snack has beneficial nutritional properties, due to energy/substances contained. Similarly, the health claim states, suggests or implies the existence of a relationship between snack or one of its components and health. | |
+1: Presence | |||
Spices | −1: Not spiced | The use or not of spices for flavouring or colouring snacks. | |
+1: Spiced | |||
- | |||
Origin indication | −1: Absence | The origin indicates the country or region in which snacks were produced. | |
+1: Presence | |||
Recyclability of the pack | −1: Not recyclable | ||
+1: Recyclable | |||
- | |||
Type of oil | −1: Sunflower oil | The type of oil used or not as an ingredient. | |
0: No added oil | |||
+1: Extra virgin olive oil | |||
Price | −2: EUR 1.10 −1: EUR 2.25 0: EUR 3.40 +1: EUR 4.55 +2: EUR 5.70 | Set of prices to make the hypothetical market more realistic with prices that respondents see daily in stores. |
Variable | Category | Apulia | Sample | |
---|---|---|---|---|
% | N. | % | ||
Age (year) | From 19 to 30 Between 31 to 50 Over 50 | 17.00% 31.00% 52.00% | 105 150 263 | 20.27% 28.96% 50.77% |
Gender | Male Female | 49.00% 51.00% | 253 265 | 48.84% 51.16% |
Annual household income (in EUR 1000) | Less than 20 Between 20 and 40 Over 40 | Average 31,156 | 296 150 72 | 57.14% 28.96% 13.90% |
Multinomial Logit | 2-Class | 3-Class | 4-Class | |
---|---|---|---|---|
Loglikelihood | −4340 | −3792 | −3620 | −3483 |
K | 10 | 21 | 32 | 43 |
Inf. CrAIC | 8701 | 7226 | 7306 | 7053 |
AIC/K | 2.10 | 1.84 | 1.76 | 1.70 |
BIC | −4257 | −3617 | −3353 | −3125 |
N | 4144 | 4144 | 4144 | 4144 |
Average classes probabilities | 100% | 75.3% 24.7% | 64.3% 20.9% 14.7% | 57.5% 14.5% 13.3% 14.6% |
Variable | Category | N. | Mean/% | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|
Gender | Female | 253 | 51.20% | |||
Male | 265 | 48.80% | ||||
Age | Years | 46.12 | 15.22 | 18 | 75 | |
Family numbers | Number | 3.19 | 1.12 | 1 | 5 | |
Academic level | Years | 13.94 | 3.85 | 0 | 21 | |
Annual household income (in EUR 1000) | Less than 20 | 296 | 57.10% | |||
Between 20 and 40 | 150 | 29.00% | ||||
Over 40 | 72 | 13.90% | ||||
Sector of work | Agriculture | 84 | 16.22% | |||
Construction | 34 | 6.56% | ||||
Culture and Art | 21 | 4.05% | ||||
Finance | 24 | 4.63% | ||||
Education | 53 | 10.23% | ||||
Consultancy | 58 | 11.20% | ||||
Industry and Transport | 20 | 3.86% | ||||
Marketing and Communication | 34 | 6.56% | ||||
Social Health | 58 | 11.20% | ||||
Public Sector | 18 | 3.47% | ||||
Tourism | 40 | 7.72% | ||||
Students/not working | 74 | 14.29% |
Variable | Description | Number of Observations (Snack) | % | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|---|
Package size | Package contents in grams | 177 | 95.06 | 45.61 | 40.00 | 200.00 | |
Price | EUR per 100 g | 177 | 2.08 | 0.62 | 0.73 | 3.53 | |
Organic certification | Organic | 177 | 57.10 | ||||
Type of legumes | Lentils | 177 | 59.90 | ||||
Peas | 177 | 58.20 | |||||
Chickpeas | 177 | 65.00 | |||||
Presence of other flours/starches | Corn | 177 | 46.90 | ||||
Rice | 177 | 33.90 | |||||
Potatoes | 177 | 17.50 | |||||
Wheat | 177 | 11.90 | |||||
Gluten-free | Gluten-free | 177 | 78.50 | ||||
Fried | Fried | 177 | 39.00 | ||||
Spices | Spicy | 177 | 13.00 | ||||
Oil | Absent | 177 | 21.50 | ||||
Extra Virgin Oil | 177 | 14.70 | |||||
Sunflower | 177 | 70.10 | |||||
Claim—low fat | Present | 177 | 14.10 | ||||
Claim—source of proteins | Present | 177 | 65.00 | ||||
Claim—source of fibers | Present | 177 | 73.40 | ||||
Claim—vegan | Present | 177 | 25.40 | ||||
Pack | Recyclable | 177 | 81.90 | ||||
Observation site | Neighborhood shop | 177 | 5.60 | ||||
Supermarket | 177 | 33.30 | |||||
Hypermarket | 177 | 3.40 | |||||
Discount | 177 | 5.60 | |||||
E-commerce | 177 | 52.00 |
Variable | Coefficient (b) | Significance | p-Value |
---|---|---|---|
Constant | 120.660 | *** | <0.001 |
Package size (g) | −119.936 | *** | <0.001 |
Lentils | 0.277 | *** | <0.001 |
Rice | 0.340 | *** | <0.001 |
Potatoes | 0.194 | ** | 0.019 |
Claim—source of fibers | 0.133 | ** | 0.019 |
Claim—low fat | −1.388 | *** | <0.001 |
Claim—vegan | 0.187 | *** | 0.003 |
Sunflower oil | −0.580 | *** | <0.001 |
Without oil | 0.327 | *** | 0.010 |
Supermarket | −0.124 | ** | 0.031 |
Discount | −0.503 | *** | <0.001 |
R2 | 0.758 | ||
Adjusted R2 | 0.742 | ||
F-statistic | 47.005 |
Multinomial Logit Model (MNL) | Latent Class Analysis (LCA) | |||||
---|---|---|---|---|---|---|
Class 1 | Class 2 | |||||
100% | 75.28% | 24.72% | ||||
Attribute | Coefficients | |||||
Coefficient | p-value | Coefficient | p-value | Coefficient | p-value | |
Price | −0.13587 *** | 0.000 | −0.17553 *** | 0.000 | −0.14965 ** | 0.0248 |
Organic certification | 0.42048 *** | 0.000 | 0.55767 *** | 0.000 | −0.37660 ** | 0.0312 |
Type of legumes—chickpeas | −0.06728 | 0.268 | −0.19830 *** | 0.0066 | 0.18002 | 0.3411 |
Gluten claim—gluten-free | 0.33102 *** | 0.000 | 0.51665 *** | 0.000 | −0.22098 | 0.2116 |
Spices—spiced | −0.16627 *** | 0.0002 | −0.18565 *** | 0.0002 | −0.03238 | 0.865 |
Origin indication | 0.35148 *** | 0.000 | 0.38232 *** | 0.000 | 0.84242 *** | 0.000 |
Recyclability of the pack—recyclable | 0.44088 *** | 0.000 | 0.54381 *** | 0.000 | 0.63196 *** | 0.0006 |
Type of oil—sunflower | −0.42070 *** | 0.000 | −0.57562 *** | 0.000 | −0.30223 | 0.1393 |
Type of oil—extra virgin olive oil | 0.29699 *** | 0.000 | 0.24193 *** | 0.0013 | 0.35899 * | 0.0884 |
Opt-out (no choice) | 0.07669 | 0.435 | −0.96220 *** | 0.000 | 2.22685 *** | 0.000 |
Model statistics | ||||||
MNL | LCA | |||||
Log Likelihood (LL) | −4340.48 | −3792.06 | ||||
Inf.Cr.AIC | 8701.0 | 7626 | ||||
AIC/N | 2.10 | 1.84 | ||||
Bayesian information criterion (BIC) | −4257 | −3617 | ||||
Number of observations | 4144 | 4144 | ||||
Total number of responses | 518 | 518 | ||||
Number of variables (K) | 10 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrontino, A.; Frem, M.; Fucilli, V.; Labbate, A.; Tria, E.; Bozzo, F. Ready-to-Eat Innovative Legumes Snack: The Influence of Nutritional Ingredients and Labelling Claims in Italian Consumers’ Choice and Willingness-to-Pay. Nutrients 2023, 15, 1799. https://doi.org/10.3390/nu15071799
Petrontino A, Frem M, Fucilli V, Labbate A, Tria E, Bozzo F. Ready-to-Eat Innovative Legumes Snack: The Influence of Nutritional Ingredients and Labelling Claims in Italian Consumers’ Choice and Willingness-to-Pay. Nutrients. 2023; 15(7):1799. https://doi.org/10.3390/nu15071799
Chicago/Turabian StylePetrontino, Alessandro, Michel Frem, Vincenzo Fucilli, Antonella Labbate, Emanuela Tria, and Francesco Bozzo. 2023. "Ready-to-Eat Innovative Legumes Snack: The Influence of Nutritional Ingredients and Labelling Claims in Italian Consumers’ Choice and Willingness-to-Pay" Nutrients 15, no. 7: 1799. https://doi.org/10.3390/nu15071799
APA StylePetrontino, A., Frem, M., Fucilli, V., Labbate, A., Tria, E., & Bozzo, F. (2023). Ready-to-Eat Innovative Legumes Snack: The Influence of Nutritional Ingredients and Labelling Claims in Italian Consumers’ Choice and Willingness-to-Pay. Nutrients, 15(7), 1799. https://doi.org/10.3390/nu15071799