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Abstract: The increase in life expectancy can be a consequence of the world’s socioeconomic, sanitary
and nutritional conditions. Some studies have demonstrated that individuals with a satisfactory diet
variety score present a lower risk of malnutrition and better health status. Zinc and selenium are
important micronutrients that play a role in many biochemical and physiological processes of the
immune system. Deficient individuals can present both innate and adaptive immunity abnormalities
and increased susceptibility to infections. Primary immunodeficiency diseases, also known as inborn
errors of immunity, are genetic disorders classically characterized by an increased susceptibility to
infection and/or dysregulation of a specific immunologic pathway. IgA deficiency (IgAD) is the
most common primary antibody deficiency. This disease is defined as serum IgA levels lower than
7 mg/dL and normal IgG and IgM levels in individuals older than four years. Although many
patients are asymptomatic, selected patients suffer from different clinical complications, such as
pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy.
Knowing the nutritional status as well as the risk of zinc and selenium deficiency could be helpful
for the management of IgAD patients. Objectives: to investigate the anthropometric, biochemical,
and nutritional profiles and the status of zinc and selenium in patients with IgAD. Methods: in this
descriptive study, we screened 16 IgAD patients for anthropometric and dietary data, biochemical
evaluation and determination of plasma and erythrocyte levels of zinc and selenium. Results: dietary
intake of zinc and selenium was adequate in 75% and 86% of the patients, respectively. These results
were consistent with the plasma levels (adequate levels of zinc in all patients and selenium in 50%
of children, 25% of adolescents and 100% of adults). However, erythrocyte levels were low for
both micronutrients (deficiency for both in 100% of children, 75% of adolescents and 25% of adults).
Conclusion: our results highlight the elevated prevalence of erythrocyte zinc and selenium deficiency
in patients with IgAD, and the need for investigation of these micronutrients in their follow-up.

Keywords: IgA deficiency; selenium deficiency; zinc deficiency; recommended dietary allowances;
immune system

1. Introduction

Growth varies during life and it is recognized as a good indicator of a child’s health [1].
Robust evidence has shown the important role of diet in the maintenance of human health,
as approximately one in five deaths around the world due to chronic cardiovascular and
neoplastic diseases can be attributed to an unhealthy diet [2]. Therefore, to empower people
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to choose healthy foods and to create healthy environments has become one of the main
global objectives of health policies [3].

Optimal nutrition plays a fundamental role in the adequate performance of the im-
mune system. An adequate supply of nutrients is essential for immune cells proliferation
and biosynthesis of several immune factors [4]. Micronutrients participate and support
every stage of the response against pathogens, and have specific antibacterial and anti-viral
functions. Micronutrients also act as substrates for the intestinal microbiota, regulate the
immune cell metabolism, protect from oxidative and inflammatory stress and contribute
to the production of proteins (antibodies, cytokines, receptors) and new cells [5]. It is well
known that proper nutrition can help support optimal immune function, reducing the fre-
quency and severity of infectious diseases. Inadequate dietary intake of some nutrients and
malnutrition of a child or an adult can cause chronic inflammation due to dysregulation of
the immune response and recurrent infections as a consequence of secondary immunodefi-
ciency [5,6]. Childs et al. [7] have shown that malnourished individuals can present impaired
phagocytosis and decreased cytokine production. On the other hand, chronic infection can
lead to nutrient deficiencies through reduced appetite, greater consumption and reduced
nutrient absorption, resulting in a vicious cycle of malnutrition and infection [8]. Moreover,
according to the World Health Organization, there is a synergistic relationship between
malnutrition and infection, in which the immune response exacerbates a poor nutritional
state and causes an increase in the demand for micronutrients [9]. As a similar form, the
hidden hunger, defined as an inadequate micronutrient intake, in contrast to an adequate or
even excessive energy consumption, can also compromise the immune response [10]. Thus,
an adequate dietary intake rich in some nutrients like protein, copper, iron, selenium and
zinc has a significant role in immune health improving the quality of life [4].

Zinc (Zn) is one of the most abundant micronutrients in the human body. As a compo-
nent of several enzymes and transcription factors, Zn is involved in many biochemical and
physiological processes at the molecular, cellular and systemic levels. Zn participates in cell
membrane repair, cell proliferation, inflammation, DNA damage response and antioxidant
defenses [11]. Deficiency of Zn is related to the pathophysiology of many human conditions,
ranging from cancer to neurological disorders, impairment in cognitive function, aging,
diabetes, growth retardation and infection [12,13]. Zn also has antioxidant functions and
plays a significant role in the maintenance of immune homeostasis. In the innate immune
system, Zn is important for phagocytosis; it affects the production of cytokines, the matura-
tion of dendritic cells and the activity of the complement system [14]. Regarding adaptive
immunity, Zn influences the formation and function of T cells, as well as the maturation of
B cells, and consequently antibody production. Zn is also crucial for the balance between the
different T-cell subsets, since its deficiency decreases the production of Th1 cytokines (IFN-γ,
IL-2 and TNF-α) that are essential for the adequate response against pathogens [14,15].

Selenium (Se) is present in 25 human selenoproteins involved in a variety of essential
biological functions, ranging from the regulation of reactive oxygen species (ROS) to the
biosynthesis of hormones [16]. Selenoprotein-mediated biochemical mechanisms play
an important role in the clinical outcome of diseases that include cancer, diabetes, viral
infections (including SARS-CoV-2 and HIV) and neurological disorders. Se can affect both
the adaptive and innate immune systems. Neutrophils, macrophages and natural killer
cells (NKs) need Se to function effectively [17]. Se also plays a role as a NF-κB inhibitor,
with consequent immune-modulation and anti-inflammatory action [18]. Se deficiency
affects the activation and functions of T and B-lymphocytes, as T lymphocytes may be
unable to proliferate in response to mitogens, and B lymphocytes may be ineffective to
produce IgM and IgG [19]. An appropriate intake of Se might help alleviate oxidative stress
and inflammation, and also reduce bacterial and viral infections [17].

The immune system is composed of two parts: the innate (epithelial barriers, lysozyme,
interferon, complement, toll-like receptors, NK cells and phagocytes) and the adaptive
(T and B lymphocytes and immunoglobulin) responses, which are integrated and cooperate
with each other [20].
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B-cells are responsible for the humoral immunity, also known as antibody-mediated
immunity, through the differentiation into plasma cells that play a role in producing
immunoglobulins. B lymphocytes undergo genetic modifications of their immunoglobulin
genes to produce highly specific antibodies and five different immunoglobulin isotypes
(IgG, IgM, IgA, IgE and IgD) [21]. Two thirds of all immunoglobulin produced by the body
is IgA, which has an important influence in both humoral and mucosal immunity [22].
IgA exists in two forms: the monomeric form is free and dominant in the serum, while
the dimeric form is wrapped by the secretory component and plays a fundamental role in
mucosal immunity. Secretory IgA is more resistant to the proteolytic activity of bacteria, has
an anti-inflammatory effect and protects against infectious agents and allergen sensitization,
serving as an interface between the body and the microbiome [23].

Primary immunodeficiencies, also known as inborn errors of immunity, are a large
and heterogeneous group of genetic diseases that impair the immune system. More than
400 diseases have been described [24]. In general, patients with primary immunodeficiencies
are at risk for recurrent, prolonged, and sometimes life-threatening infections caused by
several kind of pathogens, including opportunistic agents, autoimmunity, failure to thrive
and malignancies [25,26]. An international expert committee composed of pediatric and
adult clinical immunologists under the auspices of the International Union of Immunological
Societies has provided the clinical and genetic classification of the inborn errors of immunity
since 1970. Thus, these diseases are currently categorized into 10 groups, as follows: combined
immunodeficiencies; combined immunodeficiencies with syndromic features; predominantly
antibody deficiencies; diseases of immune dysregulation; congenital defects of phagocytes;
defects in intrinsic and innate immunity; autoinflammatory diseases; complement deficiencies;
bone marrow failure; and phenocopies of inborn errors of immunity [24].

Selective IgA deficiency (IgAD) is part of the predominantly antibody deficiencies
group. IgAD is the most prevalent inborn error of immunity, with prevalence from about
1:3000 to even 1:150, depending on the population. According to the European Society for
Immunodeficiency (ESID), the definition of primary IgAD was established as serum IgA
levels less than 7 mg/dL, normal IgG and IgM and the exclusion of other causes of hy-
pogammaglobulinemia in individuals aged over 4 years [27]. Many patients are oligosymp-
tomatic, but less frequently they can present increased susceptibility for recurrent infections,
and predisposition for allergies, gastrointestinal, endocrine and autoimmune disorders [22].
IgAD has been associated with lactase deficiency, celiac and Crohn’s disease, type 1 diabetes
mellitus and rheumatoid arthritis. Allergies are present in 56% of individuals with IgAD,
and asthma in 29.8%. Between 25.5 and 31.7% of individuals with IgAD develop systemic
lupus erythematosus [22]. An increased risk for infections has been widely reported in
individuals with IgAD. The most common infections are upper respiratory tract infections
(40–90%), mainly viral, while bacterial infections are less frequent. Gastrointestinal tract
infections are also common and include intermittent or chronic diarrhea due to Giardia
lamblia [23]. There is no specific treatment for the disease, and management is directed to
the clinical manifestations that may arise.

Our hypothesis is that patients with IgAD may have Zn and Se deficiency. Considering
the importance of Zn and Se for several functions of the immune system, and the scarcity
of previous studies that evaluated this association, the present study aimed to evaluate the
nutritional status and the plasma and erythrocyte levels of these micronutrients in patients
with IgAD. This assessment may be important for the implementation of changes in dietary
behaviors and the possible supplementation of these micronutrients in order to modulate
the immune system response and to reduce the susceptibility to infections.

2. Methods
2.1. Study Design

A cross-sectional, retrospective and descriptive study was conducted to evaluate some
nutritional aspects of IgAD patients at the Clinics Hospital of Ribeirão Preto Medical School,
University of São Paulo, Brazil.
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2.2. Participants

Patients aged more than 4 years old with a confirmed diagnosis of selective IgAD,
according to the ESID, were included. Age range was defined according to the recommen-
dations of the World Health Organization, whereby children are individuals aged up to
10 years and adolescents are individuals between 10 and 20 years old [28]. Patients were
selected among those who attended the Pediatric Allergy Outpatient Clinics at our hospital.

Individuals less than 4 years old, pregnant women, transitory or secondary IgAD,
other secondary or primary immunodeficiencies, and the use of immunosuppressants or
Zn and Se supplements were excluded.

This study was approved by the Ethics Committee of Clinics Hospital and patients
were included after signing the consent and assent term to participate in the research
(Protocol HCRP no 14444/2010).

2.3. Dietary Intake

All participants fulfilled a three days form with a detailed description of the ingested
quantity and type of foods (food record). Forms were delivered to the participants or
their parents. The form was returned during the next routine visit at the Outpatient
Clinic. “Programa de apoio a Nutrição da Universidade Paulista de São Paulo “Nut
Win” and “Tabela Brasileira de Composição de Alimentos da Universidade de Campinas
(TACO-UNICAMP)” were used to estimate the daily intake of Zn and Se, according to the
recommendations of the Reference Daily Intake (DRI).

2.4. Anthropometric Evaluation

Weight, height, measurement of triceps, biceps and subscapular skinfold thickness
and mid upper arm circumference were performed in all patients. The nutritional status
was based according to the classification of body mass index for age (BMI/age) for children
and adolescents [29] and to BMI for adults [30]. The measurements of triceps skinfold
thickness (TSF) and midarm muscle circumference (MAMC) were standardized according
to Lohman [31] and classified according to Frisancho [32].

2.5. Laboratory Evaluation

Immunoglobulin measures were determined by automated nephelometry and re-
peated three times in different periods to confirm the values.

Zn and Se were measured in plasma and erythrocytes. Whole blood was collected in
the morning in metal free tubes after 12 h of fasting.

The micronutrients concentration in plasma and erythrocytes was determined using
a plasma couple mass spectrometer equipped with a reaction cell (DRC-ICP-MS ELAN
DRCII, Perkin Elmer, Sciex, Norwalk, CT, USA) operating with high purity (99.999%) argon
(Praxaair, Brazil). Each sample was diluted in 15 mL Falcon® polypropylene tubes (Becton
Dickison) at a 1:50 proportion with a solution containing 0.01%Triton X-100 (v/v), 0.5%
HNO3 (v/v) and 10 µg/L−1 Rh of the internal standard Rh. The analytical calibration
standards were prepared at a concentration ranging from 0 to 50 µg/L in the same diluent.

The quality control of the analyses was insured by the analysis of reference materials
of the National Public Health Institute of Quebec, Canada. The analyses were carried out in
the Laboratory of Toxicology and Essentiality of Metals, Faculty of Pharmaceutical Sciences
of Ribeirão Preto, University of São Paulo.

The laboratory tests were carried out in the Central Laboratory of HCFMRP-USP
according to standardized methods routinely used in the Institution. Total proteins and
fractions were analyzed with the Konelab instrument (Wiener-lab®) and blood count and
white cell count were performed using the ABX Pentra DX 120 instrument (HORIBA)®.

2.6. Statistical Analysis

The Shapiro Wilk test was used to assess data normality in the case of continuous
variables, and the Kolmogorov Smirnoff test was used to determine the presence of possible
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associations between the variables of interest. When the normality was not rejected, para-
metric tests were used (Pearson correlation coefficient), and when there was no normality,
nonparametric tests were used (Spearman correlation coefficient) [33].

p-value of less than 0.05 was considered significant. All the statistical analyses were
performed with the SPSS (version. 22.0) and R (version. R-3.5.1) software.

3. Results

The study included 16 patients (9M:7F), 4 adults, 8 adolescents and 4 children with
a confirmed diagnosis of IgAD. All patients presented at least one infection in the last
12 months and sinusitis was the most common infection. Table 1 shows the baseline
demographic characteristics of the 16 patients.

Table 1. Demographic characteristics of the patients.

Variables n (%)

Sex
Male 9 (56)

Female 7 (44)
Age Distribution

Children 4 (25)
Adolescent 8 (50)

Adult 4 (25)
Outpatient infections in the last 12 months

Acute otitis media 3 (19)
Sinusitis 8 (50)
Diarrhea 5 (31)

Pneumonia 2 (12)
Other 7 (44)

Table 2 shows daily intake of nutrients in means and standard deviation (SD). All
patients had an adequate intake of macronutrients according to the DRIs.

Table 2. Daily intake of nutrients of the patients.

4–10 Years
Mean ± SD

11–19 Years
Mean ± SD

20–25 Years
Mean ± SD

Energy (kcal/day) 1533.3 ± 338.6 1852.5 ± 865.1 2304.1 ± 379.9
DRI (kcal/day) 1759.5 ± 171.5 2272.6 ± 588.5 3193.87 ± 634.3
Protein (g/day) 65.4 ± 20.5 74.8 ± 21.9 100.11 ± 22.6

DRI (g/day) 20.7 ± 4.6 37.9 ± 11.4 58.2 ± 8.3
Protein (%) 16.8 ± 1.9 16.6 ± 4.7 16.6 ± 1.9

DRI (%) 10–35 10–35 10–35
Carbohydrates (%) 57.2 ± 4.9 57.6 ± 5.9 61.3 ± 7.2

DRI (%) 45–65 45–65 45–65
Lipids (%) 26.9 ± 3.1 26.0 ± 1.2 22.5 ± 5.6

DRI (%) 25–35 25–35 20–35
Zn (mg/day) 8.2 ± 2.7 9.8 ± 3.2 11.3 ± 2.6

DRI (mg/day) 4–7 (EAR) 7–8.5 (EAR) 6.8–9.4 (EAR)
Se (µg/day) 64.5 ± 26.1 69.7 ± 21.4 96.7 ± 14.4

DRI (µg/day) 23–35 (EAR) 35–45 (EAR) 45 (EAR)

DRI: Dietary Reference Intake.

As observed in Table 2, 1 child, 2 adolescents and 1 adult had an inadequate intake of
Zn, and only 1 adolescent had inadequate intake of Se.

Regarding the nutritional status, 75% of the children had an adequate BMI. Overweight
and obesity were observed in 25% and 12,5% of the adolescents, respectively. All adults
were classified as overweight or obese (Table 3).
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Table 3. Nutritional status of the patients.

Groups

Nutritional Status Children *
n (%)

Adolescents *
n (%)

Adults **
n (%)

Low weight 1 (25) - -
Eutrophy 3 (75) 5 (62) -

Overweight - 2 (25) 2 (50)
Obesity - 1 (12) 2 (50)

* Eutrophic: BMI/age between 3rd and 85th percentile. Low weight: BMI/age below 3rd percentile. Overweight:
BMI/age between 85th and 97th percentile. Obesity: BMI/age above 97th percentile (WHO [29]). ** Eutrophic:
BMI between 18.5 and 25 kg/m2. Low weight: BMI bellow 18.5 kg/m2. Overweight: BMI between 25 and
30 kg/m2. Obesity: BMI above 30 kg/m2 (WHO [30]).

Midarm muscle circumference (MAMC) and TSF were adequate for the majority of
the patients. However, adults and adolescents would be classified as obese if only TSF was
considered in the evaluation (152% and 189%, respectively).

Zn levels were evaluated for all patients in plasma and erythrocytes, as shown in
Table 4.

Table 4. Zinc concentration in plasma (µg/dL) and erythrocytes (µg/dL) of the patients.

Zn Children Adolescents Adults

Plasma Erythrocytes Plasma Erythrocytes Plasma Erythrocytes

Recommendation * 70–110 10–14 70–110 10–14 70–110 10–14
Mean 195 8 189 9 225 11

Below Normal 0 100% 0 75% 0 25%
Normal 100% 0 100% 25% 100% 75%

* Based on Mafra et al. [34].

We found normal levels of plasma Zn for the entire sample. However, all children,
75% of adolescents and 25% of adults had low levels of erythrocyte Zn.

Figures 1 and 2 demonstrate the concentration of plasma (µg/dL) and erythrocyte Zn
(µg/dL), respectively. There was a moderate correlation between plasma and erythrocyte
Zn levels (r2 = 0.547, p = 0.028).
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Figure 1. Plasma zinc concentration (µg/dL) of the patients (dotted lines correspond to the reference
values, according to Mafra et al. [34]). Age group: patients 1 to 4: 7–9 years old; patients 5 to
12: 10–17 years old; patients 13 to 16: 19–25 years old.
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Figure 2. Erythrocyte zinc concentration (µg/dL) of the patients (dotted lines correspond to the
reference values, according to Mafra et al. [34]). Age group: patients 1 to 4: 7–9 years old; patients 5
to 12: 10–17 years old; patients 13 to 16: 19–25 years old.

No correlation was found between erythrocyte or plasma zinc and BMI, nutritional
status or Zn intake.

Se levels were evaluated for all patients in plasma and erythrocytes. Plasma levels
were higher than erythrocyte levels. All patients had low erythrocyte levels, as shown in
Table 5.

Table 5. Selenium concentration in plasma (µg/L) and erythrocytes (µg/L) of the patients.

Se Children Adolescents Adults

Plasma Erythrocytes Plasma Erythrocytes Plasma Erythrocytes

Recommendation * 84–100 >90 84–100 >90 84–100 >90
Mean 95.86 66.70 81.03 61.43 111.96 68.57

Below Normal 50% 100% 75% 100% 0 100%
Normal 50% 0 25% 0% 100% 0%

* Based on Millán Adame et al. [35].

Figures 3 and 4 show the concentration of plasma (µg/L) and erythrocyte Se (µg/L),
respectively.
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Figure 3. Plasma selenium concentration (µg/L) of the patients (dotted lines correspond to the
reference values, according to Millán Adame et al. [35]). Age group: patients 1 to 4: 7–9 years old;
patients 5 to 12: 10–17 years old; patients 13 to 16: 19–25 years old.
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Figure 4. Erythrocyte selenium concentration (µg/L) of the patients (levels above the dotted line
correspond to the reference value, according to Millán Adame et al. [35]). Age group: patients 1 to 4:
7–9 years old; patients 5 to 12: 10–17 years old; patients 13 to 16: 19–25 years old.

There was no correlation between Se levels and BMI, nutritional status or Se intake.
As for other relevant laboratory findings, all patients had normal levels of albumin

and only 1 patient presented a mild reduction of the lymphocyte count.
Blood count, white cell count, albumin and total protein data are listed in Table 6.

Albumin levels were within reference values for all patients. Another relevant biochemical
indicator was total leukocyte count, since it evaluates immunological competence. Only
one patient (6%) presented mild lymphocyte depletion, whereas all other subjects were
within normal limits.

Table 6. Laboratory parameters of the patients with IgAD.

Children Adolescents Adults

Mean SD Mean SD Mean SD

Hemoglobin (g/dL) 13.28 0.83 12.94 0.52 16.23 2.09
Hematocrit (%) 40.50 2.65 38.88 1.36 48.75 6.50
MCV (µ/mm3) 79.75 10.53 87.75 6.09 90.75 5.68

MCH (pg) 26.28 3.59 29.15 1.93 30.40 1.79
Leukocytes (cells × 103/mm3) 8.42 4.36 7.72 2.62 7.82 0.95

Total lymphocytes
(cells × 103/mm3) 2.35 0.97 2.54 0.78 2.14 0.8.5

Total proteins (g/dL) 7.35 0.29 7.55 0.41 7.16 0.73
Albumin (g/dL) 4.27 0.44 4.21 0.40 4.13 0.51

SD: standard deviation; MCV: Mean corpuscular volume; MCH: Mean corpuscular hemoglobin.

4. Discussion

Proper nutrition and adequate Zn and Se levels can help to maintain optimal immune
function, reducing the impact of infections and other comorbidities. Accessibility to a
proper amount of quality food is essential to maintain adequate body composition and
immune function, especially for patients with inborn errors of immunity. The objective
measurement of “enough food or nutrients” can be done by measuring the status of specific
nutrients in the body, and is expressed in terms of their adequacy or deficiency [36].

In this cross-sectional and retrospective study, we assessed some biochemical parame-
ters, the nutritional profile and the status of plasma and erythrocyte Zn and Se in patients
with IgAD. We found a high proportion of patients that presented very low levels of Zn
and Se in the erythrocytes. To our knowledge, this is the first study that investigated the
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plasma and erythrocyte status of Zn and Se in IgAD patients. Therefore, we highlight the
relevance of the present study for the nutritional health of these patients.

Dos Santos-Valente et al. [37] evaluated 17 patients with common variable immunod-
eficiency, a severe inborn error of immunity, and 17.65% of the patients were considered
malnourished and the serum and erythrocyte Zn levels were below normal. Kouhkan
et al. [9] found different results. Approximately 3% of patients with different types of
immunodeficiency, including IgAD, presented obesity, and 21% of patients presented with
nutritional deficiency, according to the BMI. Also in this study, 86.8% of patients showed
adequate levels of Zn in serum. On the other hand, Mariz et al. [38] evaluated adults with
HIV infection and found a higher occurrence of overweight and obesity, similar to our study.

A high proportion of our patients had respiratory and intestinal infections in the
last 12 months. Respiratory infections are an important cause of morbidity and mortality
worldwide, and the importance of public health practices to reduce their spread is well
established [39]. Zn has anti-infectious properties and a relevant role in defense against
respiratory infections and regulating of the immune response in the respiratory tract [40].

Analyzing food consumption, Zn intake was considered adequate for the majority of
patients, as only 4 individuals had intake inferior to the recommendation of DRI. However,
Zn levels in the erythrocytes were deficient in 100% of children, 75% of adolescents and
25% of adults. Adequate Zn intake and homeostasis are essential for a healthy life, as Zn
deficiency is associated with several immune disorders, metabolic and chronic diseases,
as well as recurrent respiratory infections, malaria, HIV and tuberculosis [41]. On the
other hand, the data intake was obtained by patient’s reports. Thus, these data may be
underestimated or overestimated, depending on the quality of the reported information.
As there is no storage compartment for these micronutrients in the human body, the
micronutrients should be ingested daily in sufficient amounts [41].

The difference found between plasma and erythrocyte Zn concentration might be
explained by changes in the erythrocyte levels according to several chronic conditions.
Despite being the most used Zn biomarker, plasma level has low specificity and sensitivity
as it can be influenced by recent changes in diet [41]. Erythrocyte Zn does not reflect these
changes and can be considered a long-term biomarker [34]. This can justify why all patients
evaluated in our study had both adequate intake and plasma levels, although erythrocytes
levels were reduced. Zn supplementation may be more effective in children with deficient
levels as compared to children with normal levels [42].

With respect to Se, almost all patients had an adequate intake. Se is acquired through
food sources like nuts, breads, cereals, meat, fish, milk and dairy products [43]. Although
some of these foods were adequately consumed by our sample, the data intake was obtained
by patient’s reports, as for Zn.

Regarding the plasma and erythrocyte Se levels, our results were even more striking,
as 100% of the patients had low erythrocyte levels, while 50% of children and 75% of
adolescents had inadequate plasma levels. However, as for Zn, the plasma levels of Se
can be considered an appropriate indicator of nutritional status in the short term, while
erythrocytes levels may indicate a long-term nutritional status [35,44] Therefore, lower
erythrocyte Se levels found in our patients might reflect a chronic deficiency state. Al Fify
et al. [45] investigated patients with systemic inflammatory conditions and pointed out that
erythrocytes measurements of certain micronutrients may be more reliable than plasma
measurements.

Kouhkan et al. [9] had also demonstrated that Se deficiency was present in 37.5% of
children with primary antibody immunodeficiency. When Se and Zn were evaluated in
vegetarian adults, plasma levels were also higher compared to erythrocyte levels [46].

Further studies are necessary to evaluate if the normal range of Zn and Se levels in
IgAD patients can be considered the same as in immunocompetent patients. This step would
be important to assess if appropriate supplementation could reduce the recurrent infections.

Al Fify et al. [45] defined new standards to prevent the misdiagnosis and inadequate
treatment of micronutrient deficiencies. They demonstrated that erythrocyte measure-
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ments can overcome the limitations of plasma measurements in patients with chronic
inflammatory diseases.

Zn has an important role in the formation, maturation and function of T and B cells.
Moreover, Zn deficiency can cause reduced maturation of these cells, resulting in reduced
antibody production. Adequate Se levels are also fundamental for immune system function,
since selenoproteins can regulate inflammation and immunity [15]. Patients with inborn errors
of immunity, including IgAD, are at risk for infections and autoimmunity. Therefore, it is
essential to evaluate their nutritional status for seeking possible mineral deficiencies that may
be supplemented in order to guarantee a more effective functioning of the immune system.

The main strength of this study is that Zn and Se were measured in erythrocytes for
all patients who were evaluated by the same investigator throughout the study.

We can point to some limitations of this study. The low number of patients, despite
IgAD being considered an inborn error of immunity and therefore being included in the
rare diseases group. This was a retrospective study. The lack of a control group.

Micronutrient deficiencies are frequently found in clinical practice, in both children
and adults. However, these deficiencies are often underrecognized. Therefore, clinicians
should be aware of the risk factors and act properly [44]. Further studies should explore
the impact of specific micronutrient supplementation for patients with IgAD and other
inborn errors of immunity.

5. Conclusions

The erythrocyte levels of Zn and Se were low in IgAD patients, as compared with
the reference values by age range. Our findings suggest the need for monitoring both the
intake and erythrocyte levels of these micronutrients in this group of patients.
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