Selenium and Zinc Intakes of Staple Grains and Their Correlation with Urine Selenium and Zinc in the Tibetan Rural Residents along the Yarlung Zangbo River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Points
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Calculation and Statistical Analysis
2.4.1. Grain Se and Zn Intakes
2.4.2. Estimation of Phytate: Zinc Molar Ratio
2.4.3. Estimation of Absorbable Zinc
2.4.4. The Contribution to the Recommended Nutrient Intake
2.4.5. Dietary Diversity Score
2.4.6. Geographical Detector
2.4.7. Statistical Analysis and Mapping
3. Results
3.1. Concentrations of Se and Zn in Self-Produced Staple Grains
3.2. Geospatial Variation of Se and Zn in Staple Grains
3.3. Staple Grains Contribution to Se and Zn Intakes
3.4. The Relationship between the Concentration of Selenium and Zinc in Urine and the Intakes of Selenium and Zinc in Staple Grains
3.4.1. Spatial Distribution of Urine Sample Selenium and Zinc
3.4.2. Analysis of Influencing Factors Based on Geographical Detector Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Frequency | Tsampa (%) | Flour (%) | Rice (%) |
---|---|---|---|
Once a day | 67.21 | 14.34 | 14.34 |
Twice a day | 32.38 | 39.34 | 58.20 |
1–3 times a week | 0.41 | 18.85 | 12.70 |
4–6 times a week | 0 | 24.59 | 13.11 |
1–2 times a month | 0 | 1.64 | 1.64 |
No/occasionally | 0 | 1.23 | 0 |
References
- Kieliszek, M. Selenium-Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Gibson, R.S. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proc. Nutr. Soc. 2006, 65, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Reyes, R.; Suetens, C.; Mathieu, F.; Begaux, F.; Zhu, D.; Rivera, T.; Boelaert, M.; Neve, J.; Perlmutter, N.; Vanderpas, J. Kashin-Beck disease and iodine deficiency in Tibet. Int. Orthop. 2001, 25, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhang, X.P.; Li, Q.Q.; Su, G.J.; Shi, B.; Meng, J.; Zhang, B. Epidemiological trend and pathogenic factors of KBD in Qinghai-Tibet Plateau region. Environ. Chem. 2020, 41, 1137–1147. [Google Scholar]
- Shi, Y.; Yang, W.; Tang, X.; Yan, Q.; Cai, X.; Wu, F. Keshan Disease: A Potentially Fatal Endemic Cardiomyopathy in Remote Mountains of China. Front. Pediatr. 2021, 9, 576916. [Google Scholar] [CrossRef]
- Huttunen, J.K. Selenium and cardiovascular diseases—An update. In Proceedings of the 6th International Symposium on Selenium in Biology and Medicine, Beijing, China, 18–22 August 1996; pp. 220–226. [Google Scholar]
- Shi, X.; He, Q. Advances in researches on antitumor effect of selenium and its mechanism. China J. Public Health 2018, 34, 934–936. [Google Scholar]
- Lv, Q.; Yan, Q.; Chen, Y.; Zhuo, Y.; Wang, D. Research Progress of Antiviral Effects of Microelement Selenium in Animal Body. Soils 2018, 50, 1113–1118. [Google Scholar]
- Balazs, C.; Racz, K. The role of selenium in endocrine diseases. Orv. Hetil. 2013, 154, 1628–1635. [Google Scholar] [CrossRef]
- Bellinger, F.P.; Raman, A.V.; Reeves, M.A.; Berry, M.J. Regulation and function of selenoproteins in human disease. Biochem. J. 2009, 422, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Fairweather-Tait, S.; Vinceti, M. Selenium and immune function: A systematic review and meta-analysis of experimental human studies. Am. J. Clin. Nutr. 2023, 117, 93–110. [Google Scholar] [CrossRef]
- Gosney, M.A.; Hammond, M.F.; Shenkin, A.; Allsup, S. Effect of Micronutrient Supplementation on Mood in Nursing Home Residents. Gerontology 2008, 54, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Pipkin, F.B.; Redman, C.W.G.; Poston, L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012, 206, 21–30. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.E.; Kovacic, J.P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care 2009, 19, 215–240. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Glibetic, M. Zinc as a Biomarker of Cardiovascular Health. Front. Nutr. 2021, 8, 686078. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, Y.; Ouyang, Z. Food and Grain Consumption Per Capita in the Qinghai-Tibet Plateau and Implications for Conservation. Nutrients 2021, 13, 3742. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Shivay, Y.S.; Nisar, S.; Gaber, A.; Brestic, M.; Barek, V.; et al. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules 2022, 27, 1340. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Rawat, N.; Neelam, K.; Tiwari, V.K.; Dhaliwal, H.S. Biofortification of cereals to overcome hidden hunger. Plant Breed. 2013, 132, 437–445. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Munir, M.A.M.; Mian, M.M. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2018, 149, 291–306. [Google Scholar] [CrossRef]
- Ma, G.; Li, Y.; Jin, Y.; Zhai, F.; Kok, F.J.; Yang, X. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur. J. Clin. Nutr. 2007, 61, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, Y. One of the Monitoring Reports on Nutrition and Health of Chinese Residents: Dietary and Nutrient Intake from 2010 to 2013; People’s Medical Publishing House: Beijing, China, 2018; pp. 100–108. [Google Scholar]
- Dinh, Q.T.; Cui, Z.W.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.X.; Zhou, F.; Wang, M.K.; Yu, D.S.; Liang, D.L. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Li, S.J.; Li, W.; Hu, X.; Yang, L.S.; Xirao, R.D. Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China. Front. Environ. Sci. Eng. China 2009, 3, 62–68. [Google Scholar] [CrossRef]
- Qu, H.; Nyima, T.; Wei, Z.; Zhuo, M.; Sun, W.; Gao, X.; Shan, H.; Mei, X. Investigation on Selenium Content in Soil and Hulless Barley Grains in Tibet. J. Triticeae Crops 2020, 40, 890–896. [Google Scholar]
- Zhou, C.N.; Li, M.; Xiao, R.; Zhao, F.J.; Zhang, F.S. Significant Nutritional Gaps in Tibetan Adults Living in Agricultural Counties Along Yarlung Zangbo River. Front. Nutr. 2022, 9, 845026. [Google Scholar] [CrossRef]
- Tibet Autonomous Region Bureau of Statistics. Tibet Statistical Yearbook; China Statistics Press: Beijing, China, 2022; pp. 136–137. [Google Scholar]
- Gashu, D.; Nalivata, P.C.; Amede, T.; Ander, E.L.; Bailey, E.H.; Botoman, L.; Chagumaira, C.; Gameda, S.; Haefele, S.M.; Hailu, K.; et al. The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature 2021, 594, 71–76. [Google Scholar] [CrossRef] [PubMed]
- China MEP. Exposure Factors Handbook of Chinese Population (Adults), 1st ed.; China Environment Press: Beijing, China, 2013; p. 255. [Google Scholar]
- Miller, L.V.; Krebs, N.F.; Hambidge, K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 2007, 137, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478S–1483S. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes (2013); Science Press: Beijing, China, 2014; pp. 249–256. [Google Scholar]
- Hatloy, A.; Torheim, L.E.; Oshaug, A. Food variety—A good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Hairong, L.I.; Yang, L.; Tan, J.; Wang, W.; Hou, S.; Yonghua, L.I.; Jiangping, Y.U.; Wei, B. Progress on Selenium Deficiency in Geographical Environment and its Health Impacts in China. Curr. Biotechnol. 2017, 7, 381–386. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhou, C.; Xiao, R.; Li, M.; Wang, Q.; Cong, W.; Zhang, F. Highland barley grain and soil surveys reveal the widespread deficiency of dietary selenium intake of Tibetan adults living along Yalung Zangpo River. Front. Sustain. Food Syst. 2022, 6, 1007876. [Google Scholar] [CrossRef]
- Guo, Y.N.; Li, H.; Yang, L.; Guo, M.; Wei, B.; Li, Y.; Gong, H.; Wang, W.; Dejiyangzong; Zhao, S. The relationship between environment selenium characteristic and distribution of Kaschin-Beck disease in the Yarlung Zangbo River banks. Chin. J. Endem. 2017, 36, 494–497. [Google Scholar]
- Wang, J.; Li, H.; Yang, L. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai-Tibet Plateau. Prog. Geogr. 2020, 39, 1677–1686. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, L.; Wang, W.; Li, Y.; Li, H. Environmental selenium in the Kaschin-Beck disease area, Tibetan Plateau, China. Environ. Geochem. Health 2011, 33, 495–501. [Google Scholar] [CrossRef]
- Guo, Y.N. Study on the Relationship between Environmental Selenium and Other Elements Distribution Characteristic and Kaschin-Beck Disease in Middle and up Reaches of two Sides of Yarlung Zangbo River. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, May 2017. [Google Scholar]
- Zha, X.; An, J.; Gao, X.; Tian, Y. Dietary and drinking water intake of essential trace elements in a typical Kashin-Beck disease endemic area of Tibet, China. Environ. Health 2022, 21, 86. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhang, Y.Q.; Tong, Y.P.; Xue, Y.F.; Liu, D.Y.; Zhang, W.; Deng, Y.; Meng, Q.F.; Yue, S.C.; Yan, P.; et al. Harvesting more grain zinc of wheat for human health. Sci. Rep. 2017, 7, 7016. [Google Scholar] [CrossRef]
- Rafique, E.; Rashid, A.; Ryan, J.; Bhatti, A.U. Zinc deficiency in rainfed wheat in Pakistan: Magnitude, spatial variability, management, and plant analysis diagnostic norms. Commun. Soil Sci. Plant Anal. 2006, 37, 181–197. [Google Scholar] [CrossRef]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mcgrath, S.P. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Phiri, F.P.; Ander, E.L.; Lark, R.M.; Bailey, E.H.; Chilima, B.; Gondwe, J.; Joy, E.J.M.; Kalimbira, A.A.; Phuka, J.C.; Suchdev, P.S.; et al. Urine selenium concentration is a useful biomarker for assessing population level selenium status. Environ. Int. 2020, 134, 105218. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, W.C.; Alkan, F.Z.; Oehler, L. Absorption, distribution and excretion of selenium from beef and rice in healthy North American men. J. Nutr. 2003, 133, 3434–3442. [Google Scholar] [CrossRef]
- Chen, C.J.; Yu, S.Y.; Bao, S.Y.; Lu, R. Zinc metabolism and requirement in Chinese preschool children consuming different diets. J. Nutr. 1998, 128, 2369–2373. [Google Scholar] [CrossRef]
- Inoue, Y.; Umezaki, M.; Jiang, H.; Li, D.; Du, J.; Jin, Y.; Yang, B.; Li, B.; Li, Y.; Watanabe, C. Urinary Concentrations of Toxic and Essential Trace Elements among Rural Residents in Hainan Island, China. Int. J. Environ. Res. Public Health 2014, 11, 13047–13064. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Yang, L.; Gong, H.; Wang, L.; Li, H.; Yu, J.; Li, Y.; Deji, Y.; Nima, C.; Zhao, S.; et al. Association of selenium, arsenic, and other trace elements in drinking water and urine in residents of the plateau region in China. Environ. Sci. Pollut. Res. 2022, 29, 26498–26512. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, Y.L.; Liu, Y.Q.; Xie, Q.; Liu, Q.F.; Wu, Q.; Fan, T.Q.; Yan, L.L.; Wang, J.Y. Correlations of Trace Element Levels in the Diet, Blood, Urine, and Feces in the Chinese Male. Biol. Trace Elem. Res. 2012, 145, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhong, Q.; Hu, M.; Sheng, J.; Yang, Y.; Liang, L.; Wang, X.; Yang, Y.; Zhou, M.; Huang, F. Human biomonitoring of eight trace elements in urine of residents living in rural areas along the Yangtze River, China. Environ. Sci. Pollut. Res. 2017, 24, 27963–27973. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Wu, M.; Yu, M.; Wang, L.; Hu, L.; Li, Y.; Song, L.; Wang, Y.; Mei, S. Individual and joint effects of metal exposure on metabolic syndrome among Chinese adults. Chemosphere 2022, 287, 132295. [Google Scholar] [CrossRef] [PubMed]
Urine Se | Urine Zn | ||||
---|---|---|---|---|---|
No. | Factor | q Statistic (%) | p-Value | q Statistic (%) | p-Value |
1 | Total Zn intake | 34.46 | <0.01 | 33.66 | <0.01 |
2 | Total Se intake | 16.77 | 0.013 | 10.42 | 0.933 |
3 | DDS * | 37.15 | <0.01 | 36.83 | <0.01 |
4 | Rice Zn | 43.81 | <0.01 | 54.41 | <0.01 |
5 | Rice Se | 43.81 | <0.01 | 54.41 | <0.01 |
6 | Flour Zn | 37.15 | <0.01 | 36.83 | <0.01 |
7 | Flour Se | 47.14 | <0.01 | 12.44 | <0.01 |
8 | Self-produced flour Zn | 19.67 | <0.01 | 37.24 | <0.01 |
9 | Self-produced flour Se | 36.56 | <0.01 | 35.84 | <0.01 |
10 | Tsampa Zn | 13.79 | <0.01 | 22.82 | <0.01 |
11 | Tsampa Se | 13.79 | <0.01 | 22.82 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Nima, C.; Yang, L.; Wang, L.; Wei, B.; Li, Y.; Li, H.; Deji, Y.; Zhao, S.; Guo, M.; et al. Selenium and Zinc Intakes of Staple Grains and Their Correlation with Urine Selenium and Zinc in the Tibetan Rural Residents along the Yarlung Zangbo River. Nutrients 2023, 15, 2010. https://doi.org/10.3390/nu15082010
Jia Y, Nima C, Yang L, Wang L, Wei B, Li Y, Li H, Deji Y, Zhao S, Guo M, et al. Selenium and Zinc Intakes of Staple Grains and Their Correlation with Urine Selenium and Zinc in the Tibetan Rural Residents along the Yarlung Zangbo River. Nutrients. 2023; 15(8):2010. https://doi.org/10.3390/nu15082010
Chicago/Turabian StyleJia, Yumin, Cangjue Nima, Linsheng Yang, Li Wang, Binggan Wei, Yonghua Li, Hairong Li, Yangzong Deji, Shengcheng Zhao, Min Guo, and et al. 2023. "Selenium and Zinc Intakes of Staple Grains and Their Correlation with Urine Selenium and Zinc in the Tibetan Rural Residents along the Yarlung Zangbo River" Nutrients 15, no. 8: 2010. https://doi.org/10.3390/nu15082010
APA StyleJia, Y., Nima, C., Yang, L., Wang, L., Wei, B., Li, Y., Li, H., Deji, Y., Zhao, S., Guo, M., Gong, H., Kong, C., Gu, L., Gesang, Z., & Li, R. (2023). Selenium and Zinc Intakes of Staple Grains and Their Correlation with Urine Selenium and Zinc in the Tibetan Rural Residents along the Yarlung Zangbo River. Nutrients, 15(8), 2010. https://doi.org/10.3390/nu15082010