Tea Consumption and New-Onset Acute Kidney Injury: The Effects of Milk or Sweeteners Addition and Caffeine/Coffee
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Dietary Assessment
2.3. Covariates Measurements
2.4. Genetic Caffeine Metabolism Score
2.5. Ascertainment of AKI
3. Statistical Analysis
4. Results
4.1. Study Participants and Baseline Characteristics
4.2. Association between Tea Consumption and New-Onset AKI
4.3. Joint Effect of Tea Consumption and Addition of Milk or Sweeteners to Tea on New-Onset AKI
4.4. Stratified Analyses by Potential Effect Modifiers
4.5. Sensitivity Analyses
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, R.L.; Cerdá, J.; Burdmann, E.A.; Tonelli, M.; García-García, G.; Jha, V.; Susantitaphong, P.; Rocco, M.; Vanholder, R.; Sever, M.S.; et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet 2015, 385, 2616–2643. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Quinn, R.R.; Luo, J.; Li, P.; Scales, D.C.; Mamdani, M.M.; Ray, J.G.; University of Toronto Acute Kidney Injury Research Group. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009, 302, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009, 53, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Tögel, F.; Westenfelder, C. Recent advances in the understanding of acute kidney injury. F1000Prime Rep. 2014, 6, 83. [Google Scholar] [CrossRef]
- Sharfuddin, A.A.; Molitoris, B.A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 2011, 7, 189–200. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, K.; Yang, K.E.; Lee, J.E.; Kwon, G.Y.; Huh, W.; Kim, D.J.; Kim, Y.G.; Jang, H.R. Dietary Modification Alters the Intrarenal Immunologic Micromilieu and Susceptibility to Ischemic Acute Kidney Injury. Front. Immunol. 2021, 12, 621176. [Google Scholar] [CrossRef]
- Tommerdahl, K.L.; Hu, E.A.; Selvin, E.; Steffen, L.M.; Coresh, J.; Grams, M.E.; Bjornstad, P.; Rebholz, C.M.; Parikh, C.R. Coffee Consumption May Mitigate the Risk for Acute Kidney Injury: Results from the Atherosclerosis Risk in Communities Study. Kidney Int. Rep. 2022, 7, 1665–1672. [Google Scholar] [CrossRef]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, Z.; Zheng, T.Z.; Bassig, B.A.; Mao, C.; Liu, X.; Zhu, Y.; Shi, K.; Ge, J.; Yang, Y.J.; et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int. J. Cardiol. 2016, 202, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Syed, F.; Mena-Gutierrez, A.; Ghaffar, U. A case of iced-tea nephropathy. N. Engl. J. Med. 2015, 372, 1377–1378. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Kabagambe, E.K.; Campos, H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006, 295, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Ceolotto, G.; Ragazzo, F.; Dorigatti, F.; Saladini, F.; Papparella, I.; Mos, L.; Zanata, G.; Santonastaso, M. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J. Hypertens. 2009, 27, 1594–1601. [Google Scholar] [CrossRef]
- Zhou, A.; Hyppönen, E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: A prospective analysis of up to 347,077 individuals and 8368 cases. Am. J. Clin. Nutr. 2019, 109, 509–516. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Collins, R. What makes UK Biobank special? Lancet 2012, 379, 1173–1174. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Ramirez, Y.; Cornelis, M.C.; Berrington de González, A.; Freedman, N.D.; Loftfield, E. Tea Consumption and All-Cause and Cause-Specific Mortality in the UK Biobank: A Prospective Cohort Study. Ann. Intern. Med. 2022, 175, 1201–1211. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Chen, C.; Pan, X.F.; Guo, J.; Li, Y.; Franco, O.H.; Liu, G.; Pan, A. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: Two prospective cohort studies. BMJ 2021, 373, n604. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, L.A.; Riding, A.M.; Payne, R.A.; Abel, G.A.; Tomson, C.R.; Wilkinson, I.B.; Roland, M.O.; Chaudhry, A.N. The accuracy of diagnostic coding for acute kidney injury in England—A single centre study. BMC Nephrol. 2013, 14, 58. [Google Scholar] [CrossRef]
- Said, M.A.; van de Vegte, Y.J.; Verweij, N.; van der Harst, P. Associations of Observational and Genetically Determined Caffeine Intake with Coronary Artery Disease and Diabetes Mellitus. J. Am. Heart Assoc. 2020, 9, e016808. [Google Scholar] [CrossRef]
- Ardalan, M.R.; Tarzamni, M.K.; Shoja, M.M.; Tubbs, R.S.; Rahimi-Ardabili, B.; Ghabili, K.; Khosroshahi, H.T. Black tea improves endothelial function in renal transplant recipients. Transplant. Proc. 2007, 39, 1139–1142. [Google Scholar] [CrossRef]
- Hsu, S.P.; Wu, M.S.; Yang, C.C.; Huang, K.C.; Liou, S.Y.; Hsu, S.M.; Chien, C.T. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. Am. J. Clin. Nutr. 2007, 86, 1539–1547. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Y.; Shen, S.; Yang, J.; Wang, W.; Wu, T.; Chen, L.; Yu, Q.; Zuo, H.; Wang, X.; et al. Causal Association Between Tea Consumption and Kidney Function: A Mendelian Randomization Study. Front. Nutr. 2022, 9, 801591. [Google Scholar] [CrossRef]
- Gao, J.; Akbari, A.; Wang, T. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. J. Food Biochem. 2022, 46, e14398. [Google Scholar] [CrossRef]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef]
- Cao, S.Y.; Zhao, C.N.; Gan, R.Y.; Xu, X.Y.; Wei, X.L.; Corke, H.; Atanasov, A.G.; Li, H.B. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants 2019, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Tofovic, S.P.; Kost, C.K., Jr.; Jackson, E.K.; Bastacky, S.I. Long-term caffeine consumption exacerbates renal failure in obese, diabetic, ZSF1 (fa-fa(cp)) rats. Kidney Int. 2002, 61, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Hu, F.B.; Willett, W.C. Coffee, Caffeine, and Health. N. Engl. J. Med. 2020, 383, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Korir, M.W.; Wachira, F.N.; Wanyoko, J.K.; Ngure, R.M.; Khalid, R. The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food Chem. 2014, 145, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Poojary, M.M.; Hellwig, M.; Henle, T.; Lund, M.N. Covalent bonding between polyphenols and proteins: Synthesis of caffeic acid-cysteine and chlorogenic acid-cysteine adducts and their quantification in dairy beverages. Food Chem. 2023, 403, 134406. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Poojary, M.M.; Zhu, L.; Williams, A.R.; Lund, M.N. Phenolic Acid-Amino Acid Adducts Exert Distinct Immunomodulatory Effects in Macrophages Compared to Parent Phenolic Acids. J. Agric. Food Chem. 2023, 71, 2344–2355. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute kidney injury. Nat. Rev. Dis. Primers. 2021, 7, 52. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Grieger, J.A.; Hilpert, K.F.; West, S.G. Milk products, dietary patterns and blood pressure management. J. Am. Coll. Nutr. 2009, 28 (Suppl. S1), 103S–119S. [Google Scholar] [CrossRef]
- Cornelis, M.C.; van Dam, R.M. Habitual coffee and tea consumption and cardiometabolic biomarkers in the UK Biobank: The role of beverage types and genetic variation. J. Nutr. 2020, 150, 2772–2788. [Google Scholar] [CrossRef]
- Kolhe, N.V.; Muirhead, A.W.; Wilkes, S.R.; Fluck, R.J.; Taal, M.W. National trends in acute kidney injury requiring dialysis in England between 1998 and 2013. Kidney Int. 2015, 88, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ye, Z.; Yang, S.; Gan, X.; Zhang, Y.; Liu, M.; He, P.; Zhang, Y.; Wu, Q.; Nie, J.; et al. Associations between Serum 25-hydroxyvitamin D, Sun Exposure Time, Dietary Vitamin D Intake, and New-Onset Acute Kidney Injury among 413,169 UK Adults. J. Nutr. 2023, 153, 713–722. [Google Scholar] [CrossRef]
- Lee, W.; Wu, X.; Heo, S.; Kim, J.M.; Fong, K.C.; Son, J.Y.; Sabath, M.B.; Trisovic, A.; Braun, D.; Park, J.Y.; et al. Air Pollution and Acute Kidney Injury in the U.S. Medicare Population: A Longitudinal Cohort Study. Environ. Health Perspect. 2023, 131, 47008. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, N.V.; Muirhead, A.W.; Wilkes, S.R.; Fluck, R.J.; Taal, M.W. The epidemiology of hospitalised acute kidney injury not requiring dialysis in England from 1998 to 2013: Retrospective analysis of hospital episode statistics. Int. J. Clin. Pract. 2016, 70, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Jannot, A.S.; Burgun, A.; Thervet, E.; Pallet, N. The Diagnosis-Wide Landscape of Hospital-Acquired AKI. Clin. J. Am. Soc. Nephrol. 2017, 12, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Waikar, S.S.; Wald, R.; Chertow, G.M.; Curhan, G.C.; Winkelmayer, W.C.; Liangos, O.; Sosa, M.A.; Jaber, B.L. Validity of International Classification of Diseases, Ninth Revision, Clinical Modification Codes for Acute Renal Failure. J. Am. Soc. Nephrol. 2006, 17, 1688–1694. [Google Scholar] [CrossRef]
Tea Consumption, Cups per Day | p Value | |||||
---|---|---|---|---|---|---|
0 | ≤2 | 3–5 | 6–8 | ≥9 | ||
n | 73,287 | 129,272 | 201,748 | 74,811 | 19,503 | |
Age, years | 56.0 (48.0, 62.0) | 57.0 (49.0, 63.0) | 58.0 (51.0, 64.0) | 58.0 (51.0, 63.0) | 57.0 (50.0, 63.0) | <0.001 |
Male, No. (%) | 31,880 (43.5) | 61,121 (47.3) | 90,155 (44.7) | 33,677 (45.0) | 10,245 (52.5) | <0.001 |
White, No. (%) | 69,847 (95.7) | 117,837 (91.5) | 191,124 (95.0) | 72,834 (97.7) | 18,842 (97.0) | <0.001 |
TDI | −1.9 (−3.5, 0.9) | −2.1 (−3.6, 0.7) | −2.3 (−3.7, 0.2) | −2.2 (−3.6, 0.4) | −1.5 (−3.3, 1.6) | <0.001 |
Education, No. (%) | <0.001 | |||||
No secondary education | 12,085 (16.5) | 16,970 (13.1) | 35,015 (17.4) | 15,275 (20.4) | 4799 (24.6) | |
Secondary education | 37,907 (51.7) | 61,523 (47.6) | 98,751 (48.9) | 37,378 (50.0) | 9247 (47.4) | |
University degree | 22,059 (30.1) | 48,481 (37.5) | 64,305 (31.9) | 20,785 (27.8) | 5075 (26.0) | |
Income, No. (%) | <0.001 | |||||
Less than £31,000 | 30,284 (41.3) | 48,223 (37.3) | 83,094 (41.2) | 32,989 (44.1) | 9406 (48.2) | |
At least £31,000 | 43,003 (58.7) | 81,049 (62.7) | 118,654 (58.8) | 41,822 (55.9) | 10,097 (51.8) | |
Employed, n (%) | 66,482 (91.5) | 119,284 (93.3) | 187,003 (93.5) | 68,641 (92.5) | 16,894 (87.7) | <0.001 |
BMI, kg/m2 | 27.4 (24.5, 30.9) | 26.6 (24.0, 29.8) | 26.5 (24.0, 29.6) | 26.8 (24.2, 29.9) | 27.0 (24.3, 30.2) | <0.001 |
Smoking status, No. (%) | <0.001 | |||||
Never | 38,105 (52.2) | 71,481 (55.5) | 113,761 (56.6) | 40,103 (53.8) | 8705 (44.8) | |
Former | 24,924 (34.1) | 44,764 (34.7) | 70,380 (35.0) | 25,713 (34.5) | 6420 (33.1) | |
Current | 10,029 (13.7) | 12,573 (9.8) | 16,848 (8.4) | 8688 (11.7) | 4296 (22.1) | |
Alcohol consumption, times/week | <0.001 | |||||
<1 | 25,784 (35.2) | 35,462 (27.5) | 58,151 (28.8) | 25,568 (34.2) | 8023 (41.2) | |
1–2 | 17,602 (24.0) | 31,367 (24.3) | 54,409 (27.0) | 20,481 (27.4) | 4829 (24.8) | |
3–4 | 14,616 (20.0) | 31,018 (24.0) | 49,164 (24.4) | 16,615 (22.2) | 3662 (18.8) | |
>4 | 15,223 (20.8) | 31,312 (24.2) | 39,894 (19.8) | 12,084 (16.2) | 2963 (15.2) | |
Physical activity, days/week | <0.001 | |||||
Moderate | 3.0 (2.0, 5.0) | 3.0 (2.0, 5.0) | 3.0 (2.0, 5.0) | 4.0 (2.0, 6.0) | 4.0 (2.0, 6.0) | |
Vigorous | 1.0 (0.0, 3.0) | 1.0 (0.0, 3.0) | 1.0 (0.0, 3.0) | 1.0 (0.0, 3.0) | 1.0 (0.0, 3.0) | |
Healthy diet score | 3.0 (2.0, 4.0) | 3.0 (2.0, 4.0) | 3.0 (2.0, 4.0) | 3.0 (2.0, 4.0) | 3.0 (2.0, 4.0) | <0.001 |
Coffee consumption, cups per day | 3.0 (1.0, 5.0) | 2.0 (1.0, 4.0) | 1.0 (0.5, 2.0) | 1.0 (0.0, 2.0) | 0.5 (0.0, 2.0) | <0.001 |
Water consumption, glasses per day | 3.0 (1.0, 5.0) | 3.0 (1.0, 4.0) | 2.0 (1.0, 4.0) | 2.0 (1.0, 3.0) | 2.0 (0.5, 3.0) | <0.001 |
Disease history, No. (%) | ||||||
Diabetes | 5102 (7.5) | 7767 (6.5) | 10,871 (5.8) | 3994 (5.7) | 1269 (7.0) | <0.001 |
Hypertension | 40,274 (55.5) | 70,644 (55.1) | 112,528 (56.3) | 41,830 (56.4) | 10,847 (56.2) | <0.001 |
High cholesterol | 13,805 (19.1) | 23,656 (18.6) | 37,457 (18.8) | 13,987 (19) | 3888 (20.3) | <0.001 |
CVD | 5179 (7.1) | 8062 (6.3) | 13,722 (6.8) | 5603 (7.5) | 1813 (9.3) | <0.001 |
CKD | 5508 (8.3) | 9228 (7.8) | 15,376 (8.4) | 5975 (8.7) | 1736 (9.8) | <0.001 |
Creatinine, mg/dL | 0.78 (0.68, 0.90) | 0.79 (0.69, 0.91) | 0.80 (0.70, 0.92) | 0.80 (0.70, 0.92) | 0.82 (0.71, 0.94) | <0.001 |
eGFR, mL/min/1.73 m2 | 94.5 (85.1, 102) | 93.6 (84.2, 101) | 92.1 (82.1, 99.2) | 91.8 (81.5, 98.8) | 92.5 (82.1, 99.9) | <0.001 |
eGFR < 60 mL/min/1.73 m2, No. (%) | 1320 (1.9) | 2373 (2.0) | 4420 (2.4) | 1764 (2.5) | 488 (2.7) | <0.001 |
UACR, mg/g | 7.2 (4.6,12.2) | 7.2 (4.6,12.1) | 7.8 (4.9,12.8) | 8.4 (5.2,13.6) | 8.8 (5.4,14.7) | <0.001 |
UACR ≥ 30 mg/g, No. (%) | 3882 (5.5) | 6463 (5.2) | 10,072 (5.2) | 3867 (5.4) | 1200 (6.4) | <0.001 |
Tea Intake, Cups per Day | Total | No of Events | Incidence Rates * | Crude Model | Adjusted Model 1 † | Adjusted Model 2 † | |||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | ||||
Category | |||||||||
0 | 73,287 | 3638 | 4.3 | ref | ref | ref | |||
≤2 | 129,272 | 5253 | 3.5 | 0.81 (0.78, 0.84) | <0.001 | 0.73 (0.70, 0.76) | <0.001 | 0.87 (0.83, 0.91) | <0.001 |
3–5 | 201,748 | 8040 | 3.4 | 0.80 (0.76, 0.83) | <0.001 | 0.68 (0.65, 0.71) | <0.001 | 0.81 (0.78, 0.85) | <0.001 |
6–8 | 74,811 | 3192 | 3.7 | 0.86 (0.82, 0.90) | <0.001 | 0.75 (0.71, 0.78) | <0.001 | 0.83 (0.79, 0.87) | <0.001 |
≥9 | 19,503 | 1079 | 4.8 | 1.14 (1.06, 1.22) | <0.001 | 1.00 (0.94, 1.07) | 0.947 | 0.95 (0.89, 1.02) | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Yang, S.; Ye, Z.; Zhang, Y.; Zhang, Y.; He, P.; Zhou, C.; Hou, F.F.; Qin, X. Tea Consumption and New-Onset Acute Kidney Injury: The Effects of Milk or Sweeteners Addition and Caffeine/Coffee. Nutrients 2023, 15, 2201. https://doi.org/10.3390/nu15092201
Liu M, Yang S, Ye Z, Zhang Y, Zhang Y, He P, Zhou C, Hou FF, Qin X. Tea Consumption and New-Onset Acute Kidney Injury: The Effects of Milk or Sweeteners Addition and Caffeine/Coffee. Nutrients. 2023; 15(9):2201. https://doi.org/10.3390/nu15092201
Chicago/Turabian StyleLiu, Mengyi, Sisi Yang, Ziliang Ye, Yanjun Zhang, Yuanyuan Zhang, Panpan He, Chun Zhou, Fan Fan Hou, and Xianhui Qin. 2023. "Tea Consumption and New-Onset Acute Kidney Injury: The Effects of Milk or Sweeteners Addition and Caffeine/Coffee" Nutrients 15, no. 9: 2201. https://doi.org/10.3390/nu15092201
APA StyleLiu, M., Yang, S., Ye, Z., Zhang, Y., Zhang, Y., He, P., Zhou, C., Hou, F. F., & Qin, X. (2023). Tea Consumption and New-Onset Acute Kidney Injury: The Effects of Milk or Sweeteners Addition and Caffeine/Coffee. Nutrients, 15(9), 2201. https://doi.org/10.3390/nu15092201